ODD PRIMARY bo-RESOLUTIONS AND K-THEORY LOCALIZATION

BV

DONALD M. DAVIS¹

1. Introduction

In this paper we adapt to odd primes p Mahowald's theory of bo-resolutions [17] and apply it to calculate the homotopy groups of some nonconnected spectra which are obtained as direct limits of some spectra constructed from $B\Sigma_p$. The calculation of their homotopy groups is the main step in proving that these spectra are, in fact, K-theory localizations of certain Moore spectra, analogous to the situation for real projective spaces established in [8].

Throughout this paper, p is a fixed odd prime and $q = 2p - 2$. The symbols \mathbb{Z}_p and \mathbb{Z}/p are used interchangeably, A is the mod p Steenrod algebra, and $H^*(X) = H^*(X; \mathbb{Z}_p)$. We let bu (resp. bo) denote the spectrum for connective complex (resp. real) K-theory, localized at p . Adams [2] obtained a splitting

$$
bu = \bigvee_{i=0}^{p-2} \Sigma^{2i}l,
$$

from which the splitting

$$
bo = \bigvee_{i=0}^{(p-3)/2} \Sigma^{4i} l
$$

is easily derived. This l is often called $BP(1)$ [9]. In Section 3 we utilize Kane's splitting of $l \wedge l$ [13] to show that all the theorems of bo-resolutions can be adapted to *l*. In fact, the situation is simpler here, and the reader who has had difficulty with [17] and [6] may find this paper more understandable.

Let $B\Sigma_p$ denote the classifying space for the symmetric group of p letters localized at p [3]. Then

$$
H^{i}(B\Sigma_{p}) \approx \begin{cases} \mathbf{Z}_{p}, & i \equiv -1,0 \bmod q, \quad i \ge 0, \\ 0, & \text{otherwise} \end{cases}
$$

 $@$ 1986 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received June 30, 1983.

¹The author was partially supported by grants from the National Science Foundation.

by [21]. Let $\beta' : \Sigma_p \to U(p-1)$ be the representation obtained by restricting the permutation action on \mathbb{C}^p to the hyperplane $z_1 + \cdots + z_p = 0$. Let β_k denote the bundle

$$
B\Sigma_p^{(kq)} \stackrel{BB'}{\rightarrow} BU(p-1)
$$

on the (kq)-skeleton of $B\Sigma_p$. For any integers $b < t$, t possibly infinite, let $B_b^t = T((b - 1)\beta_{t-b+1})/S^{(b-1)q}$, where $T(\)$ denotes the Thom spectrum.

These spectra are (except when $b < 0$ and $t = \infty$) stunted $B\Sigma_p$'s by the following result.

PROPOSITION 1.1. (i) If $b \ge 0$, then B_b^t is isomorphic to the suspension spectrum of $B\sum_{p}^{(tq)}/B\sum_{p}^{((b-i)q)}$.

(ii) If $N \equiv 0(p^{t-b+1})$ then $\Sigma^{qN}B_{b}^{t} \approx B_{b+N}^{t+N}$.

This is proved in Section 2, along with the following result, which is used in forming our desired spectra \overline{B}_{b}^{t} .

PROPOSITION 1.2. If $t \in \mathbf{Z} \cup \{\infty\}$ and $b < t$, then there are maps g_b^t trivial in $H^*(-; \mathbb{Z}_p)$ and nontrivial on the bottom cell, so that the diagrams

commute. The maps g_b^t induce isomorphisms in $K_*($) and $K^*($). The composite

$$
B_{b-1}^{t-1} \stackrel{i \circ c}{\rightarrow} B_b^t \stackrel{g_b^t}{\rightarrow} B_{b-1}^{t-1}
$$

is $.p.$

DEFINITION 1.3. \overline{B}_{b}^{t} is the mapping telescope of

$$
B_b^t \stackrel{g_b^t}{\rightarrow} B_{b-1}^{t-1} \stackrel{g_{b-1}^{t-1}}{\rightarrow} B_{b-2}^{t-2} \rightarrow \ \ldots
$$

We often write B_b for B_b^{∞} , and \overline{B}_b for \overline{B}_b^{∞} . Let J denote the fibre of a map

 $l \stackrel{\theta}{\rightarrow} \Sigma^{q}l$

which is nontrivial in $H^q(\; ; \mathbb{Z}_p)$; a lifting of an Adams operation Ψ^r-1 is one way of constructing such a θ . Let ν θ denote the exponent of p

THEOREM 1.4.

$$
J_i(\overline{B}_b) = \begin{cases} \mathbf{Z}/p^{\nu(i+1)+1}, & i \equiv -1 \mod q, i \neq -1, \\ \mathbf{Z}/p^{\infty}, & i = -1, -2, \\ 0, & otherwise, \end{cases}
$$
\n
$$
J_i(\overline{B}_b^t) = \begin{cases} \mathbf{Z}/p^{m+1}, & i = a \cdot p^m q - \varepsilon, \varepsilon = 1 \text{ or } 2, \nu(a) = 0, m \leq t - b, \\ \mathbf{Z}/p^{t-b+1}, & i = a \cdot p^m q - \varepsilon, \varepsilon = 1 \text{ or } 2, \nu(a) = 0, m \geq t - b, \\ 0, & i \neq -1, -2 \mod q. \end{cases}
$$

THEOREM 1.5. If $p > 3$, the Hurewicz homomorphism

$$
\pi_i\big(\,\overline{\!B}{}^{\,t}_b\big)\stackrel{h}{\to} J_i\big(\,\overline{\!B}{}^{\,t}_b\big)
$$

is an isomorphism.

The surjectivity of h in 1.5 is proved for all odd primes in Section 2; the injectivity for $p > 3$, which uses *l*-resolutions, is proved in Section 3. It seems very likely that h is 1.5 is injective also when $p = 3$, particularly since Miller's proof [18] of 1.5 when $t = b$ works when $p = 3$.

The following results are now easily derived, similarly to the case $p = 2$ in [8]. Let X_K denote the K_{\ast} -localization of a spectrum X [4]. For other notation, see Section 4, where these results are proved.

THEOREM 1.6. \overline{B}_h^t is K_* -local if $p > 3$.

COROLLARY 1.7. If $p > 3$, $B_b^t = (B_b^t)_K$ and is independent of the choice of the maps $g_{b, i}$; $\overline{B}_{b}^{t} = \overline{B}_{b+n}^{t+n}$ for all integers n

THEOREM 1.8. If $p > 3$, $\overline{B}_b^t = (S^{-1}/p^{t-b+1})_K$ for t finite or infinite.

COROLLARY 1.9. If $p > 3$, there are cofibrations

$$
S^{-1}Q \to \overline{B}_1 \to S_{K_{(p)}} \quad \text{and} \quad S^{-2}Q \vee S^{-1}Q \to \overline{B}_1 \to \mathscr{J}_{(p)}.
$$

The significance is that the spectrum \overline{B}_1^{∞} , since it is constructed from geometric spaces $B\Sigma_p$ bearing no apparent relation to K, is in some sense a simpler model for K-theory localizations than Bousfield's, which is constructed from $\mathscr J$ and hence ultimately from K .

