QUANTIZATION AND AN INVARIANT FOR UNITARY REPRESENTATIONS OF NILPOTENT LIE GROUPS

BY

C. BENSON AND G. RATCLIFF¹

1. Introduction

Let G be a simply connected nilpotent Lie group with Lie algebra \mathfrak{G} . Given a co-adjoint orbit $\mathfrak{D} \subset \mathfrak{G}^*$, the dual of \mathfrak{G} , the authors have defined a cohomology invariant $i(\mathfrak{D}) \in H^{2q+1}(\mathfrak{G})$, where dim $\mathfrak{D} = 2q$ [1] (see Section 2 for details).

We now provide an interpretation of this invariant via the machinery of geometric quantization [6]. There is an Hermitian line bundle L over the orbit $\mathfrak D$ with a natural connection and G-action. A specific model for this "prequantization bundle" L is developed in Section 3. Let T(L) be the unit circle bundle in L with respect to the Hermitian structure. The action of G on L yields a G-invariant map $\tilde{\pi}$: $G \to T(L)$, and hence a map

$$\tilde{\pi}^* \colon H_G^*(T(L)) \to H^*(\mathfrak{G}).$$

(Here $(H_G^*(T(L)))$ denotes the G-invariant (real) cohomology of T(L).) The connection in L yields a distinguished element [V] in $H_G^{2q+1}(T(L))$. In Section 4 we show that $i(\mathfrak{D}) = \tilde{\pi}^*([V])$.

The prequantization model used allows us to relate $H_G^*(T(L))$ to Lie algebra cohomology. In particular, we show that $H_G^{2q+1}(T(L))$ is one-dimensional, generated by [V], so that $i(\mathfrak{Q}) = 0$ if and only if

$$\tilde{\pi}^*: H_G^{2q+1}(T(L)) \to H^{2q+1}(\mathfrak{G})$$

is the zero map.

We remark that geometric quantization uses the Hermitian structure, G-action and connection in L to determine the representation $\sigma_{\mathbb{D}}$ of G corresponding to the coadjoint orbit \mathbb{D} . The invariant $i(\mathbb{D})$ is a composite derived from this geometric data, and can be regarded as an invariant for the representation $\sigma_{\mathbb{D}}$. As such, it should also detect properties of the representation theory of G. We discuss some of these properties in Section 5.

Received June 9, 1986.

¹Both authors were supported by a Weldon Springs research grant from the University of Missouri.

2. Lie algebra cohomology and the invariant for an orbit

Let G be a connected Lie group with Lie algebra \mathfrak{G} . Let \mathfrak{G}^* be the linear dual of \mathfrak{G} . G acts on \mathfrak{G}^* by the co-adjoint representation Ad^* . If G is nilpotent, by the theory of Kirillov [5], the orbits in \mathfrak{G}^* under this action are in one-one correspondence with the irreducible unitary representations of G.

The left G-invariant forms ${}^G\Omega(G)$ on G yield a subcomplex of the de Rham complex $\Omega(G)$ which can be identified with the exterior algebra $\Lambda(\mathfrak{G}^*)$. The cohomology of this complex is denoted by $H^*(\mathfrak{G})$.

Let $\mathfrak{D} \subset \mathfrak{G}^*$ be a co-adjoint orbit. As \mathfrak{D} is a symplectic manifold, it has dimension 2q for some q [5]. Given $f \in \mathfrak{D}$, we have shown in [1] that $f \wedge (df)^q$ in $\bigwedge^{2q+1}(\mathfrak{G})$ is a closed form, and that $[f \wedge (df)^q]$ is independent of the choice of f. We define $i(\mathfrak{D})$ in $H^{2q+1}(\mathfrak{G})$ by

$$i(\mathfrak{D}) = [f \wedge (df)^q]. \tag{2.1}$$

See [1] for examples where $i(\mathfrak{Q})$ is non-trivial.

