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AN INDEX THEOREM FOR FOLIATIONS

BY
CONNOR LazArOV!

The purpose of this paper is to prove a theorem relating the index theory to
exotic characteristic numbers for an important class of foliations.

One of the problems in foliation theory is to relate the transverse geometry
to its topological invariants, the exotic classes. As our representative of the
transverse geometry, we study an invariant arising from geometrically interest-
ing transverse operators to leaves.

A Lie group acting by isometries with constant orbit dimension generates a
Riemannian foliation. In this paper we study the case of R" acting locally
freely by isometries, this being an interesting class of foliations and also the
study of a much larger class of actions can be reduced to that of R”". Let P be
an invariant transversely elliptic differential operator to the action. We con-
struct, using index (P), an R/Z analytic invariant called virtindex z.(P) and
relate this to the Simons characteristic numbers of the resulting Riemannian
foliation. A special case has appeared in [8].

We first state the situation for n = 1. Let R act by isometries with no fixed
points on the compact 4k — 1 oriented manifold. Let f be a symmetric,
homogeneous polynomial of degree k in 2k indeterminates. Let D* be the
transverse signature operator, u, the virtual representation of [2, p. 596], and
D™ ® u; the (virtual) operator on A*(») ® u,(v), v being the normal bundle
to the foliation F generated by the R action. Let S,(F) be the Simons class
associated to f and the Riemannian foliation F.

THEOREM 1.
Virtindex x(D*® u;) = —22¢715,(F)[M] mod Z[4]

Now consider R” acting on M locally freely by isometries, generating a
codimension 4k — 1 — n oriented Riemannian foliation F. Each § in R”
determines an R action and a foliation Fj. Let D, be the transverse signature
operator to the R action and D* to the R" action.
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102 CONNOR LAZAROV

THEOREM 2. (a) For generic 0, Virtindex x(Dg” ® u ) is constant and
Virtindex (D, ® u;) = —2%7S,(F)[M] mod Z[}].
(b) Forn > 2,
Virtindex ,( Dy ® uf) = Virtindex . (D*® uf)
=S;(F)[M]=0 modZ[}]

As a simple application we get:

THEOREM 3. Let R act locally freely by isometries on the compact oriented
4k — 1 manifold M. Let F be the resulting codimension 4k — 2 Riemannian
foliation and suppose S;(F)[M]+ 0 mod Z[%). Then this action cannot be
extended to a locally free isometric action of R" for n > 2.

The characteristic classes can be expressed in terms of the residues of f
along the singular set of the action extended to an oriented manifold which
bounds M. Suppose W is a compact oriented manifold which bounds M.
Consider any isometric extention of the R" action to W (with the metric a
product near M). Let I; be the connected components of the fixed set on W.

THEOREM 4. Consider generic 0.
(a) Virtindex x(D;” ® u;) = —2*¢~'Y Res(f, 6, T;) mod Z.
(b) Forn>2,YRes(f,0,T,) =0 modZ.

COROLLARY 5. Let R act isometrically on the closed oriented 4k manifold M,
with fixed set UT;. Let D" be the transverse signature operator to the codimen-
sion 4k — 2 Riemannian foliation on the boundary of a tubular neighborhood of
T;. Then ¥ Virtindex z(D;" ® u;) = 0 mod Z.

In §1 we review some basic facts about foliations and about transverse index
theory. In §2 we introduce and study the virtindex. §3 contains an outline of
the proofs, and §§4, 5 contain details of proofs.

In this project we are grateful to Professor Atiyah for making a number of
suggestions which resulted in significant clarification, and also to Professors
Paul Baum, Lewis Coburn, and Burton Randol for a number of illuminating
discussions.

1. Riemannian foliation and the transverse signature operator

We recall some basic facts about Riemannian foliations and the transverse
signature operator. We assume all our foliations are oriented. Riemannian
foliations were first described in [13]; however we shall follow the approach in
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[12]. A codimension ¢ Riemannian foliation of M is given by a family
{Uy fa» haps 84} Where {U,} is an open covering of M, f, : U, - R? a smooth
submersion, g, a Riemannian metric on R, and for each x € U, N U, hig is
an isometry of a neighborhood of f,(x) with the metric g, onto a neighbor-
hood of fg(x) with the metric g4 satisfying f = hg,f,. If a Lie groups acts on
a Riemannian manifold M with constant orbit dimension, by isometries, the
orbits form a Riemannian foliation.

