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INTEGRAL REPRESENTATIONS FOR POSITIVE
SOLUTIONS OF THE HEAT EQUATION ON SOME

UNBOUNDED DOMAINS

BY

B.A. MAII

0. Introduction

The main result (Theorem 3.4) in this paper extends the integral representa-
tion theorem of Widder [7, Theorem 5.2, p. 143] for positive solutions of the
heat equation on R/ (0, T) to positive solutions on Rn-t R/ (0, T) for
arbitrary n. (This result may be part of the mathematical folk-lore but no
proof exists in the literature.) Then in Section 4, the Appell transform is used
to obtain similar results on R"-t R+(-, 0) and R"- R+ R, thus
generalizing the result in [4, Theorem A] which was obtained by different
methods. The integral representation obtained for positive solutions on Rn-

R+ R verifies an assumption needed in [6, Remarks (2)] to compare fine
limits with parabolic limits at points on Rn-1 (0) R.

1. Preliminaries

Let0< T< o,

X= R"- R+(0, T) ((x’, x, t)" x’ Rn-, x > 0,0 < < T),
H R -t R+ {0 ) (the horizontal boundary of X),
V R- (0) [0, T) (the vertical boundary of X),
B H V, and V+= V\ (Rn-1 (0} (0}).

The fundamental solution of the heat equation Au Ou/Ot on R R is
given by

t-s) ift>s

[0 ift <s.
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176 B.A. MAIR

The potential theory for the heat equation on X (cf. [1], [2]) will be used
freely in this paper. A solution of the heat equation on an open subset U of X
will be said to be harmonic on U.

For each (x, t) (x’, xn, t) Rn-1 R+ R, define

Ka(x,t )

W(x, t; (b’, b.),O) W(x, t; (b’, -b,),O)
ifb=(b’,b.,O),b.>O

0-- [W(x, t; (b’, bn), s ) W(x, t; (b’, -b.), s

if b (b’, O, s).

In the case of n 1, denote Kb defined above by Kb1).
For each Borel set E c B and Borel measure / on E, the function

K/: X - [0, ] is defined by

Ktx(x, t) fEKb(X, t) dlt(b).

If dlx (b) f(b) db we denote K/ by Kf.
The following factorisation will be useful in deducing results for arbitrary n

from those for n 1.
Let W’ denote the fundamental solution of the heat equation on R"- R.

Then,

W’(x’, t; b’,O)K).,o)(X., t) if b (b’, b.,O)
(*) Kb(x, t)

W’(x’, t; b’, s)K!s)(xn, t) if b (b’,O, s).

By using K(1)I 1 it follows that K1 1.
Theorem 8.1 in [7, p. 40] implies that

K(1) th s)K (1) ( r) ds K (1)
(o,,) (o,,) (o,,)(X + , r)

for all strictly positive , , r. Hence, by using (,) and the semi-group
property of W it is seen that for any (x, t) and (z, r) X,

and

xK(,o)(b, r)K(b,o)(X, t) db K(,o)(X, r + t)

fR"-xr(x" o,t)(b’, Xn, s)r(b’,O,s)(Z, r)db’ds K(x,,O,t)(z’, xn + zn, r).
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An analogue of the Schwarz reflection principle for analytic functions was
proved (in the case n 1) in [7, Theorem 7, p. 115]. The proof of this result
can be simplified by using the local criterion for harmonicity in terms of
averages over regular neighbourhoods of a point. Observe that if D is a
rectangle in R" + which is symmetric with respect to the plane x 0, then the
Green function for D satisfies

G((x’,O), t; (y’, y,,), s) G((x’,O), t; (y’,-y,), s)

(cf. [3, p. 85]). Hence the following reflection principle holds for arbitrary n.
If u is a continuous function on X V/ which is harmonic on X and

u 0 on V/, then the function

[u(x,t) if(x,t) XU V+t) -u((x’,-xn), t) if (x’,-xn, t) X

is harmonic on R" R/.
By using methods in [7, p. 61] it can be shown that if f: B R is a bounded

Borel function which is continuous at y B then Kf(x, t) --, f(y) as (x, t)
---> y.
The first main departure from methods in [7] will now be made by showing

that K db is the harmonic measure on X.

