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STRUCTURE OF FOLIATIONS ON 2-MANIFOLDS

HABIB MARZOUGUI

Introduction

In this paper, we intend to study qualitative properties of foliations with finitely
many singularities on closed 2-manifolds. Considering such a foliation as a regular
foliation on the punctured 2-manifold obtained from a closed 2-manifold by removing
the singular points, we will give an analogy of a structure’s theorem (in Salhi [10],
Theorem 1) on codimension one regular foliations on closed manifolds. Singular
foliations on 2-manifolds have been investigated by many authors from a geometric
point of view (for example, see [2], [5], [6]). We are interested more precisely in the
following questions:

1. Describe the foliation near a leaf.
2. Establish a structure’s theorem.

We mention that the results given here are known for foliations with singularities
saddles and/or thorns.

In Section 1, we give some preliminaries (definitions and notations of the general
theory of singular foliations on 2-manifolds, and some topological results which will
be needed later.). In Section 2, we give a description of foliations near a leaf, especially
near an exceptional leaf, by establishing analogues of Sacksteder’s Theorem [9] for
singular foliations on 2-manifold (Theorems 2.1 and 2.2). Some consequences as in
[10], [11] are given.

1. Preliminary

(A) Basic definitions.

This section is devoted to the basic facts of the general theory of singular foliations
on 2-manifolds. LetJ be a C° singular foliation with a finite number of singularities on
acompact orientable 2-manifold S of genus g. We let sing J be the set of singularities
of 3, J/ U the restriction of J to an invariant open set U of S, J* the restriction of J
to $* = § —sing J, and let U, be the complement in S$* of the union of closed leaves
of 3*. By [3], Theorem p. 386, U, is an open invariant set of S.

Received April 7, 1997.
1991 Mathematics Subject Classification. Primary S7R30; Secondary S8F18.

© 1998 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

398



STRUCTURE OF FOLIATIONS ON 2-MANIFOLDS 399

A leaf L of J is said to be proper if L — L is closed in S, locally dense if L has
non-empty interior, and exceptional if L is non proper and nowhere dense. L is said
to be totally proper if L consists of singularities and proper leaves. A subset M of S is
called invariant (or J-saturated) if it is an union of leaves and singularities. M is called
a minimal set of J if it is a closed non-empty and invariant set which is minimal (in
the sense of inclusion) for these properties. We call the class (resp. higher structure)
of aleaf L of J the union cl(L) (resp. SS(L)) of leaves G of J such that G=1L (resp.
L C G with G # L) (cf. [11]). If L is proper, cl(L) = L. A quasiminimal set K
of J is the closure of a non-proper leaf. It is showed in [7] that if J is orientable, the
closure of any non-proper leaf is a quasiminimal set of J and every totally proper leaf
of J is closed in S* or closed in U,.

Let L be a non-closed leaf of J. A point x € L divides L into two half-leaves L™
and L. Denote the limit set of the half-leaf L) (resp. of the leaf L) by lim L"
(resp. lim L). The set lim L% is closed, invariant and non-empty. For a non-closed
leaf, imL = L — L. We have limL = L — L if L is proper and non-closed, and
lim L = L otherwise.

In the case where J is orientable, J can be defined by a flow ¢: R x § — S.
For every leaf L of J and x € L, the half-leaf L™ (resp. L) is denoted by
Lt ={p@t,x)/t € Ry} (resp. L, = {¢(t, x)/t € R_} and called the positive (resp.
negative) half-leaf of origin x. The set lim L} (resp. lim L}) is denoted by ; =
{y € §:3(t)neny = +00,y = lim(t,, x)} (resp. AL, = {y € S : I(tn)nen = —00,
y = lim¢(t,, x)} and called the w-limit (resp. «-limit) set of L. The limit set lim L
of L is QL U AL.

(B) Some results.
The following theorem is a consequence of the theorem obtained in [7] classifying
the limit sets.

THEOREM 0.1. Let J be an orientable singular foliation with finite singularities
on a compact orientable 2-manifold S. For every leaf L of 3, each of its limit sets §2,
(resp. Ay) is one of the following type:

(i) a singular point

(i) a compact leaf

(iii) a union of singularities and non-compact leaves which are closed in S*

(iv) a quasiminimal set.

