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ODD PRIMARY bo-RESOLUTIONS AND
K-THEORY LOCALIZATION

BY

DONALD M. DAVIS

1. Introduction

In this paper we adapt to odd primes p Mahowald’s theory of bo-resolutions
[17] and apply it to calculate the homotopy groups of some nonconnected
spectra which are obtained as direct limits of some spectra constructed from
Bp. The calculation of their homotopy groups is the main step in proving that
these spectra are, in fact, K-theory localizations of certain Moore spectra,
analogous to the situation for real projective spaces established in [8].
Throughout this paper, p is a fixed odd prime and q 2p- 2. The

symbols Zp and Z/p are used interchangeably, A is the mod p Steenrod
algebra, and H*(X) H*(X; Zp). We let bu (resp. bo) denote the spectrum
for connective complex (resp. real) K-theory, localized at p. Adams [2]
obtained a splitting

p-2

bu= V X2q,
i,=O

from which the splitting
(p- 3)/2

bo V ’4il
i--0

is easily derived. This is often called BP(1) [9]. In Section 3 we utilize Kane’s
splitting of 1/x 1 [13] to show that all the theorems of bo-resolutions can be
adapted to 1. In fact, the situation is simpler here, and the reader who has had
difficulty with [17] and [6] may find this paper more understandable.

Let BY.p denote the classifying space for the symmetric group of p letters
localized at p [3]. Then

i-- -1 0modq, i>0
n’(,) -- O, otherwise
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80 DONALD M. DAVIS

by [21]. Let fl’" E, U(p 1) be the representation obtained by restricting
the permutation action on C’ to the hyperplane z + +Zp O. Let fl
denote the bundle

BX(pkq)
BB’
BV(p 1)

on the (kq)-skeleton of BE, For any integers b < t, possibly infinite, let
Bib T((b 1)flt_b+l)/S(b-’l)q, where T( ) denotes the Thom spectrum.

These spectra are (except when b < 0 and o) stunted BYp’S by the
following result.

PROPOSITION 1.1. (i) ff b >__ 0, then Btb is isomorphic to the suspension
spectrum of B(tq)/B,((b-i)q)

p p
Bt+N(ii) If N O(pt-bl) then ’qNnt

b b+N"

This is proved in Section 2.along with the following result, which is used in
forming our desired spectra B/,.

PROPOSITION 1.2. If Z t3 (oo } and b < t, then there are maps gtb trivial
in H*( ;Zp) and nontrivial on the bottom cell, so that the diagrams

commute.
composite

The maps g induce isomorphisms in K.( ) and K*( ). The

t-1 ioc g
Bb_ "* Bb Bib-_

DEFINITION 1.3. B/, is the mapping telescope of

g
t-

g--
t- 2B ---> Bb_ ---> Bb_ 2 ---->

We often write Bb for B, and Bb for B.
Let J denote the fibre of a map

0
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which is nontrivial in Hq( ;Zp); a lifting of an Adams operation xXtr-- 1 is
one way of constructing such a . Let v( ) denote the exponent of p

THEOREM 1.4.

Z/(i+ 1) +1

J.(b) Z/po,
0,

=-- -lmodq, : -1,
-1, -2,

otherwise,

Z/p
m+l a pmq e, e 1 or 2, v(a) O, m < b

Zipt-b+x, a pmq e, e 1 or 2, v(a) O, m >= b,
O, -1,-2mod q.

THEOREM 1.5. Ifp > 3, the Hurewicz homomorphism

is an isomorphism.

The surjectivity of h in 1.5 is proved for all odd primes in Section 2; the
injectivity for p > 3, which uses/-resolutions, is proved in Section 3. It seems
very likely that h is 1.5 is injective also when p 3, particularly since Miller’s
proof [18] of 1.5 when b works when p 3.
The following results are now easily derived, similarly to the case p 2 in

[8]. Let Xr denote the K,-localization of a spectrum X [4]. For other notation,
see Section 4, where these results are proved.