The author wishes to thank the Institute for Advanced Study, where this work was performed, and Haynes Miller, for some valuable discussions.

2. The spectra \overline{B}_{b}^{t} and their homotopy groups

In this section we prove 1.1, 1.2, 1.4, and the surjectivity part of 1.5.

Proof of 1.1. The restriction of β to $B\mathbb{Z}_p$ is the bundle α induced by the reduced regular representation. The bundle α is equivalent to the sum of the $p - 1$ nontrivial complex line bundles over $B\mathbb{Z}_p$, which have equivalent sphere bundles, and hence the Thom spectrum $T(\alpha)$ is equivalent to the Thom spectrum of $(p - 1)\lambda$ where λ is the canonical complex line bundle over $B\mathbb{Z}_p$ [20]. Thus for any integer k , there is a map

$$
(2.1) \t\t T\big(k\big(\,p-1\big)\lambda_{mq}\big) \to T\big(k\beta_m\big),
$$

where λ_n denotes the restriction of λ to the *n*-skeleton of $B\mathbb{Z}_p$, which is the lens space $Lⁿ$. We index our lens spaces and stunted lens spaces with real dimensions, rather than the complex dimensions used in [12]. Thus $L_b^n = B\mathbb{Z}_n^{(n)}/B\mathbb{Z}_n^{(b-1)}$.

We use the result of [12] that identifies Thom spectra of multiples of λ as stunted lens spaces, so that, after collapsing a skeleton, (2.1) gives a map

$$
(2.2) \t\t\t L_{(k+1)q-1}^{(k+m)q} \to B_{k+1}^{k+m}.
$$

The transfer [10] gives a map of suspension spectra

$$
B\Sigma_p \stackrel{t}{\rightarrow} B\mathbf{Z}_p,
$$

injective in $H_*($; \mathbb{Z}_p) since $|\Sigma_p : \mathbb{Z}_p|$ is prime to p. This t induces

$$
B\Sigma_{p}^{((k+m)q)}/B\Sigma_{p}^{(kq)} \to L^{((k+m)q)}/L^{(kq)} \to L_{(k+1)q-1}^{(k+m)q},
$$

which when followed by the map of (2.2) induces an isomorphism in $H_*(-; \mathbb{Z}_p)$ and hence an equivalence of p-localized spectra.

(ii) follows immediately from the fact that

$$
\widetilde{KU}^0\big(B\Sigma_p^{(t-b+1)q}\big)\approx \mathbf{Z}/p^{t-b+1},
$$

which is easily proved by the Atiyah-Hirzebruch spectral sequence or the

Adams spectral sequence for $ku_0(D(B\Sigma_p^{((t-b+1)q)}))$, where $D()$ denotes an S-dual. \Box

A map has $(H\mathbb{Z}_p)$ -filtration $\geq s$ if it can be written as a composite of s maps, each trivial in $H^*(-; \mathbb{Z}_p)$. If X is any spectrum, a map $S^m \to X$ has filtration s iff it is detected by an element of $Ext_A^{s,s+m}(H^*X)$. We delete \mathbb{Z}_p from second component of Ext(,). Let $X^{\langle s \rangle}$ denote the spectrum obtained from X by killing $Ext^{i}(H^{*}X)$ for $i < s$.

Proof of 1.2. (Entirely analogous to [8; 2.1].) There is a diagram

where f is a lifting of $\cdot p$, and g exists because

$$
\dim(\text{fibre}(c)) < \text{conn}(B_{b-1}^{\langle 1 \rangle}).
$$

Similarly one obtains

$$
\begin{array}{ccc}\nB_b & B_{b-1} & \rightarrow B_{b-1} & \downarrow \\
& \downarrow & \downarrow & \downarrow\n\end{array} \qquad \qquad \Box
$$

We now work toward the proof of 1.4. $H^*(l) \approx A/\sqrt{E}$, where E is the exterior subalgebra generated by $Q_0 = \beta$ and $Q_1 = P^1\beta - \beta P^1$. Then l_* $\pi_*(l)$ is calculated from a spectral sequence beginning with $Ext_E(\mathbb{Z}_p)$, and is a polynomial algebra over $\mathbf{Z}_{(p)}$ on a generator α of degree q and Adams filtration 1. We have

$$
H^{i}(B_{b}^{t}) = \begin{cases} \mathbf{Z}_{p}, & i = 0, -1 (q), bq - 1 \leq i \leq tq, \\ 0, & \text{otherwise}, \end{cases}
$$

with Q_0 and Q_1 nonzero wherever possible. $l_*(B_b^t)$ is calculated from $\text{Ext}_E(H^*B_b^t)$ and its chart is shown in Fig. 1. In a chart such as this, column i is π_i () (in this case l_i () = π_i (\wedge l)), and vertical lines connecting dots correspond to multiplication by p . The following result reformulates the chart.

PROPOSITION 2.3. $l_*(B_b^t)$ is an l_* -module on generators $y_i \in l_{iq-1}$ for $b \le i \le t$ with relations py_b and $\alpha y_i = py_{i+1}$ for $b \le i < t$.

The following result could be proved using an Adams-operation interpretation of θ , but we prefer the more homotopy-theoretic version given below.

PROPOSITION 2.4. The composite

$$
l_{iq-1}(B_b^t) \stackrel{\theta_*}{\rightarrow} l_{iq-1}(\Sigma^q B_b^t) \stackrel{\alpha_*}{\rightarrow} l_{iq-1}(B_b^t)
$$

is (up to a unit in $\mathbf{Z}_{(p)}$) multiplication by $p^{\nu(i)+1}$.

Proof. Define $\theta: l \to \Sigma q$ to be the second component of

$$
l \stackrel{\iota \wedge 1}{\rightarrow} l \wedge l \stackrel{K}{\rightarrow} l \vee \Sigma^q l \vee \cdots,
$$

where K is Kane's splitting [13], which will be discussed in more detail in Section 3. The only pertinent fact about θ is that $H^q(\theta) \neq 0$.

Use the method of [18; 2.11] to show $\alpha_* \theta_* : l_{iq-1}(S^0) \to l_{iq-1}(S^0)$ is multiplication by $p^{\nu(i)+1}$. Let $\lambda : B_1 \to S^0$ denote a map of the type considered in [10] or [3]. Then $l_*(S^0 \cup {}_{\lambda}CB_1)$ has the chart in Fig. 2. [10] or [3]. Then $l_*(S^0 \cup {}_{\lambda}CB_1)$ has the chart in Fig. 2. and the exact sequence $0 \to l_*(S^0) \to l_*(S^0 \cup {}_{\lambda}CB_1) \to l_*(\Sigma B_1) \to 0$ enables deducing θ_* in $l_*(\Sigma B_1)$ from θ_* in $l_*(S^0)$. Then θ_* in $l_*(B_b^t)$ follows by naturality and the equivalences of 1.1(ii). \Box

The homomorphisms

$$
l_{\ast}\left(B_{b}^{t}\right)\stackrel{g_{b}^{t}}{\rightarrow}l_{\ast}\left(B_{b-1}^{t-1}\right)
$$

are injections onto all classes of positive filtration. Thus

 $l_i(\overline{B}_b^t) = \begin{cases} \mathbf{Z}/p^{b-t+1}, \\ 0, \end{cases}$ $-1 (q),$ otherwise,

and 1.4 follows from the exact sequence

$$
\stackrel{\theta_*}{\to} l_{\bullet-q+1}(\overline{B}_b^t) \to J_{\bullet}(\overline{B}_b^t) \to l_{\bullet}(\overline{B}_b^t) \stackrel{\theta_*}{\to} l_{\bullet-q}(\overline{B}_b^t) \to
$$

together with 2.4.