Below, we give some topological results which we need in the sequel.

PROPOSITION 0.2 [8]. Let M be a non-compact connected orientable 2-manifold
of finite genus k. Then its end point compactification Misa compact connected
orientable 2-manifold of finite genus k where the space Bt(M) = M-M of ends of
M is a totally disconnected compact set.
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PROPOSITION 0.3 [12, Lemma 4.3, p. 259]. Let S be a compact connected ori-
entable 2-manifold of genus g, and let X be a compact subset of S having finitely
many connected components. If W is a connected component of S — X then W is a
connected 2-manifold with genus < g and finitely many ends.

2. Foliation near a leaf

In all the proofs below, the foliation J is assumed to be orientable. If J is non
orientable, these proofs are then straightforward by passing to a double branched
covering of J.

THEOREM 2.1. Let G be a proper non-closed leaf of J and let O be a leaf such that
O C lim GY). Then there exists an open connected invariant set W in S, containing
G such that for every leaf y of 3/ W, y is proper and O C limy.

The following result is analogous to Sacksteder’s Theorem [9].

THEOREM 2.2. Let J be a singular foliation with a finite number of singularities
on a compact orientable 2-manifold S. Let L be an exceptional leaf of J. Then:

(i) The union V = SS(L) U cl(L) is open and connected in S.

(ii) For every leaf G of 3/ V,1im G C LUFr(V) withlimG™® = L orlim G2 =
L (Fr(V) denotes the frontier of V.)

(A) Proofs of Theorem 2.1 and 2.2.

Let Ky, K3, ..., K, be the quasiminimal sets of J (we know [7] that p < g, where
g is the genus of S) and let L be an exceptional leaf of J. We let K, = L and let U
be the connected component of Uy — (K} U K5 ... U K,_1) containing L.

LEMMA 2.1.  Let (G,),en be an infinite sequence of leaves of J/U. Then the
sequence (826, )neN (resp. (Ag,)neN) has one of the following properties:

(1) (26, )nen (resp. (Ag,)neN) is a union of singularities and closed leaves of 3*,
and there exists a singular point s, € Qg, (resp. Ag,) for infinitely many integers n.

(ii) There exists a compact leaf y such that Q¢, = y (resp. Ag, = y) for infinitely
many integers n.

(iii) There exists a quasiminimal set K, (r € [1, p]) such that Q¢g, = K, (resp.
Ag, = K,) for infinitely many integers n.

Proof. Let(Gp),en be aninfinite sequence of leaves of J/ U . If we have neither (i)
nor (iii), then forevery s € sing J (resp. every quasiminimal set K;,i = 1,2, ..., p),
there is a finite number of integers n such that s € Q¢, (resp. 2, = K;). The set
sing J is finite so for n large enough, Qg, is reduced to a compact leaf y, (Theo-
rem 0.1). Now let us show that for infinitely many integers n, all y, coincide with the
same leaf: To the contrary, if the y, are pairwise distinct for infinitely many integers
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n, then [4, Appendix] there exist three integers p, g and r such that every pair of
leaves y,,, ¥, and y, bound an annulus. One supposes for example that y, is in the
interior of the annulus (y,, y,). It follows that the leaves G,, G, and G, are not
contained in the same connected component U, a contradiction. [

LEMMA 2.2. Let (G,)uen be an infinite sequence of leaves of 3/ U. Then there
exists an infinite subsequence (G, )ken+ Of (Gp)nen such that (Ugen»Q2,,) (resp.
(Uken+Ag,,)) is connected.

Proof. Each of properties (i), (ii) and (iii) of Lemma 2.1 implies the exis-
tence of an infinite subsequence (G, )ken+ Of (G,)nen such that (Mken+L2g,, ) (resp.
(Mken+Ag,, )) is non-empty. Since for every k € N*, QG”A (resp. AG,,I() is connected,

it follows that (Ugen-€26,, ) (resp. (Uken+Ag,, ) is connected. [

PROPOSITION 2.1. If L is an exceptional leaf of J and (Gp)peN is a sequence of
leaves which converges to a leaf L, then for n large enough, we have L C G,,.

