
ILLINOIS JOURNAL OF MATHEMATICS
Volume 32, Number 1, Spring 1988

HIRONAKA GROUP SCHEMES
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We will be working in the category of k-schemes where k is a field. A
Hironaka group scheme is a dosed subgroup scheme H of an affine space A"
which is invariant under scalar multiplication by Gin; i.e., H is a cone.
Hironaka [1] introduced such group schemes as the stabilizer in M of a closed
cone in A. As a Hironaka group scheme is its own stabilizer any Hironaka
group scheme arises this way.
We intend to classify roughly all Hironaka group schemes and explain their

structure. Our presentation avoids Dieudonn6 modules and Hopf algebras. If
char(k) 0, a Hironaka group scheme is just a vector subspace. Hence in this
paper we will assume that char(k) is a prime p.

Let H c A" be a Hironaka group scheme. Then the quotient An/H is an
algebraic group whose formation commutes with base extension. Furthermore
we have an induced action of Gm on M/H. Here Gm acts via automorphisms
of this quotient group. The central result is:

THEOREM. An/H is Gm-equivariantly isomorphic to a finite sum Amq(q)
where the q’s and m,’s are positive integers and Amq(q) is the affine space Amq
with the Gin-action given by t*x qx.

Proof. Let B be the ring of regular functions on M/H and let m* be the
comultiplication. Let P be the k-subspace of primitive element in B; i.e.,

V= {fBlm*f=f(R) l + l (R) f).

By linear algebra the formation of P commutes with base extension and P is
contained in the maximal ideal m of functions vanishing at the identity of
A/H.

LEMMA. The induced k-linear mapping d: P m/m2 is surjective.

Proof By base extension it is enough to check this when k is algebraically
closed. Now An/H is an algebraic group variety which is commutative and its
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pth-power mapping is trivial as these properties are inherited from An. Thus by
Proposition 11 of Section 11 of [3], M/H is isomorphic to affine space Am as
an algebraic group. Now the linear functions on A’ are contained in P and
map surjective onto its tangent space at zero. This proves the lemma.
Next as G acts by group automorphisms on An/H, P is a sub-Gm-module

of B and m/m2 is naturally a G,-module such that the differential d is
G,-equivariant. As the representations of G are completely reducible into
lines, we may find a set S 11 q( fq, } <_ < mq of Gm-eigenvectors in P such

* ---Tq (R) fq, where a* is thethat d(S) is a basis of m/m2 where a fq,
coaction of G on B. As fq, is contained in k[An] and vanishes at 0, the
integer q must be positive.
The assignment x (fq, i(X)) gives a morphism p" Aa/H - Amq(q). As

the f’s are primitive, p is a homomorphism and, as they are eigenvectors, p is
G,-equivariant. By construction p induces an isomorphism on tangent spaces
and hence p is 6tale. We need to see that p is an isomorphism.
To see this it is enough to show that the kernel Ker(p) of p is the identity e

of An/H. Now Ker(p)- (e) and (e } are two disjoint Gm-invariant closed
subschemes of Gm. By invariant theory [2] these sets are separated by Gm-
invariants in B. On the other hand the only Gm-invariants in B c k[An] are
the constants. Hence Ker() (e) is empty. This proves that Ker(tp) (e },
which was all we needed. Q.E.D.

By the theorem, H is the kernel of a Gm-equivariant surjective homomor-
phism

f: A Amq(q).

The point is that the only such homomorphism are the obvious ones.

LEMMA.
form

A Gn-equivariant non-zero homomorphism g: A" ---> Al(q) has the

g(xl,..., xn) Eaixip’

where the a’s are constant and pi q.

Proof g(x) is homogeneous of degree q by equivariance. We also need
g(x + y) g(x) + g(y). An exercise with binomial coefficients gives the
result. Q.E.D.

