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ON BROWNIAN MOTION WITH IRREGULAR DRIFT
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1. Introduction

Our objective is to describe some class of diffusion processes on the line
generated by Feller’s generalized second order differential operator DmD- as
strong solutions of stochastic equations. In contrast to earlier papers [6]-[8],
which investigated the case of nonsmooth speed measure m, we are now
concerned with irregularities of the natural scale p.
For a classical second order differential operator

1 d 2 d
+b2 dx 2 dx

with unit diffusion coefficient and a locally square integrable drift coefficient b
satisfying some growth condition at the boundaries, the situation is well
known. Here the scale functions Pb and mb are defined by the formulae

dPb(X ) exp -2 b(y) dy dx,

dm(x) =exp 2 b(y) dy 2 dx, x R;

cf. the paper of Orey [14]. We observe that the derivative % of the natural
scale P6 uniquely solves the linear integral equation

%(x) 1- 2 %(y)b(y) dy, xR.

For a given standard Brownian motion W, to each initial state x R there
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exists a strong unique solution of the stochastic differential equation

dXt= b( Xt) dt + dWt, > O,

So---x,

which can be regarded as a diffusion X generated by the differential operator

1 d 2 d D+- dx--- + b-d- Drab Pb"

If the set {x R:b(x) 4= 0) is of positive Lebesgue measure, the
diffusion X is a semimartingale consisting of the Brownian motion W and an
additional non-vanishing process of bounded variation fbdt; the martingale
property of W will be perturbed if X moves within the set .
A different kind of process is the so-called skew Brownian motion, intro-

duced by It6 and McKean [11, p. 115], and recently investigated in the
framework of stochastic analysis by Walsh [17], and Harrison and Shepp [9].
Intuitively, skew Brownian motion is a process which coincides with standard
Brownian motion up to the passage times of zero. The process leaves the origin
more easily in one direction than the other. This motion can be regarded as a
diffusion with a very irregular drift coefficient, which is in fact a distribution,
as shown by Portenko [15], or as the result of a limit procedure applied to a
sequence of diffusions with regular coefficients (cf. Rosenkrantz [16]).

In terms of its scale functions, skew Brownian motion is defined by

p(x) {(1-a)x, x > O,
X, X < 0,

X, X >__ O,m,(x) 2(1 a)
2a-ix, x < O,

with the (non-degenerate) skew coefficient 0 < a < 1. Away from zero the
generator D,,.D is just the Laplacian 1/2dE/dx2; but in the origin of the axis
for all functions f in the domain of definition of DmoD there arises a
transmission condition of the form

(1 a)-f’(O +) a-f’(O -).

It is shown in [9] that, with respect to a given Brownian motion W, such a
process X generated by D,,,oD is a strong solution to the stochastic equation

xt= t>_0,

where 8 -(2a 1) (1 a) -x, and tt(X) is the local time of the unknown
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process at zero,

Lt(X) limlfoo I{ -<_ x,,<_o) ds.

For the process X the chance to leave an arbitrary interval (-a, a), a > 0,
say, at the right end point a is

p,,(O) -p,(-a)
p,(a) -p,(-a)

(1 a)0 c(-a)
(1 -a)a-a(-a)

(cf. Dynkin [2, Chapt. XV]). At all other points x R, this chance iswas in
the case of an ordinary Brownian motion--one-half, for all intervals (x a, x
+ a) not containing the origin.
The aim of the present paper is to give a unified approach to processes with

such regular and irregular drift behaviour as described above. First we define a
class of suitable pairs (m, p) of speed measures and natural scales, and
construct the corresponding diffusion processes from some underlying
Brownian motion process B via the method of It6 and McKean [11] by a
successive transformation of time and space. Then we derive a stochastic
equation which has, with respect to any given Brownian motion (different
from B), just the diffusion X generated by the infinitesimal operator DmD/
as strong unique solution.