Similarly to [8], $J_*(\overline{B}_b^t)$ may be conveniently represented by a chart which incorporates negative, as well as positive, filtrations. This is achieved by defining

$$
E^{s,\tau}\big(\mathcal{U}_{*}\big(\overline{B}_{b}^{t}\big)\big)=\lim_{\rightarrow}E^{s+i,\,\tau+i}\big(\mathcal{U}_{*}\big(B_{b-i}^{t-i}\big)\big).
$$

then

$$
E_1^{s,\tau}\big(J_\ast(\overline{B}_b^t)\big)=E^{s,\tau}\big(I_\ast(\overline{B}_b^t)\big)\oplus E^{s-1,\tau}\big(I_\ast\big(\Sigma^q\overline{B}_b^t\big)\big),
$$

and finally inserting differentials to reflect the homorphism θ_* . For example, if $p = 3$, $J_{\ast}(\overline{B}_1^3)$ would have the chart in Fig. 3.

The proof of surjectivity in 1.5 is analogous to that in [8]. The following lemma will be useful. $D()$ always refers to a (stable) 0-dual; i.e., $DX \wedge X$ $\rightarrow S^0$.

LEMMA 2.5.
$$
D(B'_b) = \sum B_{-t}^{-b}
$$
 for any integers b and t.

 \Box

FIO. 3

Proof. This follows from the analogous result for stunted lens spaces [11] together with the splitting maps, (2.2) and t, used in the proof of 1.1. \Box

Now we prove the surjectivity in 1.5.

Case 1. $t = \infty$, $i = -1$ (q). Since $p^{k-q}\beta_{k-q}$ is trivial, there is a filtration-0 map $T(a\beta_{k-a}) \to S^{aq}$ if $\nu(a) \ge k - a$. Lemma 2.5 translates this to a filtration-0 map $S^{-aq-1} \rightarrow B_{-a-\nu(a)}$. Since

$$
\sum^{q} {}^{p}{}^{a} B^{-}({}^{p-1}){}^{a}_{a-v(a)} \simeq B^{a}_{a-v(a)}
$$

by 1.1(ii), there are filtration-0 maps $S^{aq-1} \rightarrow B_{a-\nu(a)}$ for all integers a. Hence the first vertical arrow in the commutative diagram below is surjective.

$$
\pi_{aq-1}(B_{a-\nu(a)}) \xrightarrow{\qquad \qquad g_{a-\nu(a)}} \pi_{aq-1}(B_{a-\nu(a)-1}) \xrightarrow{\qquad \qquad g_{a-\nu(a)-1}} \cdots
$$

\n
$$
\downarrow_{a} \qquad \qquad \downarrow_{a}
$$

\n
$$
J_{aq-1}(B_{a-\nu(a)}) \xrightarrow{\qquad \qquad g_{a-\nu(a)}} J_{aq-1}(B_{a-\nu(a)-1}) \xrightarrow{\qquad \qquad g_{a-\nu(a)-1}} \cdots
$$

All arrows along the bottom are isomorphisms, and hence all vertical arrows are surjective. Therefore $\pi_{aa-1}(\overline{B}_b) \rightarrow J_{aa-1}(\overline{B}_b)$ is surjective for any b.

Case 2. $t = \infty$, $i = -2$. Let $a \in \pi_{p^e,q-2}(B^{p^r-1}_{p^e-2e})$ denote the attaching map for the top cell of $(B_{p^e-2e}^{p^e-1})$. The splitting map constructed in the second sentence of the proof of Case 1 implies that a maps to 0 in $\pi_{p^e q-2}(B^{p^e-1}_{p^e-e})$. The image of a in $J_{p^e q-2}(B^{p^e-1}_{p^e-2e})$ has Adams filtration $e+1$, by the exact sequence in $J_*($) of

$$
S^{p^e q-2} \xrightarrow{a} B^{p^e-1}_{p^e-2e} \longrightarrow (B^{p^e}_{p^e-2e})^{(p^e q-1)}.
$$

Thus a pulls back to an element of $\pi_{p^e q-2}(B^{p^e - e-1}_{p^e - 2e})$ whose image in $J_*()$

has filtration $e + 1$. By 1.1(ii), the same is true of $\pi_{-2}(B_{-2}^{-e-1})$, and hence of $\pi_{-2}(B_{-2e})$. Using the maps g of 1.2, we deduce that all elements of $J_{-2}(\overline{B}_k)$ of filtration $\geq 1 - k - e$ are in im(h), and e can be chosen arbitrarily large.

Case 3. t finite. This follows from the case $t = \infty$ exactly as in [8; 3.8], using a diagram which applies $\pi_*() \to J_*()$ to the cofibration $B'_b \to B_b \to$ B_{t+1} , and using the vanishing line of [15] for $\pi_*(B_{t+1})$.

3. Odd-primary bo-resolutions

In this section we adapt Mahowald's theory of bo-resolutions to the spectrum l, and apply it to prove the injectivity in 1.5. Lellman [14] has developed a very nice theory for resolutions with respect to the spectrum $k(1) = l/p$, but it does not seem to be quite appropriate for our application to the spectra \overline{B}_b , which have arbitrarily large *p*-torsion in $\pi_*($).

Let $\mathcal{H} = \mathcal{H}_p$ denote the category of locally-finite wedges of Eilenberg-MacLane spectra $\Sigma^n H/p$. A map of spectra $f: X \to Y$ is an equivalence mod Wat Lane spectra $2 H/p$. A map or spectra $f : A \to I$ is an equivalence mod
 \mathcal{H} if there are spectra H_1 , $H_2 \in \mathcal{H}$ and equivalences h_1 and h_2 so that the $(X_1 \rightarrow Y_1)$ -component of

$$
X_1 \vee H_1 \xrightarrow{\,h_1 \,} X \xrightarrow{\,f \,} Y \xrightarrow{\,h_2 \,} Y_1 \vee H_2
$$

is an equivalence. If f is such a map, there is a map $g: Y \to X$ which is also an equivalence mod \mathcal{H} .

Kane [13] constructed complexes $C(n)$ (we have changed the name from his $K(n)$ to avoid confusion with Morava K-theory) of dimension $2n - \sum n$, if $n = \sum n_s p^s$ with $0 \le n_s < p$. Let $E \subset A$ be as in Section 2, and let $L(m)$ denote the E-module with generators G_i of degree qi for $0 \le i \le m$ and relations Q_0G_0 , $Q_1G_i = Q_0G_{i+1}$ ($0 \le i \le m$), Q_1G_m . Then $H^*C(n)$ splits over E as $F \oplus L(\nu(n))$, where F is a free E-module. We note that

$$
\nu(n!) = \sum n_s (p^{s-1} + \cdots + p + 1) = \sum n_s \frac{p^s - 1}{p - 1}.
$$

The following analogue of [6; 3.9] will be useful later and gives a simple visualization of $l_{\star}(C(n))$.