Relative Lie algebra cohomology Let Ad* and ad* be the co-adjoint actions on $\Lambda(\mathfrak{G}^*)$ of G and \mathfrak{G} respectively. For $X \in \mathfrak{G}$, the substitution operator

$$i(X): \bigwedge^k (\mathfrak{G}^*) \to \bigwedge^{k-1} (\mathfrak{G}^*)$$

is given by $(i(X)\alpha)(Y_1,\ldots,Y_{k-1})=\alpha(X,Y_1,\ldots,Y_{k-1})$ for $Y_i\in \mathfrak{G},\ i=1,\ldots,k-1.$

Let H be a closed subgroup of G with Lie algebra \mathfrak{G} . If

$$\Re = \{ \alpha \in \Lambda(\mathfrak{G}^*) : i(X)\alpha = 0 \text{ for all } X \in \mathfrak{F} \},$$

the subcomplexes of H-basic and \mathfrak{S} -basic elements of $\Lambda(\mathfrak{S}^*)$ are defined by

$$(\wedge \mathfrak{G}^*)_H = \mathfrak{R} \cap \{\alpha \in \wedge (\mathfrak{G}^*) : \operatorname{Ad}^*h(\alpha) = \alpha \text{ for all } h \in H\}$$
 (2.2)

and

$$(\wedge \mathfrak{G}^*)_{\mathfrak{S}} = \mathfrak{R} \cap \{ \alpha \in \Lambda(\mathfrak{G}^*) : \operatorname{ad}^* X(\alpha) = 0 \text{ for all } X \in \mathfrak{F} \}. \tag{2.3}$$

These complexes yield the relative cohomology theories $H^*(\mathfrak{G}, H)$ and $H^*(\mathfrak{G}, \mathfrak{G})$. If π is the projection $\pi: G \to G/H$, then $(\Lambda \mathfrak{G}^*)_H = \pi^*({}^G\Omega(G/H))$, so that $H^*(\mathfrak{G}, H)$ corresponds to the cohomology of G-invariant forms on G/H. When H is connected, $H^*(\mathfrak{G}, H) = H^*(\mathfrak{G}, \mathfrak{G})$, but this is not true in general. If \mathfrak{G} is an *ideal* in \mathfrak{G} , then $H^*(\mathfrak{G}, \mathfrak{G}) = H^*(\mathfrak{G}/\mathfrak{G})$.

The three cohomology algebras $H^*(\S)$, $H^*(\S)$ and $H^*(\S, \S)$ are related by the Hochschild-Serre spectral sequence [4]. This is a first quadrant spectral sequence that provides an algebraic analogue of the Serre spectral sequence for the fibration $H \hookrightarrow G \twoheadrightarrow G/H$. The E_0 and E_1 terms of the spectral sequence can be identified as

$$E_0^{i,j} \cong \bigwedge^j (\mathfrak{F}, \bigwedge^i ((\mathfrak{G}/\mathfrak{F})^*))$$
 and $E_1^{i,j} \cong H^j (\mathfrak{F}, \bigwedge^i ((\mathfrak{F}/\mathfrak{F})^*)).$

The latter cohomology involves coefficients in the \mathfrak{F} -module $\Lambda^i((\mathfrak{G}/\mathfrak{F})^*)$ (under the ad*-action). We refer the reader to [4]. The E_2 term can be difficult to compute, however $E_2^{i,0} \cong H^i(\mathfrak{G},\mathfrak{F})$ and $E_2^{0,j}$ can be identified with a submodule of $H^i(\mathfrak{G})$. Moreover, when \mathfrak{F} is an ideal in \mathfrak{G} , one has

$$E_2^{i,j} \cong H^i(\mathfrak{G}/\mathfrak{F}, H^i(\mathfrak{F})).$$

If, in addition, $\mathfrak{G}/\mathfrak{F}$ acts trivially on $H^{j}(\mathfrak{F})$ via ad*, then

$$E_2^{i,\,j}\cong H^i(\mathfrak{G}/\mathfrak{H})\otimes H^j(\mathfrak{H}).$$

The spectral sequence converges to E_{∞} , which is related to $H^*(\mathfrak{G})$ by a filtration in the usual manner. In particular, $H^n(\mathfrak{G}) \cong \bigoplus_{i+j=n} E_{\infty}^{i,j}$.

filtration in the usual manner. In particular, $H^n(\mathfrak{G}) \cong \bigoplus_{i+j=n} E_{\infty}^{i,j}$. Suppose now that G is simply connected and nilpotent. It is known that if G has a co-compact discrete subgroup Γ then $H^*(\mathfrak{G}) \cong H^*(\Gamma \setminus G)$, the real cohomology of a compact manifold [8]. In particular, such subgroups exist whenever \mathfrak{G} has rational structure constants. In general, one always has the following result.