THEOREM 1.1. For each bounded, Borel f: B R, Kf is the solution of the
Dirichlet problem (in the sense of Perron-Wiener-Brelot) on X corresponding
tO f.

Proof. It suffices to assume f is continuous with compact support. Then Kf
is bounded, harmonic on X and approaches f continuously on B. Hence
Kf > H (the solution of the Dirichlet problem on X corresponding to f). By
the reflection principle, Kf-H can be extended to a bounded harmonic
function on R" R/ having continuous boundary value 0 on R" {0}. Hence
gf H/ (el. [3, p. 29]).

COROLLARY 1.2. If U is a positive continuous function on X LJ B which is
harmonic on X, then u >_ Ku.

Proof. For each m 1 2, 3, define um min(u, m). Then um > Hx
U

Ku,,. The fact that u K)u for u as above is an important step in proving
the integral representation theorem in [7]. The proof of this result in [7]
depends, among other things, on the similar result for bounded functions u
and on estimating certain integrals on sides of rectangles. A simpler, less
geometric proof of this result for arbitrary n is presented in the next section.
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2. To show u = Ku

In the remainder of this paper, C denotes a general strictly positive constant
(not necessarily the same at different occurrences).
A uniqueness theorem for X will now be proved by using Corollary 1.2 and

a uniqueness theorem for R" R+ (cf. [3, Theorem 16, p. 29]).

THEOREM 2.1. If U is a positive continuous function on X t3 B which is
harmonic on X and u 0 on B, then u O.

Proof. Fix x’ 0, xn 1 and 0 < < T. For any 0 < s < t, Corollary 1.2
applied to Rn- R/ (s, T) gives

foO fnn_lexp( Ilb’2( + 1 + b2 )sinh( b )t-s) 2(l-s) u(b,s) db’

_< [4,r(t s)] n/2U(X, t).

Let0<r< t. Thenfor0<s<t-r,

O

fR 2/4ru(
/2 xe b b, s) db’ db < C,

which implies that f-rf2fie-le-Ilbll2/4rU(b, S)dbtdbn ds is finite. Now, for
any 0 < b < 1/2, Corollary 1.2 applied to Rn- (b, o0) (0, T) gives

fotfRn_(t--s)-(n+2)/2(1- b)exp( IIb’ll : + )4(t s) u(b’, s) db’ ds

< (4r)/2u(x, t).

Hence f-rfol/2fn-e-Ilbll2/4rU(b, S) db dbnds is finite for every 0 < < T
and 0 < r < t. Now, let be the extension of u to R [0, T) obtained by the
reflection principle. Then (x, 0) 0 for all x R and

t- rfR e-Ilbll /4rlfi(b s) dbds

is finite for every 0 < < T and 0 < r < t. Hence it follows from [3, p. 29] that
---0.

The main result in this section is now easily deduced.

THEOREM 2.2. If u is a positive continuous function on X t3 B which is
harmonic on X then u Ku on X.
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Proof. There exists an increasing sequence of bounded continuous func-
tions on B which converge pointwise to u on B and u > Ku, hence Ku(x, t)

u(b) as (x, t) b. The proof is completed by applying Theorem 2.1 to
u Ku.

3. Integral representation theorem on X

In this section, the Lebesgue Dominated Convergence Theorem is abbrevi-
ated by LDCT.

LEMMA 3.1. Let be a Borel measure on R+ and 0 < r < T such that

g(s t) exp
(s-q

4t exp[- (s + q)2 ]}
is finite for all s > 0 and r < < T. Then g(s, t) 0 as (s, t) (0, p) if
r<p<T.

Proof

f (sq) -q2/4tg(s, i) 2e -s2/4t sinh 7 e dz(q).

Fix p such that r < p < T. Then there exists M > 0, 0 < i < 1 such that
r<SM<p <M< T. Now, SM<t<Mimplies

f ( sq )-q2/4Mg(s, t) <_ 2e -s2/4t sinh 26M e dz(q)

exp
4/2M 4t g( 8- s, M),

which is finite for all s > 0. Also, the integrand is an increasing function of s,
hence the result follows by applying the LDCT.

