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HECKE MODULAR FORMS
AND

q-HERMITE POLYNOMIALS

BY

D.M. BssouD

1. Introduction

In this paper we shall use a technique of L.J. Rogers, expansion in terms of
q-Hermite polynomials,

(1.1)
n

A,(cos Olq)= i [ni ]cos(n- 2i)0,

where

[n]=iLi (1-q"-i+J)
(1- j

j=l q)

is the Gaussian polynomial, to derive a number of identities which express a
summation of the form

(1.2) E
(n,m)D

( 1)/<"’ m)qQO,, m)+ t.<,,, m)

as a rational product of /-functions, where Q is a quadratic form, L is a linear
form and D ((n, m) Z ZlQ(n, m) > 0}.
The most famous identity of this type is due to Jacobi [7, Theorem 357]"

n + )/2(1.3) I-I (1 q )3 E E (- 1)q(
n> m= -oo n>lm

E (-1)n(2n + 1)q{n=+n)/2

n>0
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186 D.M. BRESSOUD

E. Hecke [8] described the effect of the transformation -, -1/- on a class
of sums of the type given in (1.2) with q exp(2riz) and used this to prove
the following identity:

(1.4) 1-I (1 q,,)2
n>l

E E (- 1)+q(2-2++)/2
m oo n >_ 21m

More recently, V.G. Kac and D.H. Peterson [9] showed how to prove (1.4)
and similar results using affine Lie algebras. This in turn led G.E. Andrews [1]
to demonstrate how these identities can be derived by computing the constant
term in the series expansion of a certain infinite product by two very different
methods.
What should surprise no one familiar with the history of theta function

identities is that L.J. Rogers had stated and proved equation (1.4) back in 1894
[12, p. 323]. In fact, the derivation of (1.4) is almost a warm-up exercise before
the tackling of the more difficult derivation of the Rogers-Ramanujan identi-
ties. Rogers’ technique is philosophically dose to that of Andrews as it also
involves computing a constant term by two very different methods. But his
starting point is different and the constant term he seeks is with respect to the
q-Hermite polynomials which Rogers was the first to study [10], [11], [12], [13]
and which have since received attention from G. Szegi5 [14], L. Caditz [5], [6],
R. Askey and M. Ismail [2] and others.
We shall explain and exploit Rogers’ approach to equation (1.4) to obtain

the following general identities which involve formal sums in a completely
arbitrary sequence (f(m)). For convenience, we shall use the rising q-factorial
notation ([q[ < 1)"

(a; q) I-I(1 aq’), (a; q)oo
i>_0, (a;q)x= (aqX; q)oo, x R.

We shall prove the following identities"

(q; q):Zo E qmf(m)
m>_O

Iml
E E (--1)n+mq(n-3m2+n+m)/2 E (q-m; q)k(qm., q),q’f(k),

m= oo n > 21ml k=O
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(1.6/
(q; q)o (q2; q2)oo (q; q2)mqmf(m)

m>_0

(1.7)

187

o Iml
E E (--1)nq(2n2-m2+2n+m)/2 E (q-m; q)k(qm; q)kqkf(k),
m oo n>-Iml k=O

(q; q)o(q; q2)o ’ (-q; q)2mqmf(m)
m>_O

E E (- 1)"+mq(n2- 2m2+n+2m)/2

m=-oo n_>2lm

Iml

E (q-2m; q2)l(q2m q2)q27(k)"
k=O

If in (1.5) we set f(O) 1, f(m) 0 for m > 1, we get equation (1.4). Jacobi’s
identity (1.3) will be shown in 3 to be equation (1.6) with f(m) set equal to
(q2. -1q2)m

Other corollaries of these identities will also be proved, all using Heine’s
summation [15; Corollary 2.4],

(1.8) E (a;q)k(b;q)k(C)k
_>o (q; q)k(C; q)g

(c/a; q)o (c/b; q) oo

(c; q)oo(c/ab; q)o

its two finite corollaries in the form

m m

(1.9) E (q m; q)k(qm; q)kc (cq- q)m
k---O (q; q)k(C; q)k (C; q)m

m _m’/2_m/2(c-lq;q)m(--C) q (c;q)m
m -m.