2.4 LEMMA. If \mathfrak{G} is nilpotent, then $H^*(\mathfrak{G})$ satisfies Poincaré duality. In particular, $H^n(\mathfrak{G}) \cong \mathbb{R}$ where $n = \dim(\mathfrak{G})$.

This is known more generally for any unimodular Lie algebra [3]. Using Lemma 2.4 together with the spectral sequence one obtains a relative version.

2.5 LEMMA. Let & be nilpotent and & a subalgebra of &. Then

$$H^s(\mathfrak{G},\mathfrak{F})\cong \mathbf{R} \text{ where } s=\dim(\mathfrak{G}/\mathfrak{F}).$$

Proof. We must have either $H^s(\mathfrak{G}, \mathfrak{F}) = 0$ or $H^s(\mathfrak{G}, \mathfrak{F}) \cong \mathbb{R}$ since $\Lambda^s(\mathfrak{G}^*)_{\mathfrak{F}}$ is one dimensional. Let $\nu \in \Lambda^s(\mathfrak{G}^*)_{\mathfrak{F}}$ be non-zero (a left-invariant volume form). We need only show that ν is not exact in the complex $\Lambda(\mathfrak{G}^*)_{\mathfrak{F}}$. Let $r = \dim(\mathfrak{F})$ and $\mu \in \Lambda^r(\mathfrak{F}^*)$ be a volume form. The element

$$\mu \otimes \nu \in E_0^{s,\,r} = \bigwedge^r \bigl(\, \mathfrak{F}, \bigwedge^s \bigl(\, (\mathfrak{F}/\mathfrak{F})^* \, \bigr) \bigr)$$

generates $E_0^{s,r} \cong \mathbf{R}$. Denoting the differential in E_k by d_k one has $d_0(\mu \otimes \nu) = d\mu \otimes \nu = 0$. Thus we obtain a class $[\mu \otimes \nu] \in E_1^{s,r}$.

Assume that ν is exact in $\Lambda(\mathfrak{G}^*)_{\mathfrak{F}}$; $\nu = d\beta$ where $\beta \in \Lambda^{s-1}(\mathfrak{G}^*)_{\mathfrak{F}}$. We obtain elements $\mu \otimes \beta \in E_0^{s-1,r}$ and $[\mu \otimes \beta] \in E_1^{s-1,r}$ as before. One com-

putes

$$d_1([\mu \otimes \beta]) = [\mu \otimes d\beta] = [\mu \otimes \nu].$$

It follows that $E_2^{s,r} = 0$ and hence $E_{\infty}^{s,r} = 0$. Let $n = s + r = \dim(\mathfrak{G})$. One sees trivially that $E_0^{a,b} = 0$ for a + b = n if either a > s or b > r. Hence

$$H^n\big(\mathfrak{G}\big)\cong\sum_{a+b=n}E^{a,\,b}_\infty=E^{s,\,r}_\infty=0.$$

This contradicts Lemma 2.4.

2.6 COROLLARY. Let G be nilpotent with $H \subseteq G$ a closed subgroup. Then $H^s(\mathfrak{G}, H) \cong \mathbf{R}$ where $s = \dim(G/H)$.

Proof. A generator ν for $\wedge^s(\mathfrak{G}^*)_H$ is given by a left invariant volume form on G/H. We have an inclusion of complexes, $\wedge(\mathfrak{G}^*)_H \subset \wedge(\mathfrak{G}^*)_{\mathfrak{G}}$. Since ν is not exact in $\wedge(\mathfrak{G}^*)_{\mathfrak{G}}$, it is certainly not exact in $\wedge(\mathfrak{G}^*)_H$.

