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STRUCTURE OF FOLIATIONS ON 2-MANIFOLDS

HABIB MARZOUGUI

Introduction

In this paper, we intend to study qualitative properties of foliations with finitely
many singularities on closed 2-manifolds. Considering such a foliation as a regular
foliation on the punctured 2-manifold obtained from a closed 2-manifold by removing
the singular points, we will give an analogy of a structure’s theorem (in Salhi [10],
Theorem 1) on codimension one regular foliations on closed manifolds. Singular
foliations on 2-manifolds have been investigated by many authors from a geometric
point of view (for example, see [2], [5], [6]). We are interested more precisely in the
following questions:

1. Describe the foliation near a leaf.
2. Establish a structure’s theorem.

We mention that the results given here are known for foliations with singularities
saddles and/or thorns.

In Section 1, we give some preliminaries (definitions and notations of the general
theory of singular foliations on 2-manifolds, and some topological results which will
be needed later.). In Section 2, we give a description offoliations near a leaf, especially
near an exceptional leaf, by establishing analogues of Sacksteder’s Theorem [9] for
singular foliations on 2-manifold (Theorems 2.1 and 2.2). Some consequences as in
[10], [11] are given.

1. Preliminary

(A) Basic definitions.
This section is devoted to the basic facts of the general theory of singular foliations

on 2-manifolds. Let 3 be a C singular foliation with a finite number ofsingularities on
a compact orientable 2-manifold S of genus g. We let sing 3 be the set of singularities
of 3, 3! U the restriction of 3 to an invariant open set U of S, 3* the restriction of 3
to S* S sing 3, and let UI be the complement in S* of the union of closed leaves
of 71". By [3], Theorem p. 386, U is an open invariant set of S.
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A leaf L of ,3 is said to be proper if/, L is closed in S, locally dense if/, has
non-empty interior, and exceptional if L is non proper and nowhere dense. L is said
to be totally proper if/_, consists of singularities and proper leaves. A subset M of S is
called invariant (or ,3-saturated) if it is an union of leaves and singularities. M is called
a minimal set of ,3 if it is a closed non-empty and invariant set which is minimal (in
the sense of inclusion) for these properties. We call the class (resp. higher structure)
of a leaf L of,3 the union cl(L) (resp. SS(L))of leaves G of,3 such that =/_, (resp.
L C ( with ( - /) (cf. [11]). If L is proper, cl(L) L. A quasiminimal set K
of ,3 is the closure of a non-proper leaf. It is showed in [7] that if ,3 is orientable, the
closure of any non-proper leaf is a quasiminimal set of,3 and every totally proper leaf
of ,3 is closed in S* or closed in U.

Let L be a non-closed leaf of,3. A point x 6 L divides L into two half-leaves L-)

and L+). Denote the limit set of the half-leaf L) (resp. of the leaf L) by lim L)

(resp. lim L). The set lim L) is closed, invariant and non-empty. For a non-closed

leaf, lim L /, L. We have lim L /_, L if L is proper and non-closed, and
lim L L otherwise.

In the case where ,3 is orientable, ,3 can be defined by a flow 4" S -- S.
For every leaf L of ,3 and x 6 L, the half-leaf L+) (resp. L-)) is denoted by
L+ {(t,x)/t +} (resp. L- {q(t, x)/t _} and called the positive (resp.
negative) half-leaf of origin x. The set lim L+ (resp. lim L-) is denoted by S2
{y S :l(t) +cxz, y limq(t, x)} (resp. A/ {y S Zl(t)r --+ -x,
y lim 4(t,, x)} and called the w-limit (resp. or-limit) set of L. The limit set lim L
of L is f2/ LI A.

(B) Some results.
The following theorem is a consequence of the theorem obtained in [7] classifying

the limit sets.

THEOREM 0.1. Let "3 be an orientable singularfoliation with finite singularities
on a compact orientable 2-manifold S. For every leafL of’3, each of its limit sets 2L
(resp. A) is one ofthefollowing type:

(i) a singular point
(ii) a compact leaf
(iii) a union ofsingularities and non-compact leaves which are closed in S*
(iv) a quasiminimal set.

Below, we give some topological results which we need in the sequel.