(1.10) ., (q-m; q)k(qm; q)kq, (cq q)m
k=O (q; q)(C; q) (C; q)m qm2

(_c)mqm:/2-m/2 (c-lq; q)m
(c;q)m

(equation (1.10) is a restatement of (1.9) with q replaced by q-1, C by c-x), the
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q-binomial theorem [15, (2.2.1)],

(1.11) E (a; q) k

k>_0 (q; q)k
,, (ax; q)oo

(x;

and one of its corollaries,

(1.12) 2Y’ (a;q):
,>_o (q; q):’x*=(x; qV-)-{(x/=" q) (-ax/:" q)

+ (- xl/=; q)oo (axl/=; q)oo }"

2. Proof of (1.5)

Rogers’ q-Hermite polynomials, A, A,(cos Olq), can be defined by their
generating function:

1 x Anrn(2.1) (reiO; q)oo(re-i; q)oo -nl"o (q; q)"

The representation given in (1.1) follows from (2.1) when each infinite product
of the left side is expanded as a power series in r. It is clear from the
representation given in (1.1) that A, is a polynomial of exact degree n in cos 0
and thus two expansions in terms of the A, are equal only if the corresponding
coefficients are equal. For this reason, if we can show two expansions in terms
of A, to be equal, then we can replace the A on each side by the same
arbitrary sequence without losing equality.

Rogers begins his study by establishing the expansion of cos nO in terms of
{ A, } (see [12, p. 319] or [4, 2]):

2 cos nO E (- 1)iqC(i’:)(1 q")(q; q),-1-i
A,_=i,(q; q)i(q;

0 < < n/2, n >_ 1,

where C(i,2)= i(i- 1)/2. He now considers the following classical theta
function identity, derived by partial fraction decomposition (see [1, Lemma 1]).

(2.3)
(q; q) E E cos mO( 1) n+m,,/aC(n+l,2)-m2/2

( eiOql/2; q )o ( e-iOql/2; q)oo m= oo n>lm[
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It follows from equation (2.1) that we also have

(q; q)2 A,qn/2
(2.4) (eiq1/2" q)0o(e-iq1/2" q) =(q; q)20o

0o n>0

We now use equation (2.2) to expand the right hand side of (2.3) in terms of
(Am}"

(2.5) E cosm0(-1)n+mqc(n+

m n >_lml

E (- 1)’qc(+x’2) + E E (- 1) "+’qC(n+l’2)-m2/2
n>_O ml n>_m

[m/2] qC(i,2)(1 qm)(q; q)m_l_iAm_2i"E (--1)i
(q;q)i(q;q)m_2i

Equation (1.4) can now be obtained directly be equating the constant terms
with respect to { Am } in the right hand side of (2.4) and (2.5). To obtain (1.5),
we keep all of the Am with even subscripts"

(2.6)
AEmqm nq(q; q) E (q. q)2 E (-1) C(n+l,2)

m>O n>O

+ ’
_

(_ 1)’qC(.+1,2)-2m2(1 q2m)
m>l n>2m

m

X E (- 1) c(i,2) qi+ A2m-2iq ( 1;q)2m-l-2i(q.q)2m_2i
i=0

E (-1)qc(’+

nO

+E
m> n>2m

WI

X E (--1)tqc(t+l’2)-mt(q t+l; q)t(qm., q)t
t--0 (1 qm)

E E (-- 1)n+mqc(n+ l’2)-3m2/2+m/2
m=-oo n>2lml

Iml A2X E (q-m; q)t(qm; q)tqt(q, q)2tt=0

y’ (_1) n+mqc(n+l,2)-3m:/2-m/2(1 q2m)

h2t
(q; q)2t

Equation (1.5) now follows when A2m is replaced by (q; q)2mf(m).
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We list some simple corollaries of (1.5).
if f(m) 80, m,

(2.7) (q; q)2 E E (--1)n+mq(nZ-3mZ+n+m)/2;
m-- n > 21ml

-1if f(m) (q; q)m,

(2.8) (q q) E Y’ (1) n+m (n2-m+n+m)/2"q
m o n >_ 21ml

if f(m) (q/2. q/2)- ( -2m (q; q) ql/2; q)m

(2.9) (q; q) {(q/2; q/9_) + (_ q/; ql/2) }

2 , E (- 1)nq(n2-2m2+n+m)/2;
mffi-o n>2lml

if f(m) q- m/2(ql/2. q/2 ) 2m--" q-m/2(q; q)nl(ql/2; q)

(2.10) (q. q)2
(ql/2; q)oo ((q/4; q/2)o + (_q/4; q/)oo}

=2
m oo n >_ 21ml

(- 1) nq(n2-4m2+n+m)/2

To get the next two corollaries, it is convenient to leave the right side of (1.5)
in the form

E (- 1)"q(’+)/2 + E E (- 1)n+mq(n2-3m2+n-m)/2(1 -4r qm)
n>O m> l n> 2m

m

)< ., (q-m; q)t(qm; q)tqtf(t).