With this description of a Riemannian foliation we can readily produce a
signature complex. First, the normal bundle » of the foliation is obtained from
the union of TRY using identifications given by the differentials of the 4g, and
the metrics g, yield a metric on ». We now assume q is even. The metric g on
v yields a star operator on Av* (the complexified exterior algebra of the dual
normal bundle) which in turn yields a splitting, sections Av* = Q_ & Q_. This
is the same splitting as we get by using the star operator in R? relative to g,
and making identifications using the dhg,. Thus, for each a let D, be the
signature operator on RY relative to g,. Then f;!(D;) can be mterpreted as
an operator on @, |U, and f;'(D}) = fz'(Dg") on U, N U, because the hp,
are local isometries. The resulting operator

Q-0

is the transverse signature operator. We will want D* to act on sections of
Av* with coefficients in a vector bundle V' (sections of A»* ® V) and on
the resulting Q (V). We can extend D* to Q (V) by the construction of
[11, p. 87]. We denote the resulting operator by D*® V. We could also
construct D™ directly by constructing a transverse d and a transverse * d *
using a connection on ».

We can compute the symbol of (D*)? just as one does in the case of the
ordinary signature operator and ¢((D*)?), is multiplication by ||7»||, where 7
is the orthogonal projection on »* induced by a compatible metric on M. Thus
o(D*), and o(D*® V), are injective for non-zero v which vanish on leaves.

Exotic characteristic classes for a foliation are cohomology classes that come
from the cohomology of the appropriate classifying space for foliations. A
general Riemannian foliation has classes corresponding to the Simons con-
struction [14] applied to the unique Riemannian torsion-free connection on the
normal bundle and appropriate polynomials. If the normal bundle is stably
trivial we can study such classes by the methods of [9]. Let f be a homoge-
neous symmetric polynomial of degree k in 2k indeterminates, f=
Ya;0; ...0;. Let $(4) be the polynomial function Xa;cy; (4)... c,,; (4) where
c; are descnbed by Xt’c (A) = Det(I — (t/2mi)A). We will be concerned with
the following data. leen a Riemannian foliation of M of codimension 4k — 2
or less, the Simons construction applied to ¢ yields a class

S, € H* (M, R/Z).
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The same polynomial f yields a virtual representation u, of SO(4k) (and by
restriction, of SO(4k — n — 1)) which is described in [2, p. 596]. We can take
the associated virtual vector bundle u,(v*) to u, and the principal normal
coframe bundle of the foliation.

2. Transverse index theory

We recall briefly the transverse index theory of Atiyah and Singer [1], [15].
Let G be a Lie group acting smoothly on a compact manifold M, E and F
smooth G bundles over M and D a G invariant operator from E to F. D is
said to be transversally elliptic to the G action if o(D), is an isomorphism for
all non-zero v which vanish on orbits. Introducing metrics, one extends D as
an unbounded operator on L,. Let f € Cy(G) and let p be the representation
of G on L,(E). Let T; be the operator on ker(D) given by T,(v) =
P[.p(g)f(g)vdg where P is projection on ker(D). Perform a similar construc-
tion on ker(D*) to obtain U, Then T,— U, is a trace class operator, the
index (D) is defined to be the function f — Trace(T; — U;) and this index is a
distribution (see [15] for a detailed treatment). If G is a compact group or an
abelian group acting by isometries, the techniques of [1] are applicable. Let G
be a Lie group acting by isometries on a compact oriented Riemannian
manifold with constant orbit dimension. The orbits are then the leaves of an
oriented Riemannian foliation and the transverse signature operator (with any
coefficients) is transversally elliptic to this action.

We will be concerned with actions of R"” by isometries on a compact
oriented 4k — 1 manifold M. In this case R" acts via a torus T which acts on
M. Let R" be the universal covering space of T and let R” > RV be the
inclusion corresponding to the original action. Let D be transversely elliptic to
the R” action and hence also to the R" action and the T action. Index zv(D) is
C® in directions transverse to R" in R" and hence restricts (in the sense of
distributions [16, p. 71]) to index z.(D). If indexg~v(D) is the limit of C*®
functions, then index z.(D) is just the limit of the corresponding restricted
functions. The same remarks apply if D is transversely elliptic to the orbits of
a subtorus T’ of T.

We recall from [1] that for G compact the index; of D is determined by its
symbol class in K;(T ;M) and

(2.1) indexs: Kz(ToM) - D'(G).
For G = S! we have the R(G) map [1, lecture 5]
J: R(G)\ - D'(G)

where R(G), is all quotients of R(G) with powers of A in the denominator.
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Now let G = T and let 1/(6,,...,0y) = e'k%. We also have a map J from
rational functions with denominator a power of (1 — #/™)..,(1 — t}#¥) for
m;> 0 to distributions on TV given by J(h) = h*— h~ where h* is the
distribution

dt at
| Tl B el et S

hE{esk k) = .
{ ! N (2771) f,l-lie 151 ty

The virtual index. We introduce an analytic R/Z invariant which will be
defined for some operators transversely elliptic to an R” or T" action on a
compact oriented manifold. Of course topologically interesting operators have
a virtual index.

We first start with S! actions. Let G = S*. Let G act on compact oriented
M and let D be transversely elliptic to this action. Let ¢ = index (D).

Assume that there are functions hy(z) and h,(z) which satisfy:

(1) hy(z) is analytic in 0 < |z| < 1 with at worst a pole at z = 0, has
integer coefficients in its Laurent expansion around z = 0, and has a remov-
able singularity at z = 1.