PROPOSITION 3.1. There is an equivalence mod \mathcal{H} :

$$
C(n) \wedge l \rightarrow l^{\langle v(n!) \rangle}.
$$

Proof. The proof is analogous to that of [6; 3.9] given on [6; pp. 51–52]. We begin with the case $n = p^s$. Let $h = v(p^s!) = (p^s - 1)/(p - 1)$. The map a below is defined by the cofibration sequence

$$
\Sigma^{-1}\overline{C} \stackrel{a}{\rightarrow} S^0 \rightarrow C = C(p^s) \rightarrow \overline{C}.
$$

 $S = S^0$ is the sphere spectrum.

Since dim($\Sigma^{-1}C$) = 2p^s - 2 is less than the connectivity of $S^{\langle h+1 \rangle}$ by [15], \overline{fa} is trivial and hence so is fa . Thus fa factors through a map

$$
C \stackrel{\tilde{f}}{\rightarrow} S^{\langle h \rangle},
$$

and $i\tilde{f}: C \to l^{\langle h \rangle}$ has the property that

$$
L(h) \approx H^*(l^{(h)}) \stackrel{(i\bar{j})^*}{\rightarrow} H^*(C) \approx L(h) \oplus F \stackrel{\pi_1}{\rightarrow} L(h)
$$

is the identity. The composite f_s ,

$$
C \wedge l \xrightarrow{i \overline{f} \wedge l} l^{\langle h \rangle} \wedge l \xrightarrow{\mu} l^{\langle h \rangle},
$$

is our desired map when $n = p^s$.

In the general case, write $n = \sum n_s p^s$ with $0 \le n_s < p$, and consider the diagram

$$
\bigwedge_{s} C(p^{s})^{n_{s}} \xrightarrow{\wedge f^{n_{s}} \atop s} \bigwedge_{s} (l^{\langle v(p^{s}!)\rangle})^{n_{s}} \xrightarrow{\mu} l^{\nu(n!)}
$$

$$
C(n)
$$

where *m* is the pairing constructed in [13; 5.5] and μ uses

$$
l^{\langle h \rangle} \wedge l^{\langle h' \rangle} \rightarrow l^{\langle h+h' \rangle}.
$$

By [13; 15:3:4], when $\wedge l$ is applied to m, an equivalence mod $\mathcal H$ is obtained;

i.e., we have

$$
X_1 \vee H_1 \xrightarrow{\simeq} \wedge C(p^s)^{\wedge n_s} \wedge l \longrightarrow l^{\langle \nu(n!) \rangle} \wedge l \xrightarrow{\mu} l^{\langle \nu(n!) \rangle}
$$

$$
Y_1 \wedge H_2 \xrightarrow{\simeq} C(n) \wedge l
$$

with

$$
X_1 \xrightarrow{h} Y_1
$$

an equivalence. Then

$$
C(n) \wedge l \longrightarrow Y_1 \xrightarrow{h^{-1}} X_1 \longrightarrow l^{\langle v(n!)\rangle}
$$

is the desired equivalence mod \mathcal{H} . If $\overline{n} = (n_1,\ldots, n_k)$, let $|\overline{n}| = \sum n_i$,

$$
C(\overline{n})=C(n_1)\wedge\cdots\wedge C(n_k) \text{ and } C_{\overline{n}}=\Sigma^{q|\overline{n}|}C(\overline{n}).
$$

COROLLARY 3.2. If $\bar{n} = (n_1, \ldots, n_k)$, there is an equivalence mod \mathcal{H} :

$$
C(\bar{n}) \wedge l \rightarrow l^{\langle \Sigma \nu(n_i!)\rangle}.
$$

Let R_s denote the set of s-tuples of positive integers. Let I and \overline{l} be defined by the cofiber sequence

$$
I = \Sigma^{-1}\overline{l} \longrightarrow S^{0} \longrightarrow l \longrightarrow \overline{l}.
$$

Let $d_s = \hat{l}^{s} \wedge p \wedge \iota : \hat{l}^{s} \wedge l \rightarrow \hat{l}^{(s+1)} \wedge l$. As in [13; p. 89], let L be the Thom spectrum of the obvious spherical fibration over ΩS^{2p-1} , and $\phi: L \to$ the rational equivalence defined on [13; p. 90]. the rational equivalence defined on [13; p. 90].

THEOREM 3.3. For $s \geq 1$, there is an equivalence

$$
h_s: \bigvee_{\overline{n} \in R_s} C_{\overline{n}} \wedge l \to \overline{l}^{s} \wedge l
$$

and a map g_s so that the following diagram commutes mod elements of filtration

 \Box

 ≥ 2 :

$$
\begin{array}{ccc}\n\bigvee_{\overline{n}\in R_s} s^{q|\overline{n}|} \wedge L \xrightarrow{\qquad \qquad } S_s & \bigvee_{\overline{m}\in R_{s+1}} S^{q|\overline{m}|} \wedge L \\
\downarrow_{j \wedge \phi} & \cdot & \downarrow_{j \wedge \phi} \\
\bigvee_{\overline{n}\in R_s} C_{\overline{n}} \wedge l \xrightarrow{\qquad \qquad h_{s+1}^{-1}d_s h_s} & \bigvee_{\overline{m}\in R_{s+1}} C_{\overline{m}} \wedge l\n\end{array}
$$

and, in $H_*($; $\mathbf{Z}_{(p)}$),

$$
g_{s^*}(x^{qi_1} \otimes \cdots \otimes x^{qi_{s+1}})
$$

= $\sum_{j, a} (-1)^j {i_j \choose a} x^{qi_1} \otimes \cdots \otimes x^{qi_{j-1}} \otimes x^{qa} \otimes x^{q(i_j-a)} \otimes \cdots \otimes x^{qi_{s+1}}.$

Proof. We omit the lengthy proof of the following result, [13; 11.1 and 23.6], which is analogous to $[6; 3.18]$:

There are (stable) equivalences f , g, and h so that the following diagram commutes mod elements of filtration ≥ 2 :

The failure to commute [13; pp. 56-59] is due to elements of $[\Sigma^{2p^{s+1}-3}M, l \wedge l]$ for $s \ge 1$, where M is the mod p Moore spectrum, and any such elements in positive filtration have filtration $\geq s + 1$, the first being in the $(C_{p^s-1} \wedge l)$ summand of $l \wedge l$.

This diagram is iterated as in [6; p. 55] to yield the diagram of the theorem. The homology statement is a consequence of [16; 2.3]. \Box

Let D^* denote the cochain complex

 (3.4)

$$
\pi_*(l) \xrightarrow{d_0^*} \pi_*(l \wedge l) \xrightarrow{d_1^*} \pi_*(l^2 \wedge l) \xrightarrow{d_2^*} \pi_*(l^3 \wedge l) \xrightarrow{d_3^*} \cdots
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
D^0
$$
\n
$$
D^1
$$
\n
$$
D^2
$$
\n
$$
D^3
$$

The main theorem of *l*-resolutions is:

THEOREM 3.5. If $s \ge 2$, $H^s(D^*)$ is a \mathbb{Z}_p -vector space, all elements of which have $(H\mathbf{Z}_{p})$ -filtration 0 or 1. $H^{1}(D^{*})$ differs from

$$
\mathrm{coker}\left(\pi_*(l) \xrightarrow{\theta_*} \pi_*(\Sigma^q l)\right)
$$

by a \mathbb{Z}_p -vector space, all elements of which have filtration 0 or 1.