We now make the following choices for f(m):
if f(m) (q2; q2)2, (q; q)2,(_q; q)X,

(2.11) (q; q)oo(q2; q2) E E
m n > 21m

(- 1) n+mq(n2-2m2+n)/2;
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if f(m) (-1)(q2; q2) (_1)re(q; q) (_q; q),,,

(2.12)
(q; q)(q4; q4)o oo

m--- n>2lm
(-- 1) n+mq(n2-4m2 + n)/2

Equation (2.11) can also be found in [1, equ. (3.17)].

3. Proofs of (1.6) and (1.7)

The starting point is the following identity discovered by Rogers (see [11], p.
343; also see [3])"

(3.1)
(pv; q)oo

(lei; q)oo(le-i; q)oo(vei; q)oo(ve-i; q)oo n(t,, vlq)a(cos Olq),
n>0

where H,(/,, v lq) satisfies

1 E Hn(I*, vlq) xn"(3.2) (/*x; q)oo(vx; q)o ,>_o

We shall use two special cases of (3.1). First let/, r1/2, v -r1/2. Then

H2 + ( rl/2, r1/-Iq ) 0 and H2n(r1/2, -rl/Elq ) r n

(q2; q2)n

We thus get that

(3.3) (-r; q)oo
(re2i; q2)oo(re-2i; q2)oo

A2,(cosOIq)r"-E
n>O (q2. 2)q

If we set/, r, v rq1/2, then

Hn(r, rql/2lq) r n

( ql/2; ql/2 )

and so (3.1) becomes

(3.4)
(r-qX/2; q)oo E An(COS Olq)rn

(rei; ql/2loo(re-i; ql/21oo n>_o (qX/2;-75)’"0"
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We now proceed exactly as in 2 with equation (2.1) replaced by either (3.3)
or (3.4). In equation (3.3) we set r q and then expand the left hand side
using (2.3) with q replac6d by q2, 0 by 20:

(-q; q)oo
(qe2i; q2)oo(qe-2i; q2)oo

(-q; q)oo E Y’ COs2mO(--1)n+mqn2+n-m2
(q2; q2)2oo m=-oon>lml

We use equation (2.2) to obtain an expansion in terms of { Am }:

(3.6)
( q; q)oo

(qe2’; q2)oo(qe-2io; q2)oo

_--(-q;q)oo( y(_l),,qn-+n + E E ( 1)n+mq
(q2. q2)2 n>O m>_l n>m

m q )(q,q)2m_l_i.42.._2, }X E (_l)i c(i,2)(1 q2m
i=0 (q;q)i(q;q)2m-2i

--(-q; q) { E(-1)"q"+" + E .,(1)n+mqn2+n-m2(1- q2m)
(q2; q2)2oo n>_O m>ln>m

m A2X E (--1) m+tqm2/2-m/2+t2/2+t/2-mt(qm-t+l’ q)2t-1 (q; q)2tt=O

(q q (_l)q+ + (_l).q,+ m/-m/(1 + qm)
00

n_O ml n>m

X E (--1)tqd-/2+t/2-mt(qm-t+l; q)t(qm; q)t (:’t)2
(-q; ., ( 1)’q,:+,,-m/-+m/
(q2; q2) m=--oo n>_[m

Iml A2tqt
)< E (q-m; q)t(qm; q)t (-i )-2t"t=O

On the other hand, from equation (3.3) with r q we see that

(3.7) (-q; q)oo X" A2qn
(qeEiO; q2) oo (qe-2io’, q2)oo n_O (qE.,q2)
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Thus we obtain equation (1.6) by equating the right hand side of (3.6) and
(3.7), replacing A, by (q; q),f(n) and multiplying each side by

( q;q)-( 2. q2 2 2. 2q, ) =(q;q)(q ,q ).