Proof. LetU be the connected component of U; — (K UK> ... K,,_1) containing
L and let (G,),en be an infinite sequence of leaves of J which converge to L. For n
large enough, we have G, C U. If the proposition is not true then for infinitely many
indices n, G, is a closed leaf in U. We may assume, passing to a subsequence if
necessary, that foreachn € N, G, isaclosed leaf of 3/ U and (2¢,) (resp. (Ag, )neN)
has one of the properties (i), (ii), (iii) of Lemma 2.1. In the case (iii), since G, is
closed in U, Qg, (resp. Ag,) # K. Therefore we have

L CS§—VUen(Qg, UAg,),

because otherwise we would have L C U NU,en(826, U Ag,) C K1UK, .. UK,
which is impossible. Now by Lemma 2.2, U,enS2g, (resp. UyenAg,) is connected.
Then the set U,en(R26, U Ag, ) is a compact subset of S having at most two connected
components. Denote by W the connected component of § — U,en(R26, U Ag,)
containing L. Then W is a connected orientable 2-manifold with finite genus and
its space of ends Bt(W) is finite (Proposition 0.3). Since for n large enough, G, is
closed in W, the leaf L will be closed in W [3, Theorem p. 386], which is impossible
because L is non-proper. O

Completing the Proof of Theorem 2.1. 'We will prove precisely:

THEOREM 2.1'.  Let G be a proper non-compact leaf of 3 and let O be a leaf such
that O C Qg (resp. Ag). Then there exists an open connected invariant set W in
S containing G such that for every leaf y of 3/ W, y is proper and O C 2, (resp.
O CA,)).
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It suffices to show the theorem for Q, the proof being similar for Ag. Under
the hypotheses of the theorem, let U be the connected component of U; — (K| U
K> ...UK,) containing G. Suppose the theorem is false; then there exists an infinite
sequence of proper leaves (G,),en of J/U which converges to G and, for every
n €N, O ¢ Qg,. One can assume, passing to a subsequence if necessary, that for
every n € N, (¢, nen (resp. (Ag,)nen) has one of the properties (i), (ii), (iii) of
Lemma 2.1. Since

G C S — (UyenQg,)

(because otherwise we would have G C U N (U,enS26,) C K1 UK, .. .UKp, which
is impossible), let W be the connected component of S — (U,enS2¢,) containing
G. Since (U,enS€2g,) is connected (Lemma 2.2), (U,enS26,) is a compact connected
subset of S. Therefore W is an open connected orientable 2- manifold with finite
genus and finitely many ends (Proposition 0.3). The endpoint compactification W of
W is a compact connected 2-manifold and the foliation J of W extends the foliation
J/ W where each point of Bt(W) is a singular point of 3. Since G is proper, letx € G
and let T be an open transverse arc such that T C U and T N G = {x}. For each
ne N, choose a pointx, € G, N T w1th (xn)nen converging to x. If we denote by
QG the w-limit set of G, in W, then QG = {s,} where s, € smgfi Since smgj 1s
finite, one can suppose, passing to a subsequence if necessary, that forevery n € N,
QG {p} where p € smgj Denote by [x|, x,] the transverse segment contained
in T and let

6, = GI' UG; U{p}lUlx,x,] forn>2

where G;L" = {¢(t,x,)/t € Ry}. Now we will use now an argument which is

originally due to Thurston: Each 6, induces a class [6,] in H;(W; Z). Since the
subgroup H of H| (W; Z) generated by the ([6,]),>2 is of finite type, let k the integer
such that [6,], [63], ..., [6«] generate H. Since O ¢ ¢, foreveryn € N, G;L will
be cut by a closed transversal curve which is disjoint from 6,, 03, . . ., 6; (for example,
see [1], page 18). Hence, the closed transversal curve t has a zero intersection number
with each generator H; this contradicts the fact that G| is adherent to the union of
6,,neN*. O

Completing the proof of Theorem 2.2.

Assertion (i). Let L be an exceptional leaf of J. It follows from Theorem 2.1
that SS(L) is open in S. Now, if V is not open there exists an infinite sequence
of leaves (G,),en not contained in V which converge to L. This is impossible by
Proposition 2.1. The connectedness of the open V is clear.