PROPOSITION 0.2 [8]. Let M be a non-compact connected orientable 2-manifold
offinite genus k. Then its end point compactification 1(1 is a copact connected
orientable 2-manifold offinite genus k where the space Bt(M) M M ofends of
M is a totally disconnected compact set.
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PROPOSITION 0.3 [12, Lemma 4.3, p. 259]. Let S be a compact connected ori-
entable 2-manifold of genus g, and let X be a compact subset of S having finitely
many connected components. If W is a connected component of S X then W is a
connected 2-manifold with genus < g andfinitely many ends.

2. Foliation near a leaf

In all the proofs below, the foliation 3 is assumed to be orientable. If 3 is non
orientable, these proofs are then straightforward by passing to a double branched
covering of 3.

THEOREM 2.1. Let G be apropernon-closed leafof71 and let 0 be a leafsuch that
O C lim G). Then there exists an open connected invariant set W in S, containing
G such thatfor every leafF of3/W, F is proper and 0 C lim F.

The following result is analogous to Sacksteder’s Theorem [9].

THEOREM 2.2. Let "3 be a singularfoliation with a finite number ofsingularities
on a compact orientable 2-manifold S. Let L be an exceptional leafof 71. Then"

(i) The union V SS(L) U cl(L) is open and connected in S.
(ii) For every leafG of71/V, lim G C/, 12Fr(V) with lim G+)

/ (Fr(V) denotes thefrontier of V.)

(A) Proofs of Theorem 2.1 and 2.2.
Let K, K2 Kp be the quasiminimal sets of 71 (we know [7] that p < g, where

g is the genus of S) and let L be an exceptional leaf of 71. We let Kp / and let U
be the connected component of U (K U K2... U Kp_) containing L.

LEMMA2.1. Let (Gn)nr be an infinite sequence of leaves of 71/U. Then the
sequence (g2G,,),lr (resp. (AG,,),) has one of thefollowing properties:

(i) (2G,,), (resp. (AG,,),er) is a union of singularities and closed leaves
and there exists a singular point so f2G,, (resp. AG,,) for infinitely many integers n.

(ii) There exists a compact leafy such that 2G,, y (resp. AG,, F)for infinitely
many integers n.

(iii) There exists a quasiminimal set Kr (r [1, p]) such that 2G,, Kr (resp.
AG,, Kr)for infinitely many integers n.

Proof Let(G,),evjbeaninfinitesequenceofleavesof71/U. Ifwehaveneither(i)
nor (iii), then for every s 6 sing 71 (resp. every quasiminimal set Ki, 1,2 p),
there is a finite number of integers n such that s 6 f2,, (resp. f2,, Ki). The set
sing 71 is finite so for n large enough, g2,, is reduced to a compact leaf ?,, (Theo-
rem 0.1 ). Now let us show that for infinitely many integers n, all ?’, coincide with the
same leaf: To the contrary, if the ?,, are pairwise distinct for infinitely many integers
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n, then [4, Appendix] there exist three integers p, q and r such that every pair of
leaves ?,,, Vq and ’r bound an annulus. One supposes for example that ?’q is in the
interior of the annulus (?,p, Yr). It follows that the leaves Gp, Gq and Gr are not
contained in the same connected component U, a contradiction, r-1

LEMMA 2.2. Let (Gn),,r be an infinite sequence of leaves of 3/U. Then there
exists an infinite subsequence (G,,)kr, of (G,,),,r such that (Ukr,f2,,) (resp.
(Uk,r, A,, )) is connected.

Proof Each of properties (i), (ii) and (iii) of Lemma 2.1 implies the exis-
tence of an infinite subsequence (Gnk)kr, of (G,,),,r such that (r-lkr, f2,,, (resp.
(Nr, A,, )) is non-empty. Since for every k 6 I*, f2,, (resp. A,,k is connected,
it follows that (tgkr, f26,, (resp. (tgkr, A,, is connected. !-1

PROPOSITION 2.1. If L is an exceptional leaf of 3 and (Gn),,er is a sequence of
leaves which converges to a leaf L, thenfor n large enough, we have L C Gn.