Proof. We calculate $H^*(D^*)$ using what has been called a geometric May spectral sequence (GMSS) in [19] and [14]. The E_1 -term is $\oplus_{s} \pi_{*}(\tilde{l}^{s} \wedge l)$, which is given (above filtration 0) by 3.2 and 3.3. The δ_1 -differential is the $(H\mathbb{Z}_n)$ filtration preserving part of d_{s^*} .

Remark 3.6. We first single out for special attention the

$$
\pi_*(l) \to \pi_*(C_1 \wedge l)
$$

component of d_{0^*} . This was calculated in the proof of 2.4; it increases filtration by $v(k)$ in π_{kq} (). This can be interpreted as $\delta_{v(k)+1}$ -differential in the GMSS, but we shall omit it from our subsequent consideration of this spectral sequence; its behavior is anomalous.

The following lemma is well known (e.g., [5]).

LEMMA 3.7. Let U be a \mathbb{Z}_p -vector space with basis $\{u_n : n > 0\}$, and let $U^m = U \otimes \cdots \otimes U$ with m factors. Define

$$
\Delta(u_n) = \sum_{i=1}^{n-1} {n \choose i} u_{n-i} \otimes u_i
$$

and

$$
d_s(u_{n_1}\otimes \cdots \otimes u_{n_s})=\sum_{i=1}^s(-1)^i u_{n_1}\otimes \cdots \otimes \Delta(u_{n_i})\otimes \cdots \otimes u_{n_s}.
$$

Then

$$
U \xrightarrow{d^1} U^2 \xrightarrow{d_2} U^3 \xrightarrow{d_3} \cdots
$$

is a cochain complex U* with

$$
H^*(U^*) \approx E[u_{p'}\colon j \ge 0] \otimes \mathbb{Z}_p[v_{p^{j+1}}\colon j \ge 0]
$$

where

$$
v_{p^{j+1}} = \sum_{i=1}^{p-1} \frac{1}{p} {p \choose i} u_{p^{j}(p-i)} \otimes u_{p^{j}i}.
$$

The cochain complex in 3.7 is naturally isomorphic to the complex obtained by applying $H_*($; $\mathbb{Z}_{(p)}) \otimes \mathbb{Z}_p$ to the maps g_s of 3.3 restricted to the bottom cells. By 3.3, the same is true of the complex obtained by applying $\pi_*($)/Torr $\otimes \mathbb{Z}_p$ to the maps $h_{s+1}^{-1}d_s h_s$ of 3.3, restricted to the bottom cells. The $C_{\overline{n}} \wedge l \to C_{\overline{m}} \wedge l$ component, f, will be nonzero on the bottom cell if \overline{m} is obtained from \bar{n} by splitting some n, as $(a, n, -a)$. If

$$
\binom{n_i}{a} \equiv \alpha \not\equiv 0 \mod p,
$$

then tightness of the A-module $H^*(C_{\overline{n}} \wedge l)$ implies that (ignoring split $H\mathbb{Z}_p$'s)

$$
\mathrm{Ext}_{A}^{*,*}(H^{*}(C_{\overline{n}}\wedge l))\stackrel{f_{*}}{\to}\mathrm{Ext}_{A}^{*,*}(H^{*}(C_{\overline{m}}\wedge l))
$$

is α in all nonzero groups.

We elaborate slightly upon the preceding sentence. Both $H^*(C_{\overline{m}} \wedge l)$ and $H^*(C_{\overline{n}} \wedge l)$ as A-modules have generators and relations corresponding to those of the same E-module $L(h)$ defined before 3.1. The relations $Q_0G_{i+1} = Q_1G_i$ imply that $f^*G_i = \alpha G_i$ for all *i*. The elements in the minimal resolution are given by relations $Q_1x_{i-1} + \epsilon Q_0x_i$, and so the map of minimal resolutions inductively assures that all Ext-maps are $\cdot \alpha$.

A similar argument, similar to [6; p. 56], shows that if

$$
\binom{n_i}{a} \equiv 0(p),
$$

then

$$
f_* = 0: \text{Ext}_{\mathcal{A}}^{**}\big(H^*(C_{\overline{n}} \wedge l)\big) \to \text{Ext}_{\mathcal{A}}^{**}\big(H^*(C_{\overline{m}} \wedge l)\big),
$$

except that elements of $\text{Ext}_{A}^{0}(H^{*}(C_{\overline{m}} \wedge l))$ corresponding to split $H\mathbb{Z}_{p}$'s might be in im(f_{\ast}). Lemma 3.7 and the paragraphs which follow it imply the following result.

LEMMA 3.8. Let $\overline{E} = (e_0, e_1, m_1, e_2, m_2...)$ be a finite sequence of nonnegative integers with $e_i \leq 1$, corresponding to the generator

$$
v(\overline{E})=u_1^{e_0}\prod_{j\geq 1}u_{p^j}^{e_j}v_{p^j}^{m_j}
$$

of H^{*}U^{*} of 3.7. Define $\overline{n}(\overline{E})$ to be the sequence of positive integers below, where the numbers beneath a number or pair of numbers indicates the number of occurrences of that number or pair of numbers:

$$
\underbrace{(p^0 \bullet P_1 \bullet P_2 \bullet P_3 \bullet P_4 \bullet P_2 \bullet P_1 \bullet P_2 \bullet P_2 \bullet P_1 \bullet P_2 \bullet P_1}_{m_1},\ldots).
$$

Let $\mathscr E$ be the set of sequences $\overline E$ with $e_i > 0$ or $m_i > 0$ for some $i > 0$. Then the E_2 – term of the GMSS (modulo Remark 3.6) in positive (HZ_p)-filtration agrees with $\oplus_{\overline{E} \cdot \mathscr{E}} \pi_*(C_{\overline{n}(\overline{E})} \wedge l).$

Proof. The chain complex U^* of 3.7 splits as a direct sum of subcomplexes $U_{(S_1, S_2)}$ spanned by $u_{\overline{n}} = u_{n_1} \otimes \cdots \otimes u_{n_k}$ with

$$
\overline{n} \in N(S_1, S_2) = \left\{ \overline{n} : \Sigma n_i = S_1, \Sigma \nu(n_i!) = S_2 \right\}.
$$

For all $\bar{n} \in N(S_1, S_2)$, the charts $l_*(C_{\bar{n}})$ are isomorphic above filtration 0 by 3.2. In the GMSS, (E_1, δ_1) splits as a direct sum of subcomplexes $E_1(S_1, S_2)$, and the subcomplex in each Ext^{s, t}()-bigrading is either 0 or $U_{(S_1, S_2)}$.