Assertion (ii). Let G be a leaf of 3/ V. If G is non-proper, then limG = Qg U
Ag = G and Qg = GorAg = G. Since G is a quasiminimal set and L C G,
we obtain G = L. The assertion is then verified. If G is proper then L C limG =
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G-G=QgU AG_, and Qg = L or A(_; =1L (Theorem 0.1). One supposes for
examplg that Q5 = L. _We have limG = LU A_G. It follows that if A; meets V then
Ag = L and lim G = L. Otherwise, limG C L UFr(V).

Remark 2.1. If L is a locally dense leaf, the set V = SS(L) Ucl(L) = cl(L) is
the connected component of U| containing L. Every leaf of J/V is dense in V.

Remark2.2. If L is an exceptional leaf of J and G is a proper leaf such that
lim GO = l_,, then there exists an open connected invariant set W in S, containing G,
such that for every leaf y of 3/ W, y is proper and limy ™ = L orlimy) = L. In
the case where J is orientable, we have precisely, by Theorem 0.1: If L = Q¢ (resp.
Ag) for every leaf y of 3/ W, y is proper and L = Q, (resp. A,).

(B) Corollaries.
COROLLARY 2.1.  The higher structure SS(L) of every leaf L of J is open in S.

Proof. We remark first that if L is locally dense, SS(L) is empty. We suppose
then L is either exceptional or proper. Let G be a leaf contained in SS(L). Then G is
non-compact. If L is exceptional, G is proper (Theorem 0.1), and we have L = Q¢
or L = Ag. The corollary is deduced from Remark 2.2. If L is proper, the corollary
is deduced from Theorem 2.2 if G is exceptional, from Remark 2.2 if G is proper,
and from Remark 2.1 if G is locally dense. [

COROLLARY 2.2. If W is an open invariant non empty set contained in U\, then
the union of closed leaves of 3/ W is closed in W.

Proof. Suppose the proposition is not true. Then there exists an infinite sequence
of closed leaves (L,),en of J/ W which converges to a non-closed leaf L of 3/ W.
By [7, Corollary 3.2], there exists a minimal set E of J/ W contained in L. The set
E is either a closed leaf of 3/ W or equal to G N W where G is a non-proper leaf of
J/W. Consider the first case. Since W C U\, E is a proper and non-closed leaf in $*
contained in L; this is impossible by Theorem 0.1. In the second case, if G is locally
dense, the leaf L and the leaves L, are also locally dense for n large enough; this
contradicts the fact that L, is closed in W. If G exceptional, for n large enough we
have G C L, (Proposition 2.1); this is impossible because G C W and L, is closed
inW. 0O

It follows from Corollary 2.2 and Theorem 0.1 that if we take W = Uy, then the
union TP(J) of totally proper leaves of J is a closed set in S*.

COROLLARY 2.3. (STRUCTURE’S THEOREM). Let J be a singular foliation with a
finite number h of singularities on a compact orientable 2-manifold S of genus g.
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Then:

(1) 3 has a finite number n of quasiminimal setsL, =K\, L, =K,,...,L, = K,
of J, where n < g if J is orientable,andn < [2g — 1 + g] if J is non orientable, and
Ly, Ly, ..., L, are non-proper leaves of J.

(2) The subsets V; = SS(L;) Ucl(L;) (1 <i < n) are open and connected in S
and their union R has at most n connected components, each of which is a union of
some V;.

(3) The complementary TP(J) in S of the union R is a compact invariant subset

consisting of the union of singularities, closed leaves of J*, and closed leaves of
J*/U,.

Proof. Assertion 1 is known [7]. Let us prove assertion 2. If C is a connected
component of R, then C will contains at least a non-proper class cl(L), where L is
a non-proper leaf. Since there exist n such classes (n < g) [7, Theorem 4.1], then
C has at most n connected components. Denote by cl(L,), cl(L3), ..., cl(L,) the
non-proper classes contained in C. We have C = V,; UV, U ..U V,. Assertion 3
follows from Theorem 0.1 because a totally proper leaf L of J is closed in $* or
closedinU;,. 0O

Remark 2.3. The structure’s theorem above is close to the structure’s theorem
for C°-regular foliations of codimension one on compact manifold given in [10],
Theorem 1.

Remark 2.4. 'We can apply the results above to transverse invariant measures
for orientable foliations. By the same methods as in [6] we obtain (for arbitrary
singularities) the results given there for foliations with saddles.
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