THEOREM 1.6. Btb is K,-local ifp > 3.

COROLLARY 1.7. Ifp > 3, Btb (Btb)r and is independent of the choice of
the maps gb, t; Bib ut+,, for all integers n-’b+ n

THEOREM 1.8. Ifp > 3, tb (S-t/Pt-b+t)I for finite or infinite.

COROLLARY 1.9. Ifp > 3, there are cofibrations

S-1Q 1 SK,p,
and S-VQ V S-1Q 1

The significance is that the spectrum B, since it is constructed from
geometric spaces BE, beating no apparent relation to K, is in some sense a
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simpler model for K-theory localizations than Bousfield’s, which is constructed
from ,9" and hence ultimately from K.
The author wishes to thank the Institute for Advanced Study, where this

work was performed, and Haynes Miller, for some valuable discussions.

2. The spectra B, and their homotopy groups

In this section we prove 1.1, 1.2, 1.4, and the surjectivity part of 1.5.

Proof of 1.1. The restriction of fl to BZp is the bundle a induced by the
reduced regular representation. The bundle a is equivalent to the sum of the
p 1 nontrivial complex line bundles over BZe, which have equivalent sphere
bundles, and hence the Thom spectrum T(a) is equivalent to the Thom
spectrum of (p 1), where A is the canonical complex line bundle over BZv
[20]. Thus for any integer k, there is a map

(2.1) T(k(p- 1)hmq ) --) T(kflm ),

where ,, denotes the restriction of , to the n-skeleton of BZv, which is the
lens space L". We index our lens spaces and stunted lens spaces with real
dimensions, rather than the complex dimensions used in [12]. Thus L,

We use the result of [12] that identifies Thom spectra of multiples of h as
stunted lens spaces, so that, after collapsing a skeleton, (2.1) gives a map

(2.2) L_))qq_x B_’.

The transfer [10] gives a map of suspension spectra

BZv BZv,

injective in H,( ;Zv) since IXp’Zpl is prime to p. This induces

p( (pk + m qBZ k+m)q)/B q) L((k+m)q)/L(kq) "-’> Lkk+l)q_l,

which when followed by the map of (2.2) induces an isomorphism in
H,( ;Zp) and hence an equivalence of p-localized spectra.

(ii) follows immediately from the fact that

"O(n(pt-b+l)q ) , Z/pt-b+l,

which is easily proved by the Atiyah-Hirzebruch spectral sequence or the
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Adams spectral sequence for kuo(D(BXt-b+l)q))), where D(
S-dual.

) denotes an

A map has (HZp)-filtration >_ s if it can be written as a composite of s
maps, each trivial in H*( ;Zp). If X is any spectrum, a map S" --> X has
filtration s iff it is detected by an element of Extis+’(H*X). We delete Zp
from second component of Ext( ). Let X(s> denote the spectrum obtained
from X by killing Exti(H*X) for < s.

Proof of 1.2. (Entirely analogous to [8; 2.1].) There is a diagram

where f is a lifting of .p, and g exists because

dim(fibre(c)) < conn(

Similarly one obtains

nb

g
_jt_l(1)

f
_rj,b(1)l

We now work toward the proof of 1.4. H*(l) -A//E, where E is the
exterior subalgebra generated by Q0 =/3 and al Plfl- tiP:- Then l,
,r,(l) is calculated from a spectral sequence beginning with Ext e(Zp), and is a
polynomial algebra over Z(p) on a generator a of degree q and Adams
filtration 1. We have

Hi(Bb)=
O,

O, -l ( q ), bq- 1 <_ < tq,

otherwise,

with Q0 and Q: nonzero wherever possible, l,(Bt) is calculated from
Ext e(H*Bt) and its chart is shown in Fig. 1. In a chart such as this, column
is ,ri( ) (in this case li( )--,r( A/)), and vertical lines connecting dots
correspond to multiplication by p. The following result reformulates the chart.
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bq-I ( 2i’q i (t+2)q-i

FIG.