Here we have, rather arbitrarily, selected $C_{p^{r-1}} \wedge C_{p^{r}-p^{r-1}} \wedge U$ to represent the homotopy classes corresponding to a v_p^{\dagger} -factor. Next we analyze the δ_2 -differential in the GMSS, utilizing the following lemma, which uses some notation of 3.8.

LEMMA 3.9. Let $\mathscr{E}' = \{ \overline{E} = (e_1, m_1, e_2, m_2, ...) : (0, \overline{E}) \in \mathscr{E} \}$. Let V^* be a graded \mathbb{Z}_p -vector space with basis $\{v(\overline{E}) : \overline{E} \in \mathscr{E}'\}$, where $v(\overline{E})$ has grading $\sum_{i \geq 1} e_i + 2m_i$. Suppose V^* has a differential d such that $d \circ d = 0$ and

$$
d(v(\overline{E})) = \sum_{j: e_j=1} \alpha_j v(\ldots, m_{j-1}, 0, m_j+1, e_{j+1}, \ldots)
$$

with $\alpha_i \neq 0 \mod p$. Then $H^*V^* = 0$.

SUBLEMMA 3.10. We say ^a differential vector space is of n-type if it has basis $w_{(\varepsilon_1,\ldots,\varepsilon_n)}, \varepsilon_i = 0$ or 1, and

$$
d(w_{(\epsilon_1,\ldots,\epsilon_n)})=\sum_{\epsilon_j=1}\alpha_jw(\ldots,\epsilon_j-1,\ldots)
$$

with $\alpha_j \neq 0$. If (W, d) is of n-type, then $H^*W = 0$.

Proof. If $W' = \langle w_{\tilde{k}} : \varepsilon_1 = 0 \rangle$, then W' and W/W' are of $(n - 1)$ -type, and so the result follows by induction and the exact cohomology sequence. \Box

Proof of 3.9. $V^* = \bigoplus_{K} W(K)$, where K ranges over finite sequences of nonnegative integers, and $W(K) = \langle v(\overline{E}) : e_i + m_i = k_i \rangle$. Each $W(K)$ is of n-type, where n is the number of nonzero k_i 's, and the ε_i 's are the e's associated to nonzero k 's. \Box

The following result is analogous to [6; 3.7(ii)] as corrected in [7].

LEMMA 3.11. Suppose $v(E_1)$ occurs with nonzero coefficient in $d(v(E))$ in 3.9, and $\overline{n} = \overline{n}(\overline{E}) = (n_1,\ldots, n_k)$ is as in 3.8. Let

$$
s = \sum_{i=1}^k \nu(n_i!).
$$

Let $r = r_1 \vee r_2$ denote the following composite, which utilizes the equivalences mod $\mathcal X$ of 3.2 and the maps of 3.3:

$$
\Sigma^{|\bar{n}|} l^{\langle s \rangle} \to C_{\bar{n}} \wedge l \xrightarrow{h_{k+1}^{-1} d_k h_k} C_{\bar{n}(\overline{E}_1)} \wedge l \xrightarrow{g} \Sigma^{|\bar{n}|} l^{\langle s-1 \rangle} \vee H.
$$

Then r_1 lifts to an equivalence $\Sigma^{|\bar{n}|} l^{\langle s \rangle} \to (\Sigma^{|\bar{n}|} l^{\langle s-1 \rangle})^{\langle 1 \rangle}$.

Proof. Since

$$
\nu\binom{p^j}{p^{j-1}}=1,
$$

3.3 implies that the restriction of r to the bottom cell lifts to

$$
(\Sigma^{|\bar{n}|} l^{\langle s-1\rangle})^{\langle 1\rangle},
$$

where it is nonzero in $H^*($; \mathbb{Z}_p). By tightness of A-module structure, $H^*(r_1; \mathbb{Z}_p)$ must be 0, so that r_1 lifts to $(\Sigma^{[n_1]}(s-1))^{(1)}$, and, as before, analysis of relations in the minimal resolution shows that all Ext-classes map by multiplication by the same nonzero element of \mathbb{Z}_p .

We can now deduce 3.5. First note that, similarly to 3.11 and $[6; 3.7(iii)]$, 3.3 and tightness of A-structure imply that if $\bar{v}(E_1)$ does not occur with nonzero coefficient in $d(v(E))$ in 3.9, then the

$$
C_{\overline{n}(\overline{E})} \wedge l \to C_{\overline{n}(\overline{E}_1)} \wedge l
$$

component of δ_2 is zero, i.e., $Ext^{s,t} \to Ext^{s+1,t+1}$ is 0. This and 3.11 imply that the chain complex (E_2, δ_2) in the GMSS, except in filtration 0 and perhaps 1, and with the exception discussed in Remark 3.6, splits as $\Theta A(K)$, where K ranges over finite sequences of nonnegative integers as in the proof of 3.9. Here

$$
A(K) = \bigoplus_{\overline{E}: v(\overline{E}) \in W(K)} \operatorname{Ext}_{A}^{*,*} \big(H^{*}(C_{\overline{n}(\overline{E})} \wedge l)\big),
$$

where $W(K)$ is as in the proof of 3.9. Similarly to the proof of 3.8, for any K

FG. 4

and (s, t) , the intersection with $A(K)$ of the sequence

$$
\bigoplus_{\overline{n}\in R_1} \operatorname{Ext}^{s,t}(H^*(C_{\overline{n}}\wedge l)) \to \bigoplus_{\overline{n}\in R_2} \operatorname{Ext}^{s+1,\,t+1}(H^*(C_{\overline{n}}\wedge l))
$$

$$
\to \bigoplus_{\overline{n}\in R_3} \operatorname{Ext}^{s+2,\,t+2}(H^*(C_{\overline{n}}\wedge l)) \to \cdots
$$

is either 0 or $W(K)$, and hence is acyclic. Since the E_{∞} -term of the GMSS is an associated graded for H^*D^* , this implies 3.5. The filtration 1 terms, which were overlooked in [17] and [6], can occur due to the situation in Fig. 4 (see [7]), where $d(C)$ is the sum of the indicated classes:

A result similar to $[6; 3.6]$ adapting 3.5 to any spectrum X for which the Adams spectral sequence $\text{Ext}_{\mathcal{A}}(H^*(X \wedge l)) \Rightarrow \pi_*(X \wedge l)$ collapses could probably be proved, but an adaptation of the proof of that result seems tedious at best. We are content to prove that it holds for the spectra B_h^t of 1.1.

THEOREM 3.12. If $X = B_b^t$ with t possibly infinite, then the chain complex D_{Y}^*

has the following properties:

(i) If $s \geq 2$, $H^s D_X^*$ is a \mathbb{Z}_p -vector space consisting of classes of $(H\mathbb{Z}_p)$ -filtration 0 or 1.

(ii) $H^1(D_X^*)$ agrees with

$$
\mathrm{coker}\left(\pi_*(X \wedge l) \xrightarrow{\theta_*} \pi_*(X \wedge l \wedge l)\right)
$$

except for classes of filtration 0 or 1.