Observe that

K(b,,b.,o)(X’, Xn, t) K(x,,x,,o)(b’, bn, t)

but

K(b,,O,)(X’, X,,, t) 4: K(,,o,t)(b’, x,,, s).

However, the following easily proved result compensates for this lack of
symmetry.
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LEMMA 3.2. Let f: V R be bounded, Borel and continuous at b V. Then

fKb(X’, t)f(x’,O, t) dx’ dt ---> f(b) as 0 +

From now on, gE denotes the restriction of a measure g to a measurable
set E.

PROPOSITION 3.3. Let g be a Borel measure on B such that Kg is finite on X.
Then

(i) KgH( b’, b,, t) db’ db, dlH(b’, b,, O) weakly as 0 +,

(ii) K v( b’, , s) db’ ds dg v( b’, O, s) weakly as --> 0 +

Proof
H by

Then

Fix (z, r) X and for each 0 < < T- r define the measure/-t on

dgt(b ) KgH(b’, b,, t)Kb(Z, r) db.

i.tt(U ) fHfHKy(b’, b,, t)Kb(Z, r) dg(y) db KgH(Z, + r)

by the semi-group property. Hence each g is a finite Borel measure on H.
Now, for each continuous f: H R having compact support,

t.-+olim ff(b) dl.it(b ) ,-+mo fHfHK(b’’ b,, t)K(z, r)f(b) dbdg(y)

fKy(z, r)f(y) dg(y) (by the LDCT).

Hence Kgn(b’, b,, t) db’ db, dgH(b’, b,, 0) weakly as 0 +
The result in (i) follows by observing that Kg v(X, t) O.
Fix (z, r) as before and for each h > 0 define the measure rx on V by

dvx(b’,O, s) Kgv(b’, h, s)K(b,,O,s)(Z, r) db’ ds.

Then, as in the proof of (i), the semi-group property of the kernels and the
LDCT can be used to obtain the result in (ii).

The main result in this paper will now be proved.

THEOREM 3.4. For every positive harmonic function on X, there is a unique
Borel measure x on B such that u Kg. (g is called the representing measure for
u).
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Conversely, if x is a Borel measure on B such that Kt is finite on X, then Kl
is harmonic on X.

Proof The uniqueness of the representing measure follows from Proposi-
tion 3.3.
To prove the existence of the representing measure, fix z R"-1 R/. For

each such that 0 < < T there exists m N such that + 1/m < T for all
m > m t. By applying Theorem 2.2 to R"- (l/m, o) (l/m, T),

u x’,x,+-,t+- b(X,t)u b- db form>mt,

where

( 11)
b --1 b’,b, +-,-

b’, -, s + - if b (b’, b., 0), b.

if b (b’,O, s).

>0

Now, for each r such that 0 < r < T and m 1, 2, 3,..., define the measure
t, on

B. R"- x R+X(0, r)

by

(1)dlx(b) Kb(Z, r)u b - db.

Then for each (x, t) R"- R+ (0, r),

( 1 1) f Kb(X, t)
U X’, X + -, + - Kb(Z r) dlm(b)

for sufficiently large m. Now,

( 1.() u ’,z. + ,r +

which is bounded as a function of m, hence (/z, } has a weak limit point /Ar. It
is easy to prove that

Kb(X,t)

is continuous and vanishes at oo on R"- R+ (0, r), and it follows that for
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0<t<r,

u(x, t) fK (x, t) dv(b) wheredv(b) [Ka(z, r)] -1 dtx(b).

The existence then follows from the uniqueness.
To prove the second part, let F be a compact subset of H or V. Then

g(F) < o and the LDCT implies that Kge is a continuous on X. Fubini’s
theorem implies that Kgr satisfies the mean-value equality for harmonic
functions and so is harmonic on X. The proof is completed by using increasing
sequences of compact subsets of H and V and the Doob convergence property.