PROPOSITION 2.3. l,(Btb) is an l,-module on generators Yi liq-l(
b < < with relations PYb and ay PYi+ for b < < t.

for

The following result could be proved using an Adams-operation interpreta-
tion of/9, but we prefer the more homotopy-theoretic version given below.

PROPOSITION 2.4. The composite

liq_l(ntb)
0. or.---- liq_l(,qntb)---- liq._l(ntb)

is (up to a unit in Z<,)) multiplication by pVi)+ 1.

Proof. Define 0" ,ql to be the second component of

,^1 K
l- A l-- v ,ql V ...,

where K is Kane’s splitting [13], which will be discussed in more detail in
Section 3. The only pertinent fact about 0 is that Hq(O) O.
Use the method of [18; 2.11] to show a,O," liq_l(SO) liq_l(S O) is multi-

plication by pV<)+ 1. Let : B -- SO denote a map of the type considered in
[10] or [3]. Then I,(S xCBx) has the chart in Fig. 2. and the exact sequence
0 I,(S) I,(S u xCB1) I,(BI) 0 enables deducing 0, in I,(BI)
from 0, in l,(S). Then 0, in l,(Bb) follows by naturality and the equiv-
alences of 1.1(ii). t

The homomorphisms
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/\

2q

FG. 2

are injections onto all classes of positive filtration. Thus

Z/pb-t+ l,/’()
0,

-1 (q),
otherwise,

and 1.4 follows from the exact sequence

l,_ q+l (n) J,() l,(B)
0,

,t]-..-> .-->l,_q\lo! -.->

together with 2.4.

Similarly to [8], J,(Btb) may be conveniently represented by a chart which
incorporates negative, as well as positive, filtrations. This is achieved by
defining

ES,’(l,(tb)) limES+i,’+i(l,(Bt-i))b-i

then

E’’(J,(tb) ) ES,*’(l,(tb)) * Es-l’’(l,(Yqtb)),

and finally inserting differentials to reflect the homorphism O,. For example, if
p 3, J,(l3) would have the chart in Fig. 3.

The proof of surjectivity in 1.5 is analogous to that in [8]. The following
lemma will be useful. D( ) always refers to a (stable) 0-dual; i.e., DX A X- S0.

LEMMA 2.5. D(Btb) XB-bt for any integers b and t.
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-2q-i -q-i -i

3q-i

2q-i

FIO. 3

4q-i

Proof. This follows from the analogous result for stunted lens spaces [11]
together with the splitting maps, (2.2) and t, used in the proof of 1.1. O

Now we prove the surjectivity in 1.5.

Case 1. oo, i-- -1 (q). Since pk-aflk_ a is trivial, there is a filtra-
tion-0 map T(afll_a) "-> Saq if v(a) > k a. Lemma 2.5 translates this to a
filtration-0 map S-aq-1 ----> B_a_v(a). Since

,qpan-(p- 1)a Ba
(p-1)a-v(a) a-v(a)

by 1.1(ii), there are filtration-0 maps Saq-1 "-> Ba_v(a) for all integers a. Hence
the first vertical arrow in the commutative diagram below is surjective.

B’aq-l(Ba v(a>)
ga-v(a)

r. ff.l.aq_l(Ba_v(a>_l )

Jaq_l(na_,(a))
ga-v(a,

Jaq_l(na_v(a)_l)
ga--,(a,--1

All arrows along the bottom are_ isomorphism_s, and hence all vertical arrows
are surjective. Therefore "#aq_l(Bb) "--> Jaq_l(Bb) is surjective for any b.