Proof. We first show that if the $l_*(C_{\overline{n}}) \to l_*(C_{\overline{m}})$ component of $h_{k+1}^{-1}d_kh_k$ is . α except for filtration-0 \mathbb{Z}_p 's, then the same is true of $l_*(X \wedge C_{\overline{n}}) \to l_*(X \wedge C)$ $C_{\overline{m}}$). This is proved for $X = B_1$ by the argument of 2.4. It is then deduced for B_b^t with $b \ge 1$ by use of the collapsing map

$$
B_1' \xrightarrow{c} B_b'
$$

noting that

$$
l_{\ast}\left(B_{1}^{t} \wedge C_{\overline{n}}\right) \stackrel{c_{\ast}}{\longrightarrow} l_{\ast}\left(B_{b}^{t} \wedge C_{\overline{n}}\right)
$$

is surjective. Next it is deduced for all B_h^t with t finite using the equivalences of 1.1(ii). Finally it is deduced for B_b^{∞} by using B_b^t to study π_i \mapsto for $i \leq qt$. Then Lemma 3.8 remains valid for the E_2 -term of the GMSS converging to $H^*D_X^*$, and Lemma 3.11 remains valid when $X \wedge$ is applied, so that we can deduce that the $E_3 = E_{\infty}$ -term (modulo Remark 3.6) of the GMSS is as claimed. claimed.

We are now prepared to prove the injectivity of $\pi_*(\overline{B}_b^t) \to J_*(\overline{B}_b^t)$ in 1.5. After possibly reindexing, it suffices to show that if $\alpha: S^n \to B_b^t$ becomes trivial in $B_h^t \wedge J$, then for some k the composite

$$
S^n \xrightarrow{\alpha} B_b^t \xrightarrow{g_b^t} B_{b-1}^{t-1} \xrightarrow{g_{b-1}^{t-1}} \cdots \xrightarrow{g_{b-k+1}^{t-k+1}} B_{b-k}^{t-k}
$$

is trivial. It suffices to do this when t is finite, for if $\alpha \in \pi_n(B_b^{\infty})$ choose $t > [n/q]$ and use the commutative diagram (from 1.1)

to deduce the result for α .

By duality it is equivalent to show that if $f: \sum^{n+1} B^{-b}_{-t} \to S^0$ becomes trivial in J , then for some k the composite

$$
S^{0} \stackrel{f}{\leftarrow} \Sigma^{n+1} B_{-t}^{-b} \frac{g_{-t+1}^{-b+1}}{\|} \cdots \frac{g_{-t+k}^{-b+k}}{\|} \Sigma^{n+1} B_{-t+k}^{-b+k} \tag{3.13}
$$

is trivial. We use the *l*-resolution

$$
\begin{array}{c}\nS^0 \leftarrow & \begin{array}{c}\np_0 \\
a_0\n\end{array}\n\end{array}\n\right)\n\leftarrow I \leftarrow & \begin{array}{c}\np_1 \\
a_2\n\end{array}\n\right)\n\leftarrow & \begin{array}{c}\nT^3 \leftarrow & \cdots \\
a_3\n\end{array}\n\right)\n\leftarrow & \begin{array}{c}\nT^3 \leftarrow & \cdots \\
a_4\n\end{array}\n\right)\n\leftarrow & \begin{array}{c}\nT^2 \leftarrow & \begin{array}{c}\nT^3 \leftarrow & \cdots \\
a_5\n\end{array}\n\right)\n\end{array}
$$

where $I = \sum_{i=1}^{n} I_{i}$.

LEMMA 3.14. If $s \geq 2$ and f_s below is any map,

$$
B_{\beta} \xrightarrow{\begin{array}{c}\n\mathbf{\Sigma}^{-1} \mathbf{1}^{\wedge (s-1)} \wedge \mathbf{1} \\
\downarrow \mathbf{1}^{\wedge (s+1)} \\
\downarrow \mathbf{1}^{\wedge s} \\
\downarrow \mathbf{1}^{\wedge s} \\
\downarrow \mathbf{1}^{\wedge (s-1)}\n\end{array}} \mathbf{\Sigma}^{-1} \mathbf{\mathbf{1}}^{\wedge (s-1)} \wedge \mathbf{1}^{\mathbf{\mathbf{1}}} \xrightarrow{\mathbf{\mathbf{1}}} \mathbf{\mathbf{1}}^{\wedge s} \mathbf{\mathbf{1}}^{\wedge s} \wedge \mathbf{1}
$$

then there exists $\tilde{f}: B_{\beta}^{\tau} \to I^{*(s+1)}$ such that

$$
P_{s-1} \circ P_s \circ \tilde{f} = P_{s-1} \circ f_s \circ g_{\beta-1}^{\tau-1} \circ g_{\beta}^{\tau}.
$$

The conclusion is also true if $s = 1$ and

$$
B_{\beta-2}^{\tau-2} \xrightarrow{f_1} I \longrightarrow \Sigma^{q-1}I
$$

is trivial, where the last arrow is the first component of the splitting of $I \wedge l$.

Proof. Dual to $f_s \circ g_{\beta-1}^{\tau-1} \circ g_{\beta}^{\tau}$ is an element $\gamma \in \pi_{-1}(B_{-\tau}^{-\beta} \wedge I^{\hat{\ }})$ of $H\mathbb{Z}_p$ filtration > 2 . Since

$$
g_s\gamma\in\ker\left(\pi_{-1}\left(B^{-\beta}_{-\tau}\wedge I\right)^s\wedge l\right)\longrightarrow^{\quad d_{s^*}}\pi_{-1}\left(B^{-\beta}_{-\tau}\wedge I\right)^{(s+1)}\wedge l\right),\end{aligned}
$$

3.12 implies that there exists $\delta \in \pi_{-1}(B_{-\tau}^{-\beta} \wedge \Sigma^{-1}I^{(s-1)} \wedge l)$ such that $q_s(j\delta)$ $+\gamma$) = 0. Thus there is $F \in \pi_{-1}(B_{-\tau}^{-\beta} \wedge I^{\hat{p}(s-1)})$ such that $p_s F = j\delta + \gamma$ and hence $p_{s-1}p_sF = p_{s-1}\gamma$. Dualize again to obtain the desired result.

Now suppose f is as in 3.13. Its triviality in J implies that it lifts to a map f_1 satisfying the hypothesis in the last sentence of 3.14. Then 3.14 implies that $f_1g_1 \ldots g_{2k}$ lifts to a map

$$
\Sigma^{n+1}B_{-t+2k}^{-b+2k}\xrightarrow{f_{k+1}}I^{\wedge (k+1)}.
$$

By $[14; 3.6]$,

$$
I^{\hat{K}+1)} \xrightarrow{p^{k+1}} S^0
$$

is null-homotopic on the $(\frac{1}{2}(k + 1)pq - 1)$ -skeleton if $k + 1$ is even. The dimension of the domain of $f_1g_1 \tildot g_{2k}$ is $n + 1 - bq + 2kq$. If $p/2 > 2$, then, for k sufficiently large, $p^{k+1}f_{k+1}$ is trivial for dimensional reasons, establishing triviality of 3.13 and hence injectivity in 1.5. \Box

Lellman ([14]) also required the condition $p > 3$ in his proof of 1.5 when $b=t$.

4. K-theory localization

In this section we prove 1.6, 1.7, 1.8, and 1.9. As the arguments are totally analogous to the case $p = 2$ handled in [8], details will be kept to a minimum.