(2) hy(z) is analytic in |z] > 1 with at worst a pole at oo, has integer
coefficients in its Laurent expansion around oo, and has a removable singular-
ity at z = 1.

(3) ¥ =h$ + h{ (seell, p. 38)).

DEFINITION.

Virtindex;(D) = |1i|m1h°(z) - |l%m1h1(z) mod Z.
z| < z|>

z—1 z-1

Remarks. This is well defined as is easily seen by looking at the Laurent
expansions of h, and h,. Since index; depends only on the symbol in
K (T;M) so also does the virtual index (when it is defined). Thus, in this
definition, D can be any element of K (T;M).

Now, directly from the definitions of J and virtindex we get:

LEMMA (2.2). If indexg(D) = J(h) where h has a removable singularity at
z = 1, then Virtindex;(D) = 2h(1).

Next let R act by isometries on a compact oriented Riemannian manifold

M; then R acts via a torus TV acting on M. Let the inclusion of R in TV
corresponding to this action be given by

(2.3) s> (e, .., ens),
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If we are given another action parameterized by X = (X},..., Ny) we say
that the actions are near if N is near A in R¥/Z¥. When A,..., A, are
rational numbers (in lowest terms) let m be the least common multiple of the
denominators. We call § — (e/™9 | e %) the associated G action to the
given R action.

Let D be transversely elliptic to the given R action. Let r,, be a sequence
of rational N-tuples approaching A. Each defines an R action and we consider
the associated G action. D is transversely elliptic to nearby actions. Assume
that for each such rational sequence approaching A, lim,Virtindex ;(D) exists
and this limit is independent of the sequence. Then,

DEFINITION. Virtindex (D) = lim Virtindex ;( D).

Note. In this definition, D can be a formal sum of transversely elliptic
operators.

Let u be a virtual representation of T = TV with ch(u) = p(xy,..., xy)
+ higher degree terms in H**(BT; Q), where p is a homogeneous polynomial
of degree NI. Let a = (1 — t;)...(1 — ty))' and h = u/a.

LEMMA (2.3). Let D be transversely elliptic to the R action and assume
index (D) = J(h). Then Virtindex (D) exists and equals h restricted to R and
evaluated at t = 1.

Proof. R acts by 8 = (e™, ..., e™*~%) for some A’s none equal to zero
(assuming that the image of R is dense in T'). Let (r,..., ry), with 7; # 0 and
r; rational, parametrize a nearby action relative to whlch D is transversely
elhptlc Consider the associated S! action. Let k; = mr,. By restriction,
index (D) = J(h), where h is a rational function i m z. To see that 4 has a
removable singularity, at z = 1 replace ¢; in u by e to get

u=i"gN'p(k,,..., ky) + AGN'*1
a=iVoNk! .. ki + BON'HL,

Thus A has a removable singularity at z = 1 and

ki,....,k p(ry,...,r
h(1) = p(k 1\;) — (ry I\;)
(ky k) (rory)

by homogeneity. Then the result follows by continuity and the definition.

Finally, let R” act by isometries on the compact oriented M and let D be
transversely elliptic to this action. First consider T = T" acting. Assume
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¢ = index ;D satisfies (2.1), where now h, and 4, are functions of z,,..., z,
with at worst poles in U, {0 < |z;| <1} and U ;{1 < |z|} respectively. Then:

DEFINITION.

Virtindex (D) = lim1 ho(zys...y2,) — lim1 hi(zy,...,2,) modZ
|z;| <1 |z;|>1

(if this limit exists).

For the general R" action, R" acts via a torus TV in which it is dense. Let
R" be the universal cover of TV. We have R” - R" by

(oo ty) = (coapty + oo +at,,...).

Approximate the points (a;,...,4a,;,) by points P, in RV with rational
coordinates in such a way that D remains transversely elliptic to the action of
R" determined by the P,. Multiply by a lem to obtain points Q; in R" with
integer coordinates. Call the action of R" determined by the Q; the action
associated to that determined by the P,. We can find a basis {Yl, . Yy} of
ZN c R" such that Q;,=kJY,. Relatlve to this basis we have

RN=R"XRN-" ZN=2Z"xZN™" TN=TrxTN™"
and the associated action of R" is given by

an) Tnacovcring T c TN

where 7 is the universal covering. Thus, for the associated action index z.(D)
is determined by index ;.(D). Thus:

DEFINITION.
Virtindex g»( D) = lim Virtindex (D) mod Z
if this limit exists when taken over nearby associated actions.
We observe that if R C R" and if D is transversely elliptic to the R action
then if Virtindex z-( D) exists, so does Virtindex z(D) and they are equal, since

index z.(D) restricts to index z(D). The converse is, of course, false. Virtin-
dex , may exist but not Virtindex g».