Case 2. oo, 2. Let a %,q_2(B:_-2te) denote the attaching
map for the top cell of (B:_2e)(v’q-1). The splitting map constructed in the
second sentence of the proof of Case 1 implies that a maps to 0 in
rpeq_2(BP:_-el ). The image of a in Jveq_2(B’_-21e) has Adams filtration e + 1,
by the exact sequence in J,( ) of

)(peq-1)speq-2
a

B:__21e ( BpP 2e

pe-e- whose image in J,( )Thus a pulls back to an element of ff’l’peq_2(Bpe_2e 1)



ODD PRIMARY bO-RESOLUTIONS 8’7

has filtration e + 1. By 1.1(ii), the same is true of ’/I_2(B--I), and hence of
’/r_2(B_2e). Using the maps g of 1.2, we deduce that all elements of J_2(B)
of filtration > 1 k e are in im(h), and e can be chosen arbitrarily large.

Case 3. t finite. This follows from the case oo exactly as in [8; 3.8],
using a diagram which applies r,( ) J,( ) to the cofibration Bt --, Bb

Bt+ 1, and using the vanishing line of [15] for "lr,(Bt+ 1)" I’1

3. Odd-primary bo-resolutions

In this section we adapt Mahowald’s theory of bo-resolutions to the spec-
trum l, and apply it to prove the injectivity in 1.5. Lellman [14] has developed
a very nice theory for resolutions with respect to the spectrum k(1) l/p, but
it does not seem to be quite appropriate for our application to the spectra Bb,

which have arbitrarily large p-torsion in r,( ).
Let 9’=9 denote the category of locally-finite wedges of Eilenberg-

MacLane spectra Y, nH/p. A map of spectra f" X ---, Y is an equivalence mod
9 if there are spectra H1, H2 9’ and equivalences h and h 2 so that the
(X ---, Y1)-component of

hi h2
X V H--)X L Y-) Y V H2

is an equivalence. If f is such a map, there is a map g" Y X which is also an
equivalence mod 9’.
Kane [13] constructed complexes C(n) (we have changed the name from his

K(n) to avoid confusion with Morava K-theory) of dimension 2n- Xns if
n Xnsp with 0 < n, < p. Let E c A be as in Section 2, and let L(m)
denote the E-module with generators G of degree qi for 0 < < rn and
relations QoGo, QG QoGi+l (0 < < m), QGm. Then H*C(n) splits over
E as F L(v(n!)), where F is a free E-module. We note that

pS 1v(n!) Y,ns(Ps-1 +’’’ +p + 1) Y,ns p_ 1

The following analogue of [6; 3.9] will be useful later and gives a simple
visualization of l,(C(n )).

PROPOSITION 3.1. There is an equivalence mod

C(n) A

Proof. The proof is analogous to that of [6; 3.9] given on [6; pp. 51-52].
We begin with the case n p. Let h v(pS!) (p 1)/(p 1). The map



88 DONALD M. DAVIS

a below is defined by the cofibration sequence

-,so-,c=c(p,)-,c.

S So is the sphere spectrum.

Since dim(E-1C) 2p 2 is less than the connectivity of S(h+) by [15],
is trivial and hence so is fa. Thus fa factors through a map

and if" C --> 1 (h> has the property that

<i)* x
L(h) = H*(l(h)) --) H*(C) -- L(h) (D F--) L(h)

is the identity. The composite fs,

C A --) (h) A 1 (h)

is our desired map when n pS.
In the general case, write n nsp with 0 _< n

diagram
< p, and consider the

A C(p*)’’* ,^f"*’;A

where m is the pairing constructed in [13; 5.5] and # uses

(h) A (h’) l (h+h’).

By [13; 15"3"4], when A l is applied to m, an equivalence mod M’ is obtained;
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i.e., we have

^ ^
with

h

an equivalence. Then

C(n) A I
h-1

"Y1 " X1

is the desired equivalence mod
If (nl,..., nk), let I1

C() C(nl) A A C(nk) and G Xqll C().

COROLLARY 3.2. If ( n 1,..., n k), there is an equivalence mod

C(E) A --+ (x’{’’’O>.

Let R denote the set of s-tuples of positive integers. Let I and be defined
by the cofiber sequence

-,,s -^(s+ 1),
Let ds=l ApAt’l Al---,l Al. As in [13; p. 89], let L be the
Thom spectrum of the obvious spherical fibration over fS2p- 1, and " L ---,

the rational equivalence defined on [13; p. 90].