This paper was written during a visit at the Department of Mathematics of
the Katholieke Universiteit Leuven, supported by the Commissariat-General
Voor de Internationale Culturele Samenwerking, Brussels. The author wishes
to express his hearty gratitude to these institutions. Thanks are also due to
Ren6 Boel from the Laboratory for Systems Dynamics of the Rijksuniversiteit
Ghent for a series of very stimulating and enlightening conversations.

2. Diffusions with nonsmooth scale

Let / be a function of locally bounded variation on the axis R, which we
assume to be right continuous, and vanishing at the origin. Moreover, concern-
ing the jumps A-/3(x)= /3(x)- /3(x- 0), x R, of the function /3, we
assume the condition

(1) l+2A-j(x) >0, xR.

Then, to each initial value % > 0 there exists a unique solution to the
equation

(2) r(x) =%-2 rr(y) d,8(y), xR,
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which can be expressed explicitly by the following formula (cf. Hildebrandt
[10], and [51):

,n.oe- 2B(x)

%e-2(x)

1-I [1 + 2A-fl(r)] -1 2a-/(r)e x>0
O<r<__x

1--I [1 + 2A-fl(r)]e-2a-{), x < 0.
x<r<_O

Because of our assumptions on fl the solution r is right continuous, bounded
and uniformly positive on each compact interval.
Now we regard the functions r and 1/r as densities of some scale functions

p and rn respectively,

p(x) rr(y) dy, m(x) r(y)-12 dy, x R.

Let us also assume that

(3) p(x) and p(y) dm(y)

go to infinity if x tends to +m or -m. Then fm(y) dp(y) certainly
diverges for x +_m, and both boundaries -m, +m of the axis R are
natural in Feller’s terminology [3]. This is, of course, an assumption on the
(signed) measure generating function ft.
Under these conditions, the generalized second order differential operator

DmD is the infinitesimal generator of a conservative continuous strong
Markov process X (Xt, t, Px) in the sense of Dynkin [2].

Such a process X can be constructed explicitly from a Brownian motion
B (BO, o, po) by successive application of a random time change and a
state space transformation; see It6 and McKean [11]. For a short introduction
in this technique see the article of Orey [14]. The time change T is defined by
the formula

-2[rro q(ns)] as, t>0,

where q is the inverse of the (strictly increasing and continuous) scale p. The
time changed Brownian motion Y (Y, , po) with

OBr(t), ’r{t), >_ O,

is a continuous strong Markov process on its natural scale p*(x) x and with
speed measure m* rn q, which can be expressed explicitly as follows. First
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observe that for all points x R there exists the right derivative Dfq of the
inverse scale q. Using the change of variable formula we can write, for all
x, y R,

q(x) q(y) fq(x)=(z)-i dp(z)
"q(y)

fx[v q(z)]-id(p q)(z)

[roq(z)]-dz.

Because of the right continuity of r this implies [2; p. 237] the relation

(4) (D+q)(x) (ro q)(x) - xR.

Now it follows that

) (rno q)(x)

"ofU(X)rr(y)-12 dy fo
fo[o q(y)]--2 dy,

[r q(y)]-12 dq(y)

xR.

Observing the relations

foXm*(y) dy

ydrn*(y) fq(X)p(y) dm(y),
"o

xR,

xR,

and q(+_ c) _+ m, we can see that both boundaries + m, -c are natural
also with respect to the process Y. Thus, the infinitesimal generator of the
diffusion Y is determined; we have

d d+

dm * dx
1 )2d d+
-(r q dx dx"

Finally, the process X (Xt,
, Px) results from the state space transforma-

tion q" R --) R by setting

Xt=q(Yt), t> O, Px= Pp(x), xR

(cf. [2, Chapter X]).
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3. Stochastic differential equations

In this section we describe diffusion processes X with generator DmDI as
solutions of stochastic equations. As in section 2, at first the martingale
diffusion Y p(X) is considered. After introducing a stochastic differential
equation for this process, applying the generalized It6 formula we determine
the differential of the process X and, finally, the desired stochastic equation.