Simple Example. Let R act on S> by

0 (z,,2,) = (eN02), e™02,), A, N, positive integers.
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Let f= X; + X,. A calculation using [1] shows

index(D*® u;) = (1™ — tM) I tkha 4 (1702 — gh) } kM,

keZ keZz
We can take
_h= ) ()
e e
b = (t“’\l — t>\1)t‘>\2 (t">\2 — tAZ)t_')‘l
! (1-1t7) 1 -1t™)

and a simple calculation shows

A+ A
Ay

t—

t—>1

In general if R acts on S4~1 by

0(zy,..., 2) = (N2, ..., etazy,)

then [8] shows that

A, N
Virtindex(D*® u,) = izzk-lw mod Z.

3. Outline of proofs

Let R" act by isometries locally freely on the compact oriented 4k — 1
manifold M. The image of R” in the isometry group of M is dense in a torus
TV. Let R" be the universal cover of T¥. We can assume R"” C R", A point 0
in R" will be called generic if it projects to a generator of T¥. @ determines
an action of R on M and this action will be called generic. From now on
G=TN

THEOREM (3.1) (reduction). Let E — Z be a complex G vector bundle of
dimension 2k over the trivial G manifold Z. Assume that Z is connected and
oriented and that for z € Z, E, does not contain the trivial representation of G,
and that R acts generically on S(E). If Theorem 1 is true for this action then it is
true in general.

This theorem will follow from a sequence of theorems about the index and
about Simons classes. First by [10] some multiple of M by a power of 2
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bounds an oriented G manifold W. If Theorem 1 is true for 2°M, it is true for

M. Thus we can assume M bounds W. Let I" be the fixed set of the G action

on W and {I;} the connected components. Let { N;} be disjoint invariant

closed tubular neighborhoods of {I;}. Then the R action on W induces a

locally free action on dN,. Let Dy be the transverse signature operator to this

action. Note that I is orientable and 9N, inherits an orientation from W.
The action of R on W determined by 6 is given by a map to R”,

(3.2) s (e, eMws),
and by a change of co-ordinates on R" we can assume that, for 1 < p. i< A,
(3.3) s o (e, ..., etns)

has no fixed points on M or dN,.

LEMMA (3.4). Let D* be the transverse signature operator relative to the
standard action of R (all p,=1). The symbols of D*® u; and Dy ® u; in
Ks(T;M) and of D" ® u; and Dy; ® u, in Ko(T;dN,) are equal.

Note. u, is always taken for the appropriate normal bundle.

Since the R index is the restriction of the G index we can replace D;” by
D,

THEOREM (3.5). indexg(D*® u;) = L index;(D;" ® uy).
For the Simons classes, let F be the foliation on M and F; on dN, induced
by the R action.

THEOREM (3.6). S,(F)[M] = LS;(F)[IN;,) mod Z.

Now, the normal bundle to I; in W satisfies the hypotheses of (3.1), thus
(3.4), (3.5), (3.6) and the definition of virtindex will yield (3.1). Finally we
have:

THEOREM (3.7). For E — Z asin (3.1),
Virtindex o (D*® u;) = —22¢71S,(F)[M]mod Z[4].
This will prove Theorem 1. Regarding Simon classes we further show:

THEOREM (3.8). Let F be the Riemannian foliation of M generated by the R"
action. Then S,(F) = S,(F) mod Z.

As a consequence of our work on the Simons class and of the theorems of [4]
and [3] we will have:

THEOREM (3.9). S,(F))[dN,] = Residue(f, 8, I;) mod Z.
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Thus
22k71S, (F)[M] = 22715 (F)[M] = - Virtindex g( Dy’ ® u;,) mod Z[}]
and this will establish (2a) and (4a).

THEOREM (3.10). Let R" act locally freely by isometries on M compact and
oriented, and assume n > 2. Let P be transversely elliptic to the orbits of a
generic R action. Then index;(P) = 0.

THEOREM (3.11). Let D;', D;f, D™ be the transverse signature operators to
the R, R", G actions respectively. Their symbols are the same in K (T;M).

Since the R” and R index can be obtained from the R" index by restriction,
and the G index determines the R" index we have (2b) and (4b).

Finally for a closed oriented 4k manifold M, f[M], the Pontryagin number
(an integer) equals the sum of the residues around the I, and so Corollary 5
follows from

2%%-15,(F,)[dN,] = 22*~1Res(f, 8, T;) = — Virtindex(D;* ® u;) mod Z.

In §4 we present proofs of (3.1), (3.4), (3.5), in §5 of (3.6), (3.8), (3.9), and in
§6 of (3.7), (3.10), (3.11).

4. Proofs of theorems about index

We have R € R" € R" and RV acts on W. First we can change coordinates
on R" so that all A; > 0. Let (r,..., ry) be rational numbers which parame-
terize a nearby action such that for p; = tr; + (1 — #)A;, the action given by
(3.3) has no fixed points on M or dN, for 0 < ¢ < 1. Let m be the lcm of the
denominators of the 7; and k; = mr,. Then h: RY — R given by

h(xyyeeey xy) = (kyxq,.ony kyxy)
induces a map

h
RN > RV - isometries (W).