THEOREM 3.3. For s >= 1, there is an equivalence

h" V G AI]^AI
t.R

and a map g so that the following diagram commutes mod elements offiltration
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V sqll A L
-R

V c^
R

h-+lldshs

V Sqlml A L
Rs+l

V c^
"R+

and, in H,( ;Z(,)),

gs.(X qil (xqis+l)

=’(-1)Y(ij)
j,a a

X qil ( xqij-x Xqa xq(ij -a) xqis+x

Proof We omit the lengthy proof of the following result, [13; 11.1 and
23.6], which is analogous to [6; 3.18]"
There are (stable) equivalences f, g, and h so that the following diagram

commutes mod elements of filtration > 2:

gALV Sqn A L- .gS2+’-XA L
n>__O If

J^, L A L

h

n0

The failure to commute [13; pp. 56-59] is due to elements of [x"+X-3M, A l]
for s 1, where M is the mod p Moore spectrum, and any such elements in
positive filtration have filtration s + 1, the first being in the (C,_ l)-
summand of A 1.

This diagram is iterated as in [6; p. 55] to yield the diagram of the theorem.
The homology statement is a consequence of [16; 2.3].

Let D* denote the cochain complex

(3.4)

,(t)
0. ,( t) ’" " "

Do D D2 D
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The main theorem of/-resolutions is:

THEOREM 3.5. If S >_ 2, HS(D*) is a Zp-vector space, all elements of which
have (HZ,)-filtration 0 or 1, HI(D*) differs from

coker(,r,(/) o. )
by a Zp-oector space, all elements of which have filtration 0 or 1.

Proof. We calculate H*(D*)) using what has been called a geometric May
spectral sequence (GMSS) in [19] and [14]. The El-term is (D srr,(]^s A l), which
is given (above filtration 0) by 3.2 and 3.3. The 8l-differential is the (HZp)-
filtration preserving part of d,.

Remark 3.6. We first single out for special attention the

component of do,. This was calculated in the proof of 2.4; it increases
filtration by v(k) in ,rkq( ). This can be interpreted as 8(k)+x-differential in
the GMSS, but we shall omit it from our subsequent consideration of this
spectral sequence; its behavior is anomalous.
The following lemma is well known (e.g., [5]).

LEMMA 3.7. Let U be a Z,-oector space with basis { u :n > 0}, and let
um U (R) (R) U with m factors. Define

i)Un i(R)U

and

d,(u,,, (R) (R)u,,,) i=(-1)u,,, (R)... (R) A(u,,,) (R)... (R)u,,..

Then

d d d3
U---> U2--) U

is a cochain complex U* with

n,(v,) = ol (R) ,_ ol
where

Vpj+, Xff=-ll ut’J(P-i) (R) uli"
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The cochain complex in 3.7 is naturally isomorphic to the complex obtained
by applying H,( Z(,)) (R) Zp to the maps gs of 3.3 restricted to the bottom
cells. By 3.3, the same is true of the complex obtained by applying
,r,( )/Torr (R) Zp to the maps h-+ldsh of 3.3, restricted to the bottom cells.
The Cn A ---, Cm A component, f, will be nonzero on the bottom cell if is
obtained from by splitting some n as (a, ni a). If

(n,) -=a0 modp,a

then tightness of the A-module H*(C A l) implies that (ignoring split HZp’S)

Extn*,*(H*(Cn A/)) Extn*’*(H*(Cm A l))

is .a in all nonzero groups.
We elaborate slightly upon the preceding sentence. Both H*(C A l) and

H*(Cn A l) as A-modules have generators and relations corresponding to those
of the same E-module L(h) defined before 3.1. The relations QoG+t QIG
imply that f*G aG for all i. The dements in the minimal resolution are
given by relations Qxxi_x + eQox, and so the map of minimal resolutions
inductively assures that all Ext-maps are a.
A similar argument, similar to [6; p. 56], shows that if

then

=O(p)

f, 0" Zxt,]*(H*(Cn ^1)) Ext,]’*(H*(Cm A 1)),

except that elements of Ext(H*(Cm A l)) corresponding to split HZp’s might
be in im(f,). Lemma 3.7 and the paragraphs which follow it imply the
following result.