Analogues of the proofs of [8; 4.1] could be given. Since both of those use results of Bousfield, we prefer the following self-contained proof, mimicking the proof of [4; 4.2].

Proof of 1.6. Let

$$
\mathscr{J} = \text{fibre}\left(K_{(p)} \xrightarrow{\Psi'-1} K_{(p)}\right)
$$

be as in [4; p. 269]. Then $X \wedge \mathcal{J}$ is K_{*} -local for any spectrum X, since it is a cofibre of K_{-} module spectra. The man cofibre of K -module spectra. The map

$$
S^0 \xrightarrow{\iota} J \longrightarrow \mathscr{J}
$$

induces a commutative diagram

Since

$$
\Psi^r - 1 : K_{aq-1}(B_{b-k}^{t-k}) \to K_{aq-1}(B_{b-k}^{t-k})
$$

is multiplication by $r^{a(p-1)} - 1$ on \mathbb{Z}/p^{t-b+1} (using [11]), and

$$
\nu_p(r^{a(p-1)}-1)=\nu_p(a)+1
$$

by [1], the groups $\pi_*(B_{b-k}^{t-k} \wedge \mathcal{J})$ are isomorphic to $\pi_*(\overline{B}_b^t)$ given by 1.4 and 1.5, and the maps $g_b^t \wedge \mathscr{J}$ induce isomorphisms in $\pi_*($). Since $\pi_i(B_b^t \wedge J) \rightarrow$ $\pi_i(B_b^t \wedge \mathscr{J})$ is an isomorphism for $i \geq tq$, it follows from 1.5 that $\overline{B_b^t} \to B_b^t \wedge \mathscr{J}$ is an equivalence, and hence \overline{B}_{b}^{t} is K_{*} -local.

Corollary 1.7 follows immediately from 1.6 and the fact that the maps g_h^t of 1.2 are K_* -equivalences. The independence of g_b^t is a consequence of the uniqueness, of Bousfield's localization.

In 1.8, S^{-1}/p^n is the Moore spectrum whose only nonzero integral homology group is $H_{-1}(S^{-1}/p^n) \approx \mathbb{Z}/p^n$.

Proof of 1.8. As in the proof of surjectivity in 1.5, there is a degree-1 map

$$
S^{-1} \stackrel{f}{\rightarrow} B_{b-t}^0.
$$

The map $\cdot p^{t-b+1}$ on B_{b-t}^0 is trivial because

$$
\text{Ext}_{\mathcal{A}}^{s,\tau}\big(H^*B_{b-t}^0\big)=0
$$

for $s \ge t - b + 1$, $\tau - s \le 0$ by [15]. Thus f factors through a map

$$
S^{-1}/p^{t-b+1}\stackrel{\tilde{f}}{\rightarrow}B_{b-t}^0.
$$

That $K_{\star}(\tilde{f})$ is an isomorphism can be shown using either the Atiyah-Hirzebruch spectral sequence or the Adams spectral sequence for ku_{\star} () as in [8]. Thus $(S^{-1}/p^{t-b+1})_K \simeq (B_{b-t}^0)_K \simeq B_b^t.$

A K_* -localization map S^{-1}/p^{∞} is obtained as in [8] by inductively constructing a diagram

using (from 1.4 and 1.5) $\pi_{-1}(\overline{B}_0) \approx \mathbb{Z}/p^{\infty}$.

The first cofibration in 1.9 follows from 1.8 and the fact that $\mathbb{Z}/p^{\infty} \approx$ $Q/Z_{(p)}$, while the second follows from Bousfield's description of $S_{K_{(n)}}$.

Added in proof. An alternate approach to 3.1, 3.2, and part of 3.3 can be found in W. Lellman, Operations and cooperations in odd-primary connective K-theory, J. London Math. Soc., vol. 29 (1984), pp. 562-576. An alternate approach to 1.6 can be found in D. M. Davis, M. Mahowald, and H. R. Miller, Mapping telescopes and K_* -localizations, to appear in Proc. John Moore Conference, Princeton Univ. Press.

REFERENCES

- 1. J.F. ADAMS, On the groups $J(X)$ -II, Topology, vol. 3 (1965), pp. 137-171.
- 2. Lectures on generalized cohomology, Lecture Notes in Mathematics, Springer-Verlag, vol. 99 (1969), pp. 1-138.
- 3. The Kahn-Priddy theorem, Proc. Cambridge Philos. Soc., vol. 73 (1973), pp. 45–55.
- 4. A.K. BOUSFIELD, The localization of spectra with respect to homology, Topology, vol. 18 (1979), pp. 257-281.
- 5. H. CARTAN, Operations dans les constructions acycliques, Seminaire Cartan, 1955.
- 6. D.M. DAVIS, S. GITLER and M. MAHOWALD, The stable geometric dimension of vector bundles over real projective spaces, Trans. Amer. Math. Soc., vol. 268 (1981), pp. 39-62.
- 7. _____, Correction to [6], Trans. Amer. Math. Soc., vol. 280 (1983), pp. 841-843.
- 8. D.M. DAVIS and M. MArlOWALD, Homotopy groups of some mapping telescopes, to appear.
- 9. D.C. JOHNSON and W.S. WILSON, Projective dimension and Brown-Peterson homology, Topology, vol. 12 (1973), pp. 327-353.
- 10. D.S. KAHN and S.B. PRIDDY, Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc., vol. 76 (1972), pp. 981-987.
- 11. T. KAMBE, The structure of K-rings of the lens space and their applications, J. Math. Soc. Japan, vol. 18 (1966), pp. 135-146.
- 12. T. KAMBE, H. MATSUMAGA and H. TODA, A note on stunted lens spaces, J. Math. Kyoto Univ., vol. 5 (1966), pp. 143-149.
- 13. R.M. KANE, Operations in connective K-theory, Mem. Amer. Math. Soc., vol. 254, 1981.
- 14. W. LELLMAN, The E_2 -term of the Adams spectral sequence based on connected Morava K-theory, to appear.
- 15. A. LIULEVICIUS, Zeroes of the cohomology of the Steenrod algebra, Proc. Amer. Math. Soc., vol. 14 (1963), pp. 972-976.
- 16. M. MAHOWALD, Ring spectra which are Thom complexes, Duke Math., vol. 46 (1979), pp. 549-559.
- 17. **bo-resolutions, Pacific J. Math., vol. 92 (1981), pp. 365-383.**
- 18. M. MAHOWALD and R.J. MILGRAM, Operations which detect $Sq⁴$ in connective K-theory and their applications, Quart. J. Math. Oxford, vol. 27 (1976), pp. 415-432.
- 19. H.R. MILLER, On relations between Adams spectral sequences with an application to the stable homotopy of the Moore space, J. Pure Appl. Algebra, vol. 20 (1981), pp. 287-312.
- 20. S.A. MITCHELL and S.B. PRIDDY, Stable splittings derived from the Steinberg module, Topology, vol. 22 (1983), pp. 285-298.
- 21. M. NAKAOKA, Cohomology modp of symmetric products of spheres, J. Inst. Poly. Osaka City Univ., vol. 9 (1958), pp. 1-18.

LEHIGH UNIVERSITY BETHLEHEM, PENNSYLVANIA