Let R > R" be given by s > (A;s/ky,..., Ays/ky). With these new coordi-
nates the desired condition is satisfied.

Proof of (3.4). Let A;j(t) =1 — H)A;+ ¢ and A(2) = (A(2),..., An(2)).
The A(¢)’s determine a one parameter family of actions with no fixed points
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and hence a smooth family of Riemannian foliations. Let », C TM be the
normal bundle to the ¢** action. Let #, be orthogonal projection on »,. A(t)
positive implies ,:», = », is an isomorphism. Let D," be the transverse
signature operator relative to the ¢ action and let 7(D,*) = D, ar,. Direct
computation shows o(D;"), = o(m(D,;")), for v € TFM and from this it
follows that their symbol classes in K (T*M) or K;(T;SE;) are the same.
Thus ¢(D;") and o(my(Dg)) and o(Dy) represent the same element. If u is a
virtual representation of SO(4k), u(»}) and v(»}) are isomorphic vector
bundles. Tensoring the above symbol classes with such an isomorphism yields
the result.

Proof of (3.5). LetY be a4k — 1 oriented Riemannian manifold on which
G acts and on which the diagonal S* acts without fixed points. Let X = ¥ X R
with the trivial G action on R and the product metric, and i: ¥ — X given by
i(y) = (»,0). Let D* be the transverse signature operator to the S action on
Y and let 1 be the ordinary signature symbol on X. Referring to [1, p. 44-45]
we have the trivializations + and n* will be taken on X relative to the S*
action. n* and %~ are elements in K;(TaX) and hence in K (T;X).
Precisely, f: Ta(X) > TX,

f(x,0) = (x, v+ p(x)g(Iv])4F)

where p is zero on Y and positive otherwise. If o is the symbol of # on TX,
f*(o) represents n* in Ky(TaX). Now,

T,(YXR)=T4Y) X C
hence we have a Thom isomorphism

in: Kg(T5Y) - Ko(T,X)

THEOREM (4.1). 2i(a(D*))=9"—1n".
COROLLARY (4.2). 2iy(o(D*® u)) =1"® u (TX) — 1~ ® uy(TX).

Proof. Theorem (4.1) is stated in [1, p. 54] and so we will merely give a
sketch of the proof. The symbol of D* pulled up to T;(Y) X C is represented
by

a: 7*AY(v) > 7*A(v),
a(v,x +iy)(e) = (v,x+iy,v A e+ vie)

where

_ J
viey A -o- Ae,) =2 (=1)(v,e)ey Ao Ao+ Ae,.
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v of course is the normal bundle to the S* action. The Thom class is
B:T;(Y) X C?2 > Ty(Y) X C?  where B(v, 21, z,) = (v, 2, 2,2,).

Then iy (a(D™)) is represented by

(43) 7*A*(») @ C+7*A (») ® C > 7*A*(») ® C+7*A () ® C

where C = T;(Y) X C? and the map is

a(v)®1 -1@®:
18z a(v)®1
at (v, z).
To relate this to n on X we write

T(Y><R)=vea{£;,A}

where 4 is the unit tangent to the S! orbits and u is the R coordinate. Let
V = {3/0u, A} with {du, a} the dual basis. The metric on T(Y X R) is the
product of a metric on ¥ in which {d/du, A} is an orthonormal basis and the
metric on ». Thus

AN (TX)=A*(») @ AT (V) + A~ (») @ A= (V)

and similarly A=(TX) = A*® A+ A"® A*. We can take 1 + idu A a and
du + ia as a basis for A¥(V)and 1 — idu A a and du — ia for A~ (V).

Now, n*— 7~ on T4(Y) X C can be represented, similar to [1, p. 63], as the
pullback of the signature symbol on X by the map

T (X)=Tz(Y) X C-> T(Y) X C=T(X)
given by (v, x + iy) = (v, xa + ydu). Thus n*— 7~ is represented by
a*At(X) - 7*A~(X),
with the map given by
(v,x+iy,e) > (v,x+iy,(xa+ ydu) A e+ (xa + ydu)ie).

Then direct computation shows that this complex splits as a sum of (4.3) and
another complex with the same bundles as (4.3) but with map

a(v)®1 1®:z
18—z a(v)®1]
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However, a simple argument shows this is equivalent to (4.3). To add coeffi-
cients we just notice that if Q and P are the principal bundles of » and 7X on
X, p arepresentation of SO(4k), and p,, its restriction to SO(4k — 2), then the
vector bundles p(P) and p,(Q) are equal.