LEMMA 3.8. Let E (eo, el, mx, e2, m2...) be afinite sequence ofnonnega-
tioe integers with ei <_ 1, corresponding to the generator

O( ff,) U HU p’f
j>

of H’U* of 3.7. Define (E) to be the sequence ofpositive integers below, where
the numbers beneath a number or pair of numbers indicates the number of
occurrences of that number or pair of numbers:

(pO pt pO, p pO, p, p2_ p,... ).

e0 el ml m2
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Let o be the set of sequences E with e > 0 or m > 0 for some > O. Then the
E2 term of the GMSS (modulo Remark 3.6) in positive (HZp)-filtration
agrees with p.er,(Cn(p) /x l).

Proof The chain complex U* of 3.7 splits as a direct sum of subcomplexes
Usa, s: spanned by u u,t (R) (R)u, with

N(S1, $2) {. Yn S1, Zv(ni!) S2}.

For all N(Sx, $2), the charts l,(Cn) are isomorphic above filtration 0 by
3.2. In the GMSS, (El, i1) splits as a direct sum of subcomplexes EI(S1, $2),
and the subcomplex in each Exts, t( )-bigrading is either 0 or Usx, s2)" []

Here we have, rather arbitrarily, selected Cpr-1/x Cpr_p-/x to represent
the homotopy classes corresponding to a Vpr-factor. Next we analyze the
82-differential in the GMSS, utilizing the following lemma, which uses some
notation of 3.8.

LEMMA 3.9. Let ’ { E (el, ml,_e2, m_2,... )’(0, E) }. Let V* be
a graded Zp-vector space with basis (v(E)" E o’}, where v(E) has grading
Y.j >__ ej + 2mj. Suppose V* has a differential d such that d d 0 and

j" e=
otjo( mj_l, O, mj + 1, ej+x,...)

with aj 0 mod p. Then H’V* O.

SUBLEMMA 3.10. We say a differential vector space is of n-type if it has basis

w(, , e 0 or 1, and

a( w,., ,.,) Z )

with aj 4 O. If (W, d) is of n-type, then H*W O.

Proof If W’= (w" e 0), then W’ and W/W’ are of (n 1)-type, and
so the result follows by induction and the exact cohomology sequence. []

Proof of 3.9. V* OrW(K), where K ranges over finite sequences of
nonnegative integers, and W(K)= (v(E)" e + m ki). Each W(K) is of
n-type, where n is the number of nonzero k’s, and the e’s are the e’s
associated to nonzero k ’s. 1

The following result is analogous to [6; 3.7(ii)] as corrected in [7].
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LEMMA 3.11. __Suppose v(E1) occurs with nonzero coefficient in d(v(E)) in
3.9, and (E) (nx,..., nk) is as in 3.8. Let

Let r r V rE denote the following composite, which utilizes the equivalences
mod Y’ of 3.2 and the maps of 3.3"

h-l+ ldkhk
Xlnll (s> C AI -Cn(x) A xlnll V H.

Then r lifts to an equivalence X II(s> - (X n II(S- 1)) (1).

Proof Since

pj
v

pj-1
=1,

3.3 implies that the restriction of r to the bottom cell lifts to

(Xlnll<s-1)) <1),

where it is nonzero in H*( ;Z,). By tightness of A-module structure,
H*(rl; Zp) must be 0, so that r lifts to (5,.Inll(S-))O), and, as before, analysis
of relations in the minimal resolution shows that all Ext-classes map by
multiplication by the same nonzero element of Zp. n