Because we are interested in strong solutions, let us introduce first a
complete probability space (f, o, P) and an increasing family of sub-sigma-
fields {,,, t> 0). Further, let W= {Wt, t> 0} be a standard Brownian
motion adapted to {t} and such that the increments W(t + u)- W(t),
0 < < + u < m, are independent of t. Moreover, 0 contains all P-null
sets in ow. To simplify matters, at first all processes in this section start at time
zero in the origin of the axis.
We consider the stochastic equation

(5) Y, f0t(rr q)(Y)dW, t> O.

The solution r to the integral equation (2) is of bounded variation and strictly
positive on each compact interval of the axis. Because of the monotonicity of q
the compositum r q has the same property. Therefore, following a theorem
of Nakao [13], there exists a strong solution Y { Y, > 0), adapted to { t }-
More detailed, there exists a weak solution to equation (5), which, according to
[13], is pathwise unique. Now we use a result of Yamada and Watanabe [19],
saying that the existence of a pathwise unique solution implies the existence
and uniqueness of a strong solution.

For the local martingale Y (which is in fact even a martingale, because both
of the boundaries - and + are natural--see Arbib [1]) there exists at
each point a R, a local time U/(Y), characterized P a.s. by the relations
[211

U/( Y) lim -1 foti{a_e< Ys <a} d(Y,
e$O e

t>0,

or

1
(Y,- a) += (Y0- a) + + ’I{r>_ }dYe+ -U/(Y), t> O,

where f+ denotes the positive part of the function f.
Observe the inequality Ys > a arising in the indicator, instead of the usual

Y. > a. Because all functions defined over the state space R are assumed to be
right continuous, it is useful to choose the "left" version of local times, which
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really makes a difference for a (true) semimartingale; cf. Yor [21] and Youerp
[20]. Consequently, as in Walsh [17] and Harrison and Shepp [9] we deal with
a version of local time which are not necessarily continuous in the space
variable, in contrast to the one used in It6 and McKean [11] which is
continuous in both variables.

For an application of It6’s formula we need the first two derivatives of the
inverse scale function q. The first one we know already (4). Concerning the
second derivative (in the sense of distributions) we observe firstly that
the reciprocal function 1/r is the unique (locally bounded and strictly
positive) solution to the linear equation

(6) 7r(x) -1 -1 fo
x

% + 2 [rr(y 0)] -ldfl(y), x R.

One can prove the validity of this equation by direct computation [5], or by
application of partial integration [2, p. 234] to the functions r and 1/r; for all
x R we have

fo foX(1/r ) ( y rr0 r(y) d(1/rr)(y) + O) d (y)

frr(y)[d(1/r)(y) 2(1/rr)(y 0) dfl(y)].
ao

Now we deduce from (6) an equation characterizing the right hand deriva-
tive of q; for all x R we have

(7) (D+q)(x) (r q)(x) -x

’if0 -- 2fq(x)[
_

rr(y 0)] dfl(y)
"0

ro- + 2foX[rr q(y 0)]-1 d(flo q)(y).

Here we have used q(0) 0 and the relation

r(q(x) -O) (roq)(x-O), x R,

which follows from the continuity and monotonicity of the function q.
Consequently, the function x (D+q)(x) is right continuous and of locally
bounded variation, and the inverse scale q admits the representation

(8) q(x) rx + 2foXfoY[ro q(z o)l -d(fl q)(z) dy, x R.
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After these preparations we are able to apply the generalized It6 formula
[20], [21] and calculate the differential of the process X- q(Y):

q(Yt) q(Yo) + (D+q)(Ys) dYs + - (Y) d(D+q)(a)

fot[,.B q(Y,)I-I( woq)(Y)dW

+ f#7(v) [. q(. 0)l - (o q)(.)

+ f (.)(v)[.o q((.) 0)] - (.);-q(R)

this is

(9) Xt W + f Lf()(Y)[r(a 0)]-1 dfl(a), >_ O.