Now we relate n*® u, on M and JN,. Let us suppress the coefficients for
clarity. We let V=W — Uin(N,). Let U, and U; be disjoint invariant
neighborhoods of M and dN (N = UN,). We can “trivialize” n along the
infinitesmal generator A* or 4~ of the S! action on U, and U, to get 7§ in
Ks(TyU,), ni in K5(TxU,) where H = S'. To do this, say, for U, let
h: TyU, = TU, be defined as in [1, p. 45] by

(4.4) h(x,0) = (x,v+ p(x)g(v])47)

where p is zero only on M. If o represents the symbol of 7, then A*(o)
represents ng . Similarly for ng, 05, n; . We can also define 4 on all of v by
taking p to be zero on M U dN. This gives h*(o) representing n* in
Ko (TyW|V). Let U = U, U U,. We can apply excision [1, (3.7)]

E: Ko(TpU) - Ko(TgW|V)

and since h*(o) is an isomorphism outside TW|M U dN, the construction of
E allows to conclude E(n; —ng) =n* and similarly for n~. Since ¢ is
elliptic, it defines an element in K (TW|V') and a simple K theory argument
shows that o, n*, n~ all represent the same element. Thus

E(ng —ng) = E(n{ — 1)
Since index commutes with excision we have
Indexg(ng — ng) = Indexg(n — ny)
Now from (4.1), (4.2), and explicating coefficients
2(ng = ng) ® uy(TX) = iy(D*® uy),
2(n = n7) ® u(TX) = Lia( D} ® uy).

Thus 0 = iy (D" ® u;) — Lis(D;* ® u;). Finally apply index; which com-
mutes with the Thom isomorphism to get Theorem (3.5).

Now let E —» Z be a complex 2k G bundle over the trivial oriented G
manifold Z as in the statement of (3.1). We can assume the diagonal S! acts
without fixed pointson E—~Z. E=E, ®p; + --- +E, ® p, where E; is a
complex vector bundle, and p; is an irreducible representation of G. The
weights of the p; determine a map ¢: RY — R” and by a change of coordi-
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nates on R’ with jacobian one we can assume that the diagonal R of R" is
carried into that of R". A simple argument using restriction and change of
variables in a multiple integral shows that we can obtain the TV or R" index
of an operator transversely elliptic to the diagonal from the T" index by ¢},
and so we might as well assume N = r and p; = ¢; where ¢,(0,,...,0y) = e'.

Consider the signature operator of E (as a manifold) with coefficients
u,(TE). E is not compact, so there is no index theorem, but we can consider
L(E), the right hand side of the G signature theorem applied to this operator,
which is a rational function in characters of TV with, as we will see,
denominator a power of (1 — #;) -+ (1 — ty).

THEOREM (4.5). Let D* be the transverse signature operator to the diagonal
S* action. Then —2index(D*® u;) = J(L(E)).

COROLLARY (4.52). —2Virtindexz(D*® u;) = L(E),.;.

Corollary (4.5a) follows from (2.3). We will obtain a further reduction. Let V'
be the canonical line bundle of E. Form B(E) U (—B(V)) along S(V) =
S(E). The right hand side of the G signature theorem with coefficients in u,
for this manifold is L(E) — L(V'). But since B(E) U (—B(V)) is a closed
manifold, this is a character. Hence J(L(E)) = J(L(V)).

Thus to prove (4.5) it is enough to show:

THEOREM (4.6). Let V be the canonical line bundle of E. Then
—2indexg(D*® u;) = J(L(V)).

Proof. First assume no coefficients u,. The general case is just a technical
modification. Let x;,... be such that the Pontryagin classes of Z are symmet-
ric functions of the x2? and Viks+++ such that the Chern classes of E; are
symmetric functions of the y’s. The fixed set of the G action on CP(E) is
U CP(E,). Directly from the G signature theorem we get

(4.7) L(V)= Z - Ci(%—t—:%)[CPEi].

where v, is the class

X X

e
Neve—2
of TCPE, and

t;+ ey“ftk
Ci=7in - (ti_ e}’kjtk .
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To compute indexg;(D*), we consider «:S(V) - CP(E). D% is the
pull-back of the ordinary signature operator of CP(E), the normal bundle to
the diagonal action of S! is the pullback of TCP(E) and we can apply (3.3) of
[1] with H = S!, a = D* on CP(E). Apply the G signature theorem to each
index; and we get

(4.8) Index;(D*) = Y. Y Cie 7 %[CPE,].

a€Z i

Recall from [1, p. 39],

() =2 () =L

a<0

If it makes sense to replace ¢ by e’?t; in those formulas and if C; were
unchanged by + we could apply J to (4.7) and use

et Y (1e”)" = L ()"

a€Z a€Z

to obtain —2J(L(V)) = index(D*). We now justify this.
First, a simple induction argument shows

_ ey -1 = Pn(t’ y)
(4.8) (1 t) ——(1 T
— e -1= rn(ti’tk’ y)
(1 1) - t)n+l

where p, is a polynomial in ¢ and y, r, is a polynomial homogeneous in ¢, and
t,. These formulas hold in H*(CP(n)) ® R(G)g where S is the multiplicative
set {(1 —¢t*1)*} and R(G)y is all quotients by elements of S. Thus those
elements are in the domain of 1 ® +. Since + is an R(G) module map,