We can now deduce 3.5. First note that, simi__larly to 3.11 and [6; 3.7(iii)], 3.3
and tightness of A-structure imply that if (E) does not occur with nonzero
coefficient in d(v(E)) in 3.9, then the

component of 2 is zero, i.e., Exts’t Exts+x’t+ is 0. This and 3.11 imply
that the chain complex (E2, 192) in the GMSS, except in filtration 0 and
perhaps 1, and with the exception discussed in Remark 3.6, splits as A(K),
where K ranges over finite sequences of nonnegative integers as in the proof of
3.9. Here

A(K)
E" v(E) W(K)

Ext’*(H*(C,> A l)),

where W(K) is as in the proof of 3.9. Similarly to the proof of 3.8, for any K
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(D)
d(A) d(B)

(C)

FG. 4

and (s, t), the intersection with A(K) of the sequence

( ExtS’t(n*(cn A/)) ( ExtS+l’t+l(n*(cn A/))
R R

( ExtS+2’t+2(H*(Cn A/)) -->
ER

is either 0 or W(K), and hence is acyclic. Since the Eoo-term of the GMSS is
an associated graded for H’D*, this implies 3.5. The filtration 1 terms, which
were overlooked in [17] and [6], can occur due to the situation in Fig. 4 (see
[7]), where d(C) is the sum of the indicated classes:
A result similar to [6; 3.6] adapting 3.5 to any spectrum X for which the

Adams spectral sequence Ext,(H*(X A 1)) ,r,(X A 1) collapses could
probably be proved, but an adaptation of the proof of that result seems tedious
at best. We are content to prove that it holds for the spectra B, of 1.1.

THEOREM 3.12.
D,,

If X Btb with possibly infinite, then the chain complex

has the following properties:
(i) If s > 2, HSD. is a Z,-vector space consisting of classes of (HZp)-filtra-

tion 0 or 1.
(ii) HI(D.) agrees with

coker r,(X A 1)
0, )

except for classes of filtration 0 or 1.
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Proof. We first show that if the I,(C) I,(Cm) component of h-+ldh
is .a except for filtration-0 Zp’s, then the same is true of I,(X A C) ---, I,(X A
Cm). This is proved for X B by the argument of 2.4. It is then deduced for
B, with b 1 by use of the collapsing map

noting that

is surjective. Next it is deduced for all B, with finite using the equivalences
of 1.1(ii). Finally it is deduced for B by using B, to study ,ri( ) for < qt.
Then Lemma 3.8 remains valid for the E2-term of the GMSS converging to
H*D., and Lemma 3.11 remains valid when X A is applied, so that we can
deduce that the E --E-term (modulo Remark 3.6) of the GMSS is as
claimed. [2

We are now prepared to prove the injectivity of r,(B,)---, J,(Btb) in 1.5.
After possibly reindexing, it suffices to show that if a’S" Btb becomes
trivial in B, A J, then for some k the composite

t-1 _t-k+l
gb gb-I $b-k+l:lt_ kS "---Bo-’’Bb-- b- k

is trivial. It suffices to do this when is finite, for if a ,r,(B) choose
> [n/q] and use the commutative diagram (from 1.1)

to deduce the result for a.
By duality it is equivalent to show that if f" Y"+ 1B-Ot "-"> S0 becomes trivial

in J, then for some k the composite

S 0 L n+lB
_-b+ _-b+k

-b-,+x :-,+k ,n+ lB-b+k (3.13)-t" -t+k

gl gk

is trivial. We use the/-resolution

P0sO

l

14
Pl I^2.

f’2 A
where I Y ].

P2 _1"3..

i"3Al
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LEMMA 3.14. If S > 2 andf below is any map,

X-II^(s-1)

.B,-2B 8-2

A i,,(+ 1)

then there exists " Bj I^(+ 1)such that

Ps_l Ps [= Ps_l L g-I g.
The conclusion is also true if s 1 and

.f’ AI

is trivial, where the last arrow is the first component of the splitting of I A 1.