We consider several choices for f(m):
if f(m) 0, m,

(3.8) (q; q)oo(q2; q2)o Z Z (--1)nq(2n2-m2+2n+m)/2
m=- n>lm]

if f(m) (q; q),l(ql/2; q)nl (multiply each side by 1 + ql/2),

(3.9) (- ql/2; q)o (q2; q2)oo ., ., (--1)n+mqn2+n+m/2(1 + q/ )
m’--oo nlm]

--Zq
n>O

n + n/2n2+n/2(1 + qn+l/2) E q

if f(m) q-m/2(q; q),l(ql/2;

(3.10)
(q2; q2)2oo
(ql/2; q) E E (--1)n+mqn2-m2+n+m/2"

m=- n>lm]

For the following corollaries, we use (1.6) with the right side in the form- (-1)’q"2+n + - E (-1)’q(2n:-m:+2n-m)/2(1 + qm)
n>_O m>_l n>_m

m

X ., (q-m; q)t(qm; q)tqtf(t).
t=O

We now make the following choices for f(m):
if f(m) (q2; q2)n (q; q)nl(_q; q)-Im

(3.11) (q2; q2) ,n2+n nE E (1) q E (-1)(2n + 1)q
m=- n>_[m[ n>_O

rt2+n.

if f(m) (-1)re(q2; q2)1 (_1)re(q; q)l(_q; q)l,

(3.12)
(q; q)L(q’; q4)2 -. Z (-1)’q

(q2"q2)2, m on>lml
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Equation (3.9) is also a consequence of the Jacobi triple product identity [15,
(2.2.10)]. Equation (3.11) is the Jacobi identity (1.3) with q replaced by q2.
Equation (3.8) is interesting in view of (2.11).
Now, starting with equation (3.4) we derive (1.7). We set r ql/4 and

expand the left hand side using (2.3)"

(3.13)
(q; q)oo

(ql/4eiO. ql/2)oo (ql/4e-i; ql/2

(q; q)oo
cos m0(- 1)n+mq(n2+n-m2)/4

(ql/2"ql/2)2oo m=-oo n>_lm]

From equation (3.4) with r ql/4 we also have

(3.14) ( q; q)o Anqn/4

(ql/4eiO. ql/2) (q1/4e-iO. ql/2) > (ql/2. q1/2)oo n_O

Exactly as before, we expand cos mO in terms of (A } using equation (2.3)
and then compare the coefficients of the An with n even to obtain

(3.15) ( ql/2; ql/2 ) oo Z A2nq n/2

(__ ql/2; ql/2 )o n>_O (ql/2; ql/2 )2n_ ., (_ 1)n+’nq(n2+n)/4-m2/2+,,,/2
m,= oo n >_ 21ml

Iml A2tqt
X E (q-m; q)t(qm; q)t(i -)’2tt=O

Equation (1.7) is obtained when A2t is replaced by (q; q)2tf(t) and then q is
replaced by q2 throughout. We give corollaries of equation (1.7):
if f(m) 80, m,

(3.16) (q; q)oo(q; q2)o Z Z (--1) n+m (n2-2m2+n+2m)/2"q
m=-oo n>2[m

if f(m) (q; q)-I :; -1 2)12m (q q2) q q(q; (multiply each side by 1 ),

(3.17) (q; q) ((ql/2; q)2(1 + q/2) + (_ql/2., q)2(1 ql/2)}
2 Y’. Z (--1)nq(n2+n+2m)/2(1 q)
m=-oo n>_2lm]

=2 (--1)nq n2/2+n/2-[n/21.
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For the following corollaries, we use (1.7) with the fight side in the form

E (- 1)nq("2+n)/2 + Y’ E (-1) n+’q(n2-2m2+n-2m)/2(1 "+" q2m)
n>O m>l n>2m

m

y’.(q-2m;q 2)t (q 2,,,; q2)tq2tf(t)"

We now make the following choices for f(m):
if f(m) (q2; q2),l(_q2; q2)1,

(3.18)
(q; q)(q4; q4) E E (--1)n+mq(n2+n)/2

(q2; q2) oo m= oo n>2lm

E (-1)n+t/21q("2+")/2;
n>O

if f(m) (-1)m(q2; q2)n(-q2; q2)nl

(3.19)
(q; q)3 (q4., q4)o - E(q 2.q2), m oo n > 2InI_

( 1) n+ mq(n2_4m + n)/2.

Equations (3.17) and (3.18) are also consequences of the Jacobi triple product
identity [15, (2.2.10)]. Equation (3.16) makes an interesting companion to
(2.11), and equation (3.19) is, of course, the same as equation (2.12).
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