1-en[1-en)] =1
and also

(1—e) ) evr*=1.

a>0

Similar considerations hold for —, hence

49 [1-en)"= Zoe"‘yt"‘, [(1=e)] = X exr=

a<0
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Also, L(E) — L(V) is the signature of B(E) U (—B(V')) and then apply-
ing the right hand side of the G signature theorem to E, we have

P

An+1

(4.10) L(V) =
where n > N, A =TI)_,(1 — ¢;) and P is a polynomial in the ¢’s. Let

Q= l_I (ti - tk)nHa Q =TI1Q,,

k#i

=1 -1,)"" (1 -et)t g, =0,C(1+ e¥nr,).
13 1 1 1 ™~

From (4.8) f;, q;, and Q,/Q are all polynomials. From (4.7), (4.10),

-y 2 1 _or
L(V)= )y Qiqifi[CPEi] 1- ti)n+1 A
Now we can apply + to obtain
4.11 L= LyslcrE] —L—— - 2%
( ) V) 2 Qiqu:[ ;] [(1 _ t,-)"H]i AL

Now replace g,, f; by their expressions in terms of the #’s and y’s to get the
result.

The general case, where there are coefficients u,, goes the same way. In (4.7)
we get, for each i, a term u, ; and in (4.8) a term u; ;. Then the proof proceeds
exactly as for no coefficients, but in the last step we use

(1-—e) ) evt*=0

a€”Z

to obtain the result.

5. Simons classes

Let v be a connection and ¢ an ad-invariant polynomial function (of
degree 2k in our discussion) on matrices. The Simons class S,(V ) is an R/Z
cochain which represents a cohomology class when the differential form
¢(v)=0. ¢(V)is ¢ applied to the curvature matrix of v. The principal
reference is [14].

We also recall some other notions about connections. Given an infinitesmal
isometry X we call an invariant connection on the tangent bundle an X-con-
nection if outside a neighborhood of the singular set of X, Vv is given by
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v 4B = w(A) X, B] + D, B, where D is the Riemannian connection, = is
projection on the complement to X, and w(4) = (4, X)/(X, X). Such
connections are easy to construct. We have the A construction from [5, p. 64].
Given two connections vV °, v! and an invariant polynomial ¢, A(V, v °)(¢)
is a differential form whose exterior derivative is (V') — ¢(V °).

As in §§3 and 4, M = dW with the product metric, F is the foliation on M
induced by the given R action, F by the R” action. v’ is the umque
Riemannian torsion free connection on the normal bundle » to F [12], X is
the infinitesimal generator of the R action, v/’ is the connection on (X) which
is flat relative to X/|X|, and v an X-connection on TM. Then v and
v/ ® v’ are connections on TM.

LEMMA (5.1). AV, V' ® vL)(¢) = 0 if ¢ has degree 2k.

Proof. Choose local co-ordinates
(X, 1., 9, =U

where ¢ = 4k — 2 with X = d/dx. Let us consider the local framing

d d
{X/'X"iy‘;""’?y‘q}

and f: U — RY9,q = 4k — 2 given by f(x, y) =y. Let 8 and 6, be the local
connection matrices of v and v/ @ v, We show that  and 6, lie in
f*Q(TR*~2); then a direct computation shows

AV, v e vEi)(e)

is a sum of terms ¢(o2*! A (do + [0, 0,])) A Q) where 0 =0 — 6, is in
f*QY(RY), Q, and do + [0, ;] are in f*Qz(R") and i+j+1=2k—-1.
Thus each summand is of degree at least 4k — 1, hence zero.

To show 8 is in the given ideal use the definitions of ¥ and the invariance of
this connection. Then a direct computation shows i(X) and L, annihilate 6.
For 6,, introduce p, the orthogonal projection on X. Then

(v e vE)h = (pv/'ph, 7viah).
A direct calculation together with the facts that 7V = v on » and that v ©
locally pulled back, via f, from R? will yield the result. The computations are

similar to those in [9].

LEMMA (5.2). Sy (V%) = S,(v/ @ v1).
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Proof. This is (1.2) of [9].
LEMMA (5.3). S,(V) = S,(v/' @ v1).

Proof. According to [14, p. 31], S,(V) — S,(v/' ® v1) as a function on
4k — 1 cycles is given by integrating

2k [*6(o; A Q2*Y) dr
0

where o/ =60 — 6,, Q,=1t%%+ t(do + [0, 0,]) + Q. It is then easily seen
that this 4k — 1 form is just A(V, v/' ® v 1)(¢) which is zero.

Now let v be an X connection on W. ¥ is also a connection on TW
restricted to M.

LEMMA (5.4). S (V) = S¢(€) in H*~Y(M; R/Z).

Proof Let D and D be the Riemannian connections on W and_M.
V =w® Ly+ D,. On a collar of dW the metric is a product and D = D +
D/! where D/' is flat relative to d/du. Thenv = v & D/’ and so the lemma
follows from (1.2) of [9].