Proof Let U be the connected component of U (K U K2... Kp_ 1) containing
L and let (G)r be an infinite sequence of leaves of 3 which converge to L. For n
large enough, we have G, C U. If the proposition is not true then for infinitely many
indices n, G, is a closed leaf in U. We may assume, passing to a subsequence if
necessary, that for each n 1, Gn is a closed leaf of3/U and (f2,,) (resp. (A,,)r)
has one of the properties (i), (ii), (iii) of Lemma 2.1. In the case (iii), since G,, is
closed in U, S2,, (resp. A,,) Kp. Therefore we have

L C S- Ur(f26,, U A,,),

because otherwise we would have L C U fqU,er(f2,, A,,) C K K2 tD Kp-l,
which is impossible. Now by Lemma 2.2, ,rf2,, (resp. t2,,rA,,) is connected.
Then the set tdnr (f2,, U A,,) is a compact subset of S having at most two connected
components. Denote by W the connected component of S ,r(f26,, t A6,,)
containing L. Then W is a connected orientable 2-manifold with finite genus and
its space of ends Bt(W) is finite (Proposition 0.3). Since for n large enough, G, is
closed in W, the leaf L will be closed in W [3, Theorem p. 386], which is impossible
because L is non-proper. [21

Completing the Proofof Theorem 2.1. We will prove precisely:

THEOREM 2.1’. Let G be a proper non-compact leafof2 and let 0 be a leafsuch
that 0 C (resp. A). Then there exists an open connected invariant set W in
S containing G such thatfor every leaf , of’3/W, , is proper and 0 C (resp.
0 C A).
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It suffices to show the theorem for f2, the proof being similar for A6. Under
the hypotheses of the theorem, let U be the connected component of U (K U

K2 L) Kp) containing G. Suppose the theorem is false; then there exists an infinite
sequence of proper leaves (G,),,r of 3/U which converges to G and, for every
n N, O S26,,. One can assume, passing to a subsequence if necessary, that for
every n N, (f2,,),,r (resp. (A,,),,r) has one of the properties (i), (ii), (iii) of
Lemma 2.1. Since

G C S- (U,,rG,,)

(because otherwise we would have G C U r] (U,rE2G,,) C K U K2... U Kp, which
is impossible), let W be the connected component of S (U,,rG,,) containing
G. Since (Unrf2G,,) is connected (Lemma 2.2), (UnrS2G,,) is a compact connected
subset of S. Therefore W is an open connected orientable 2- manifold with finite
genus and finitely many ends (Proposition 0.3). The endpoint compactification I" of
W is a compact connected 2-manifold and the foliation 3 of W extends the foliation

3/W where each point of Bt(W) is a singular point of’. Since G is proper, let x G
and let T be an open transverse arc such that T C U and T N G {x}. For each
n N, choose a point xn G fq T with (x),,r converging to x. If we denoteby,, the o-limit set of G, in if’, then ,, {s where s,, 6 sing . Since sing 3 is
finite, one can suppose, passing to a subsequence if necessary, that for every n 6 N,
6,, {p} where p 6 sing 3. Denote by [x, x,] the transverse segment contained
in T and let

0,,- Gx,+, LI G+x, t_J {p} t2 [x xn] for n _> 2

where Gx,+, {ck(t, xn)/t +}. Now we will use now an argument which is

originally due to Thurston: Each 0,, induces a class [0,,] in H(I; Z). Since the
subgroup H of H (if’; Z) generated by the ([0,]),>_2 is of finite type, let k the integer
such that [02], [03] [0k] generate H. Since O f2,, for every n 6 N, G+ will
be cut by a closed transversal curve which is disjoint from 02, 03 0k (for example,
see ], page 18). Hence, the closed transversal curve r has a zero intersection number
with each generator H; this contradicts the fact that G+ is adherent to the union of
O.,n N*. f--!

Completing the proofof Theorem 2.2.

Assertion (i). Let L be an exceptional leaf of 3. It follows from Theorem 2.
that SS(L) is open in S. Now, if V is not open there exists an infinite sequence
of leaves (G)r not contained in V which converge to L. This is impossible by
Proposition 2.1. The connectedness of the open V is clear.