To show that the expression

Lf((Y)[r(a 0)] -1 a R

is the local time for X, a stochastic equation for this process is derived. For
this reason for each a R we define the function

x -+(x) (q(x)-a) + xR,

and calculate its first two derivatives. From the identity

(x-a)+= (O-a) ++ I(>_,) dy, x R,

we deduce an integral representation of the function

/(x) (q(x) a) +

(0 a) + + foq(x)I{y>_a) dy

fo I(q(ol a) / + _oq(

(q(O) a) + + foXI(q(y)>_a}(Dx+q)(y)dy
fo!q(O) + (q(,_ [ro q(y)] - dy

Consequently, for the right derivative of + we have

(Dx+/)(x) I(q(x)>_a} [’tr q(x)] -1 xR.
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Concerning the second derivative of q, using integration by parts and formula
(7), we can write

(Dx++)(x) (Dx++)(O) I{q(x)>_a}(Dx+q)(x) I{q(O)>_a}(Dx+q)(O)

foXI{q(y)>a} d(Dx+q)(Y)

+ foX(Dx+q)(y O)d[I(q,y,>a}

2foXI(q(y)>a)[’B q(y 0)]-1 d(flo q)(y)
x

+ [fro q(y 0)] -1 d I(q(y)>a }1"

Now we are ready to calculate the differential of the process (X-a) /.
Because of It6’s formula, for all > 0 we have

(Xt-a)+=(q(Yt)-a) +

1+(Yo) + fot(D++)(Ys)dYs + -(q(Yo) a) + + fotI{q(Ys)>a}[ 71" q(y)]-x dY
+ fRLtY(Y)I(q(y)>_,)[ro q(y 0)]-1 d(flo q)(y)

(Xo a) + + foI(x,>_i dW
+ __fq(ll)L(Y)(g)l(y>-a)[’/r(y 0)]-1 d(y)

1 fq(L(),(y)[r(y 0)1_1 d[I(,> ]+-
(Xo a)+ + foI(x,>_I
+ fotl{x’>-’} "IfL(Y)(Y)[(Y 0)]-1 dfl(y)

+ 1/2Ltp(a (Y)[,r(a 0)1

(Xo a) + + ftI(x>_a dX + 1/2LtP(al(Y)[r(a 0)]-1.
"o
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Here we have used Fubini’s theorem and equations (5), (9). Consequently, the
process

U/(X) Lf)(Y)[r(a 0)1 -, > O,

is the local time for the semimartingale X at the point a, and we have showed
that X solves the stochastic equation

x, w, + [_I4(X) (,), >_ o,
(ao)

L7 lira
1

,o {"-<-x’<-a} ds, a R.

Now let X ( Xt, > O) be an arbitrary solution to this equation, adapted
to { ). Then X is a semimartingale over the probability space (, if, P) and
we can apply It6’s formula again to calculate the differential of the process
Y p(X). For all > 0 we have

-1 fRL,(X) d(Dx+p)(a)p(Xt) p(Xo) + fo’(Dfp)(X)dX +

f0(x,l

Thus, the process X satisfies equation (10) if and only if Y p(X) is a
solution to (5). As we have observed already, equation (5) has a unique strong
solution, adapted to {o }, and so X has the same property.
The above consideration does not essentially depend on the choice of

the starting point x R. It is standard to construct Markovian families
of processes Y (Y, , P,(I) and X (X, ,P) (cf. the textbook of
Wentzell [18, p. 194]) such that to each initial states y p(x), x the
processes and X are solutions to the respective equations

g e(x) + ( q(g,) e,, 0, x a.s.,

x, x + + [(x) (), o, x a..
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Now, Y is a diffusion process with infinitesimal generator Dm.D /"
x, remem-

ber that m*(x) f0[rr q(y)]-22 dy, x R. From this it follows that X
q(Y) is a diffusion with speed measure m m* p frr-12 dx and natural
scale p fr dx. Thus, under the conditions formulated in Section 2 we have
proved the following result.

THEOREM. To each initial state x R there exists a strong unique solution to
the stochastic equation

which forms a diffusion process with infinitesimal generator DmD.
Added in proof For a somewhat broader class of diffusions characterized as

weak solutions of stochastic equations see my recent paper Feller’s one-
dimensional diffusions as weak solutions to stochastic differential equations,
Math. Nachrichten, vol. 122 (1985), pp. 157-165.
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