Proof Dual to fo g-]o g is an element , _l(n-fl A I^s) of nzp-
filtration > 2. Since

gy ker(r_x(B-_ A I^" A 1) a,.. r_(B-_ A I""+ 1,

3.12 implies that there exists 8 E r I(B- A Y.-1/^(s-l) A 1) such that qs(j8
+ y) 0. Thus there is F E r_l(B-- A-I^(s-l)) such that pF j8 + "/and
hence p_lpsF p_ 1Y. Dualize again to obtain the desired result, rq

Now suppose f is as in 3.13. Its triviality in J implies that it lifts to a map fl
satisfying the hypothesis in the last sentence of 3.14. Then 3.14 implies that
fig1.., g, lifts to a map

,n+lo_b+2k
J’k+, (k+l)

t+2k I^

By [14; 3.61,

i^(k+l) pk+l S0

is null-homotopic on the (1/2(k + 1)pq- 1)-skeleton if k + 1 is even. The
dimension of the domain of fxgl g2k is n + 1- bq + 2kq. If p/2 > 2,
then, for k sufficiently large, Pk+fk/ is trivial for dimensional reasons,
establishing triviality of 3.13 and hence injectivity in 1.5. []
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Lellman ([14]) also required the condition p > 3 in his proof of 1.5 when
b=t.

4. K-theory localization

In this section we prove 1.6, 1.7, 1.8, and 1.9. As the arguments are totally
analogous to the case p 2 handled in [8], details will be kept to a minimum.
Analogues of the proofs of [8; 4.1] could be given. Since both of those use

results of Bousfield, we prefer the following self-contained proof, mimicking
the proof of [4; 4.2].

Proof of 1.6. Let

a fibrel
r--

K(p)-- K(v))
be as in [4; p. 269]. Then X ^a is K,-local for any spectrum X, since it is a
cofibre of K-module spectra. The map

0S
___

j.___.jr

induces a commutative diagram

Since

t-kxr- 1 gaq_l(nb_k) gaq_l(nb_k

is multiplication by ra(p-1) 1 on Z/pt-b+1 (using [11]), and

Vp(ra(p-1)- 1)= vv(a ) + 1

by [1], the groups r B t-- k
*k b-k A:) are isomorphic to ,r,() given by 1.4 and

1.5, and the maps g/, A,," induce isomorphisms in ,r,( ). Since ri(B, A J)
5(B, A,,) is an isomorphism for >_ tq, it follows from 1.5 that B,
is an equivalence, and hence B is K,-local.

Corollary 1.7 follows immediately from 1.6 and the fact that the maps g/, of
1.2 are K,-equivalences. The independence of g/, is a consequence of the
uniqueness, of Bousfield’s localization.
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In 1.8, s-lipn is the Moore spectrum whose only nonzero integral ho-
mology group is H_I(S-1/pn) Zipn.

Proof of 1.8. As in the proof of surjectivity in 1.5, there is a degree-1 map

S-1 LB_t.

The map .pt-b+l on B_ is trivial because

Ext’(H*Bb_t) 0

for s > b + 1, s < 0 by [15]. Thus f factors through a map

S-1/pt-b+l ]_ B_t.

That K.(f) is an isomorphism can be shown using either the Atiyah-Hirzebruch
spectral sequence or the Adams spectral sequence for ku.( ) as in [8]. Thus
(S-1/pt-b+1) tb.K (B-t)K
A K,-localization map s-lip is obtained as in [8] by inductively con-

structing a diagram

s_l/pn+l/Z

using (from 1.4 and 1.5)
The first cofibration in 1.9 follows from 1.8 and the fact that Z/p

Q/Z,, while the second follows from Bousfield’s description of SK,.
Added in proof An alternate approach to 3.1, 3.2, and part of 3.3 can be

found in W. Lellman, Operations and cooperations in odd-primary connective
K-theory, J. London Math. Soc., vol. 29 (1984), pp. 562-576. An alternate
approach to 1.6 can be found in D. M. Davis, M. Mahowald, and H. R. Miller,
Mapping telescopes and K.-localizations, to appear in Proc. John Moore
Conference, Princeton Univ. Press.
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