4. Integral representations on a quarter-space and a right half-space

In this section, let T oo, so X is the "upper quarter-space" Rn-1 R+
R /. Let Y be the "lower quarter-space" Rn- R+ X ( oo, 0) and Z be the

right half-space Rn- R+ R.
In the case of n 1, Kaufman and Wu [4] obtained an integral representa-

tion theorem on Z by using Widder’s result for a semi-infinite strip, and the
uniqueness of the representing measure was proved by using analytic func-
tions.

In this section, the Appell transform and elementary measure theory are
used to obtain integral representation theorems on Y and Z from Theorem 3.4.
The Appell transform will now be defined. For each (x, t) R R/,

define

k(x t) W(x, t" 0, 0) (4,rt)-n/2exp( Ilxll 2 )4t

For each v: Y R, define Av: X R by

Av(x, t) k(x, t)v(t-lx, -t-I).
Av is called the Appell transform of v. Then A is a bijection from the set of
harmonic functions on Y to the set of harmonic functions on X whose inverse
A* is given by

A*u(x, t) [k( t_ix t_l) -lu(_t_lx,-t- 1)
(cf. [7, p. 14]). Also,

A*K,( x, t)
2exp(1/4tllbll + 1/2(x’, b’)) sinh(1/2x.b.) if b (b’, b.,O)

1 2x,exp(4 lib +2 <x, b )) if b (b’,0, 0)

I s-.+z)/Zexp II K(-a6, o _,-)(x, t) if b (b’, 0, s), s 4: 0,
\ \ ,s /



INTEGRAL REPRESENTATIONS 183

El-- xibi. Setwhere (x’, b’) ,

Br= (R"-1 x R+X (-oo}) U (R"- X {0} X[-oo,0))
and

Bz (Rn-1X R+X (-oo}) U (R"-1 X (0} X[-oo, oo)).
For each (x, t) Z and b Bz define

L,(x,t)
exp(tll( b’, b.)ll 2 + (x’, b’)) sinh(x,,b,,)
x,,exp(t[[b’ [[2 + (x,, b’))
Kb(X, t)

ifb--(b’,b,-o),b > O

if b (b’,O,-o)
if b (b’,O,s),s R.

Now, define the map k" Br B by

(2b’, 2b, O)
p(b) (2b’, O, O)

(-s-lb’,O,

ifb=(b’,bn,-Oo),b>O
if b (b’,O,-)
if b (b’,O,s),s (-,0).

Then, for any Borel measure v on B, and (x, t) Y,

where

f t) dr(b) fA*Kb(X, t) d(1/2vo -’)(b)

+ fn. A*Kb(X, t) d(vo -l)(b)
-Xx{o}x{o}

+ f A*Kb(x, t) d(v,o -’)(b)
V+

dv,(b’,O,s) (-s) -{"+2)/2
4’ dv(b’,O,s).

The following integral representation theorem for harmonic functions on Y
is now easily deduced from Theorem 3.4 by applying the Appell transform.

THEOREM 4.1. For each positive harmonic function u on Y there exists a
unique Borel measure Ix on Bv such that u(x, t))= fK(x, dt(b) for all
(x, t) Y.

Conoersely, if I is a Borel measure on By such that u(x, t) fKb(X, t) dtt(b)
is finite on Y, then u is harmonic on Y.
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Now, let u > 0 be harmonic on Z. For each p 1, 2, 3,..., let

Zp= ((x,t) Z" <p}
and -- (-’ x /x (-oo)) (- x (o) x [-o, p).
Then, by Theorem 4.1, for each p, there exists a unique Borel measure ,p on
Br such that

t) f p) dvp(b) for all (x, t) Zp.

Observe that

and

/(b,. b,,-o)(X, p) exp(-Pll(b’, b)ll2)g(b,,b,_oo)(X, t),

ff(,,O,-o(X, p) exp(-Pllb’ll)(,,o,_oo(x, t)

(,,o,,(x, p) g(,,o,,, /(x, t) if (- ,o).

Hence u fKb dl, on Zp for a unique measure/p on B.
Consequently, Theorem 4.1 holds when Y is replaced by Z, thus obtaining

the required integral representation theorem for positive harmonic functions
on Z.

I take this opportunity to thank Professor J.C. Taylor of McGill University
for suggesting this problem, for the many discussions we had, and in particu-
lar, for suggesting the use of the Appell transform.
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