By the lemma, f is given by a formula

f(Xl,.’., Xn)= (fq, i(Xla...aXn)l<i<mq)



HIRONAKA GROUP SCHEMES 161

where q pi and fq, ’aq, i, rXqr" As f is a surjective homomorphism, it is
fiat. Hence the (fq, i) are a k[An ]-sequence.
We can easily see the grosser structure of a Hironaka group scheme by base

extending to a perfect field using

COROLLARY.
bold!)

If k is perfect, we can decompose A into a direct sum (not

A0A1 AaB

of vector subspaces so that

H 0 (Frob)-l(o) (Frob)a-l(O) B

where (Frobi)-(0) is the kernel of the ith Frobenius Frob on A i.

Furthermore the numbers (dim A1,..., dim A a, dim B) depend only on H as a
group scheme.

Proof As k is perfect we may write each fq, as (lq, i)q where lq, is a
linear function. As the f’s are an k[An ]-sequence, the l’s are. Hence they are
linearly independent. Thus we may assume that l,.;, l ml... lpa mpd

are the
first bunch of coordinates in An. Thus pg,. (x) xf fo some ildex j. The
first result is now clear. The second remark follows as we can find the numbers
once we know rank(FrobJ)-l(0)) where now FrobJ is the jth Frobenius on H
itself for enough values of j. Recall the rank of a finite group scheme S is
dimr(S, s). Q.E.D.

Returning to the general case we can compute the above numerical in-
variants without base extension because the rank of the kernel of the
Forbenius’s does change under base extension. Next we will see how we can
simplify the equations { fq, 0} of H in the general case.
We can easily compute the invariants of H c A from its equation

(fq, )1<i mq with q pJ for 1 < j < d. Then the invariants are

mpl,..., mpd, n mpi
j=O

where the last number is just the dimension of H. As f,,..., fl, are
linearly independent functions on An, we can assume that they are the first m
coordinates if fp, Y’.iaixip. Then we may replace fp, by Y’, >_ mlaixi

p where
we have to subtract pth powers of the previous f ’s. Then one coordinate a of

f,, is non-zero; we can assume that it is amx+l. Replace fp, by its quotient
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amx + 1" Repeating this idea we get a matrix of coefficients for the f’s like

1
01
001

1
O1
001

1
01
001

m mp rap2

o

rap1

rap2

pJwhere this gives the coefficients a of x in fvj,.. The empty boxes can be
made zero by subtracting lower rows in the same square. (An example should
clarify this procedure.) At last we have natural equations" f---(xl,..., Xml)
and for j > 1,

n

fv,i=x.:.jm,+, + E akX..
k>Y’.h<jm

Once we have such a natural system of equations we can explain the
structure of H. For 0 < j < n, let V. be the coordinate subspace of An where
all the coordinates are zero except for the first Y"h s jmk. Then V0 c V c
Vd is an increasing sequence. Consider the induced sequence

HoCH1C cHacH
of Hironaka subgroup scheme where H H N Vd.
The successive quotients S H/H_ c V/V_ W/ are Hironaka sub-

group schemes. We also have a quotient Sd+--H/Hd in M/Vd =- Wd+.
Now we will explain the remarkable facts about this filtration.

PROPOSITION (a) H0 (0) with reduced structure,
(b) For 1 < j < d, H has numerical invariants (ml, mj, 0).
(c) For 1 < j < d, S is the kernel of the jth Frobenius in Wi.

(d) Sa+ Wd+ 1.

Proof For (a), H0 is given by the vanishing of the coordinates in V0. For
(b), the equations of H1 are given by the first Eh s jmh column in the matrix.
For (c), by (b) we know rank (Hi) ZqkimiPi. Thus

rank(S/) mipi= (dim W/)pi.
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Now H and, hence, S are killed by the th Frobeneous. So

Sic Ker(Frob’ in W,.) -= Ki,

but rank (Ki) (dim Wi)pi. Thus S Ki. For (d), dim Sd+ dim H
dim Wd+ 1. Thus Sd+ Wd+ 1. Q.E.D.
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