Assertion (ii). Let G be a leaf of 71/V. If G is non-proper, then lim G
AG and "G ( or AG . Since 0 is a quasiminimal set and L C (,
we obtain ( L. The assertion is then verified. If G is proper then L C lim G
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( G f2a U Aa, and fl L or Aa / (Theorem 0.1). One supposes for
example that f2a L. We have lim G L t3 Aa. It follows that if Aa meets V then
Aa , and lim G {. Otherwise, lim G C L t_J Fr(V).

Remark 2.1. If L is a locally dense leaf, the set V SS(L) t2 cl(L) cl(L) is
the connected component of U containing L. Every leaf of 2/V is dense in V.

Remark 2.2. If L is an exceptional leaf of ,3 and G is a proper leaf such that
lim G) L, then there exists an open connected invariant set W in S, containing G,
such that for every leaf ?, of ’3/W, ?, is proper and lim ,+) L or lim ,-) L. In
the case where ,3 is orientable, we have precisely, by Theorem 0.1" If L (resp.
A) for every leaf ?, of ’3/W, , is proper and L f2 (resp. A).

(B) Corollaries.

COROLLARY 2.1. The higher structure SS(L) ofevery leaf L of,3 is open in S.

Proof We remark first that if L is locally dense, SS(L) is empty. We suppose
then L is either exceptional or proper. Let G be a leaf contained in SS (L). Then G is
non-compact. If L is exceptional, G is proper (Theorem 0.1), and we have L s2a
or L Aa. The corollary is deduced from Remark 2.2. If L is proper, the corollary
is deduced from Theorem 2.2 if G is exceptional, from Remark 2.2 if G is proper,
and from Remark 2.1 if G is locally dense. I--!

COROLLARY 2.2. If W is an open invariant non empty set contained in U, then
the union ofclosed leaves of,3 W is closed in W.

Proof Suppose the proposition is not true. Then there exists an infinite sequence
of closed leaves (Ln)nr of ’3/W which converges to a non-closed leaf L of "3/W.
By [7, Corollary 3.2], there exists a minimal set E of ’3/W contained in L. The set
E is either a closed leaf of ’3/W or equal to ( N W where G is a non-proper leaf of
’3/W. Consider the first case. Since W C U, E is a proper and non-closed leaf in S*
contained in/; this is impossible by Theorem 0.1. In the second case, if G is locally
dense, the leaf L and the leaves Ln are also locally dense for n large enough; this
contradicts the fact that L,, is closed in W. If G exceptional, for n large enough we
have G C Ln (Proposition 2.1); this is impossible because G C W and Ln is closed
in W. 121

It follows from Corollary 2.2 and Theorem 0.1 that if we take W U, then the
union TP(,3) oftotally proper leaves of,3 is a closed set in S*.

COROLLARY 2.3. (STRUCTURE’S THEOREM). Let "3 be a singularfoliation with a

finite number h of singularities on a compact orientable 2-manifold S of genus g.
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Then"
(1) 2 has afinite numbern ofquasiminimal sets L K, L2 K2 Ln K,,

hof2, where n < g if2 is orientable, and n < [2g + 3] if3 is non orientable, and
LI, L2 Ln are non-proper leaves of2.

(2) The subsets Vi SS(Li)U cl(Li) (1 < < n)are open and connected in S
and their union R has at most n connected components, each ofwhich is a union of
some g

(3) The complementary TP(2) in S of the union R is a compact invariant subset
consisting of the union of singularities, closed leaves of 2", and closed leaves of
3*/U.

Proof Assertion is known [7]. Let us prove assertion 2. If C is a connected
component of R, then C will contains at least a non-proper class cl(L), where L is
a non-proper leaf. Since there exist n such classes (n < g) [7, Theorem 4.1], then
C has at most n connected components. Denote by cl(L), cl(L2) cl(Lp) the
non-proper classes contained in C. We have C V U V2 U... t2 Vp. Assertion 3
follows from Theorem 0.1 because a totally proper leaf L of 2 is closed in S* or
closed in U. [21

Remark 2.3. The structure’s theorem above is close to the structure’s theorem
for C-regular foliations of codimension one on compact manifold given in [10],
Theorem 1.

Remark 2.4. We can apply the results above to transverse invariant measures
for orientable foliations. By the same methods as in [6] we obtain (for arbitrary
singularities) the results given there for foliations with saddles.
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