3. Prequantization

Let G be simply connected and nilpotent and $\mathbb{O} \subset \mathbb{G}^*$ a coadjoint orbit with canonical symplectic form $\omega \in \Omega^2(\mathbb{O})$. Geometric quantization on the symplectic manifold (\mathbb{O}, ω) produces an irreducible unitary representation of G [6]. The first step involves constructing a complex line bundle L over \mathbb{O} with an Hermitian structure $\langle \ , \ \rangle$ and a compatible connection α with curvature ω . In our setting, such a prequantization bundle exists, and is unique up to a strong notion of equivalence [6]. Moreover, there is an action of G on L that preserves $\langle \ , \ \rangle$ and α , and coincides with the coadjoint action of G on \mathbb{O} .

Let L^* be the bundle of non-zero vectors in L and

$$T(L) = \{v \in L: \langle v, v \rangle = 1\}.$$

 L^* is the principal bundle for L with fibre $C^* = C \setminus \{0\}$, and T(L) is a circle bundle over $\mathfrak D$ which completely determines $\langle \ , \ \rangle$ on L. The connection α , a complex-valued one-form on L^* , is compatible with $\langle \ , \ \rangle$ in the sense that α is the extension of a real-valued connection form on T(L).

To describe an explicit model for $(L, \langle \cdot, \cdot \rangle, \alpha)$, we need only construct a circle bundle T(L) over $\mathfrak D$ with connection form $\alpha \in \Omega^1(T(L))$. If $\rho: T(L) \to \mathfrak D$ is the projection, then α has curvature form ω . (That is, $d\alpha = \rho^*(\omega)$.)

Choose $f \in \mathfrak{D}$ and let $G_f = \{g \in G : \operatorname{Ad*}g(f) = f\}$. \mathfrak{D} is identified with G/G_f , so that the coadjoint action of G on \mathfrak{D} becomes the usual action of G on G/G_f . For G simply connected and nilpotent, G_f is connected and $G_f = \exp(\mathfrak{G}_f)$, where $\mathfrak{G}_f = \{X \in \mathfrak{G} : \operatorname{ad*}X(f) = 0\}$ [5].

Assume $f \neq 0$. One obtains a character χ_f : $G_f \to T$ defined by $\chi_f(\exp X) = e^{2\pi i f(X)}$ for $X \in \mathfrak{G}_f$. Let $K_f = \operatorname{Ker} \chi_f$. K_f is a normal subgroup of G_f and, as χ_f is surjective, $G_f/K_f \cong T$. The Lie algebra of K_f is $\Re_f = \operatorname{Ker}(f|\mathfrak{G}_f)$ and $\exp(\Re_f)$ is the identity component of K_f . The following fact is easily verified.

3.1 LEMMA. f is in $\bigwedge^1(\mathfrak{G}^*)_{K_f}$, and hence f yields a G-invariant 1-form α on G/K_f .

Consider the bundle

$$G_f/K_f \xrightarrow{C} G/K_f$$

$$\downarrow \\ G/G_f.$$

This is a circle bundle in view of the identification $G_f/K_f \cong T$. The right action of T on G/K_f is given by $(gK_f, g_0K_f) \mapsto gg_0K_f$. Note that this is well defined since K_f is normal in G_f . It is not hard to show that α is invariant under this right T-action. Given $t \in \mathbf{R}$, regarded as the Lie algebra of T, choose $X_0 \in \mathfrak{G}_f$ with $f(X_0) = t$. Then the vertical vector field V_t on G/G_f is the left invariant vector field $X_0 + \mathfrak{R}_f$, and $\alpha(V_t) = t$. These remarks prove the following lemma.

3.2 Lemma. The form α from Lemma 3.1 is a connection form in the circle bundle

$$G/K_f \xrightarrow{\bullet} G/G_f$$
.

3.3 Lemma. Let ω be the symplectic form on $\mathfrak{Q} \cong G/G_f$. Then $\operatorname{curv}(\alpha) = \omega$.

Proof. Let $\pi_f: G \twoheadrightarrow G/G_f$ and $\tilde{\pi}_f: G \twoheadrightarrow G/K_f$ be the usual projection maps. Then ω is uniquely determined by the identity $\pi_f^*(\omega) = df$ in $\wedge^2(\mathfrak{G}^*) \subset \Omega^2(G)$. On the other hand, $\operatorname{curv}(\alpha)$ is characterized by $\rho^*(\operatorname{curv}\alpha) = d\alpha$. We see that

$$\pi_{f}^{*}(\operatorname{curv}\alpha) = \tilde{\pi}_{f}^{*}\rho^{*}(\operatorname{curv}\alpha)$$

$$= \tilde{\pi}_{f}^{*}(d\alpha)$$

$$= d\tilde{\pi}_{f}^{*}(\alpha)$$

$$= df \quad \text{(by definition of }\alpha\text{)}$$

$$= \pi_{f}^{*}(\omega).$$

Since π_f is a submersion, curv $\alpha = \omega$.