Thus we have:

PROPOSITION (5.5). S,(F) = Sy(V).

Proof. S,(F) is by definition S,(v ). Now apply (5.1)-(5.4).

THEOREM (5.6). S, (F)[M]= [,,¢(V) mod Z.

Proof. By (3.19) of [14],
So(v)[M] = 5,(D)[M] = [ M(v, D)(9)
= [ 4\, D)(9)

= [#(%) - [ o(D).

By Theorem (5.15) of [14] we have S,(D)[M] = [, (D). Since D = D & D7,
Se(D) = Sy(D). Thus S (F)M] = Sy(V)IM] = [,¢(V).

Proof of (3.6). v is an X-connection on W and we can construct it so
V = w ® Ly + D, outside UN,. Then outside UN, the proof of (5.1) shows
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¢(Vv) = 0 so by (5.5),

S{(F)IM] =X [ 6(v) = L8,(F)N].

Proof of (3.8). Again X is the generator of the R action on M. Take
X=X, X~'2 , X, to be commuting vector fields Wthh at each Eomt
generate F. Let v and 7 be the normal bundles to F and F and v and v the
Riemannian torsion free connections on » and 7. We have

v=70® (X,,..., X,}
and we let v/ be flat relative to X,,..., X,. Then by (5.2)-(5.5),
S¢(F) = S¢(V)a S¢(ﬁ) = S¢(6)’ S‘p(6 ® Vﬂ) = S¢(6)

and
Sp(v) = 8(v) = fMA(Vﬁ o v/)(¢)

Thus it will be sufficient to show A = 0.
We choose local co-ordinates U = {xy,..., X,, Y15-.-, ¥, } such that X; =
d/0x; and y; = constant describe the local leaves of F.Then x,= --- =x,
=y, = -+ =y, = constant describe those of F. Let f: U - R?and g: U—>
R#k=2 be given by

f(x,y) =y, 8(x,9) = (X2, s X5, Y1515 )

Let & be the local connection matrix of Vv relative to

{_‘7_ i}
ayl,o"’ ayq

and w of Vv relative to

d d d d
axz,..., axn, ayl,..., ayq .
Then

&€ f*N(dyy,...,dy,), we g*A(dx,,..., dx,, dy,,..., dy,).
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Let I = g*A(dx,,...,dy,). @ and w arein I. We have

AMv,v o v')(e) = (2k)f01¢(o A Q1) gt

where 0 = & — w, @, = t%? + t(do + [0, w]) + dw + w? Since 0, w arein I,
Q, isin I? and so ¢(0 A Q24" 1) e T4 -1 = (.

The residue of an infinitesmal isometry along a component of the singular
set can be defined by the right hand side of (5.6) in [3], or for isolated
singularities by the left hand side of Theorem 2 of [4]. Then from (5.5) and
(5.6) of [3] and our (5.5), (5.6) we have:

THEOREM (5.7). S,(F)[M]= L Res(¢,0,T)).

Note. In the statement we have used the notation Res(¢, 8, I';) instead of
Res(f, 0, I';). They mean the same thing. The polynomial f determines ¢ as in
§1.

6. Remaining proofs

Proof of (3.7). From (5.6) and the proof of (3.6),
S{F)M] =X [ 9(v).

Now [y¢(V) is given by a local expression near T} by (5.6) and (2.2)—(2.3) of
[3]. From [2, p. 598 (top line)] and (8.9) it follows that this local expression
equals (1/22¥)L,_,. That is the local expressions of [3] and [2] are the same by
examination of the terms of degree equal to the dimension of I,. Then from
(4.6),

—2 Virtindex g (D*® u,;) = L,, = 2*S,(F)[M].

Proof of (3.10). Since n > 2, we can assume » is odd. As in the proof of
(3.8) let X=X, X,,..., X, be commuting vector fields arising from the R"
action on M, X the generator of the R action. Let V' be the trivial bundle on
M generated by X,,..., X,. Since n is odd, V is complex. Let Tp(M), Tr-(M)
be the normal bundle to the R, R” action respectively (notation consistent with
[1]). Then TR(M) = Tr.(M) ® V. Let j be the composite

To(M) S Ten(M) S Tou(M) ® V = To(M).
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The symbol o(P) lies in K;(TxM) and, by the restriction principle,
index z(P) = index;( j*o(P)).

By the Thom isomorphism for V, a(P) = i*(u) for some u. Then j*o(P) =
g¥i*i(u) = g*(u ® A_;(V)). Here u ® A_;(V) makes sense since V is a
trivial bundle and ® is the action of R(G). But V is also a trivial G bundle,
hence A_;(V) = 0.

Proof of (3.11). For any of R, R",G = H, the symbol of the transverse
signature operator to H orbits is given by

o,(e) =m(v) Ae—m(v)le

where m: TM — Ty M is orthogonal projection at each point of M. Thus the
symbols of D, D,", D* all agree on T,E.
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