Together, Lemmas 3.2 and 3.3 show the following.

3.4 THEOREM. The bundle $G_f/K_f \hookrightarrow G/K_f \twoheadrightarrow G/G_f$ together with the one-form f in $\Lambda(\mathfrak{G}^*)_{K_f}$ is a model for $(T(L), \alpha)$ —the circle bundle with connection given by prequantization.

Our model for L is the associated complex line bundle

$$G/K_f \times_{G_f/K_f} \mathbb{C} \cong G \times_{G_f} \mathbb{C},$$

whose elements are equivalence classes [g, c] where $(gg_0, c) \sim (g, \chi_f(g_0)c)$ for all $g_0 \in G_f$, $g \in G$, and $c \in C$. The Hermitian structure on $G \times_{G_f} C$ is just $\langle [g, c], [g, c'] \rangle = c\bar{c}'$. A model for L^* is given by $G \times_{G_f} C^*$. The connection α in T(L) gives a complex-valued connection in L^* by prolongation. This is the unique form on L^* whose lift to $G \times C^*$ is

$$\tilde{\alpha} = f + \frac{1}{2\pi i} \, dz/z.$$

This is the model for the prequantization bundle that can be found in [6].

Notice that the structures \langle , \rangle and α are invariant under the obvious left G-actions on $G \times_{G_f} \mathbb{C}$ and $G \times_{G_f} \mathbb{C}^*$. These actions extend the left action of G on G/K_f and are compatible with the G-action on $G/G_f \cong \mathbb{O}$ in the sense that the projection maps are all G-equivariant.

4. The invariant via prequantization

Let $(L, \langle \cdot, \cdot \rangle, \alpha)$ be a prequantization bundle over a co-adjoint orbit $\mathfrak{D} \subset \mathfrak{G}^*$ of dimension 2q. The G-action on L preserves $\langle \cdot, \cdot \rangle$ and hence T(L). Writing $L_g: T(L) \to T(L)$ for the action of $g \in G$ on T(L), one has

$$^{G}\Omega(T(L)) = \{ \beta \in \Omega(T(L)) \colon L_{g}^{*}\beta = \beta \text{ for all } g \in G \},$$

the complex of left G-invariant forms on T(L). We will denote the cohomology of this complex by $H_G^*(T(L))$.

Choose $p_0 \in T(L)$ and define $\tilde{\pi}$: $G \to T(L)$ by $\tilde{\pi}(g) = L_g(p_0)$. This is a lifting of π : $G \to \mathfrak{D}$ to T(L), where $\pi(g) = \mathrm{Ad}^*g(\rho(p_0))$. (Recall that ρ is the projection ρ : $T(L) \to \mathfrak{D}$.) Since $\tilde{\pi}$ is G-equivariant, we obtain a map

$$\tilde{\pi}^* \colon {}^G\Omega(T(L)) \to {}^G\Omega(G) = \bigwedge(\mathfrak{G}^*)$$

and hence a map π^* : $H_G^*(T(L)) \to H^*(\mathfrak{G})$.

4.1 LEMMA. $\tilde{\pi}^*$: $H_G^*(T(L)) \to H^*(\mathfrak{G})$ does not depend on the choice of $p_0 \in T(L)$.

Proof. Let p_0 , $p_1 \in T(L)$ be two chosen points used to construct $\tilde{\pi}_0$ and $\tilde{\pi}_1$: $G \to T(L)$. As can be seen from the explicit model of T(L) given in Section 3, G acts transitively on T(L) so that we must have $p_1 = \bar{g}p_0$ for some $\bar{g} \in G$. We thus have a commutative diagram

$$G \xrightarrow{\tilde{\pi}_0} T(L)$$

$$G \xrightarrow{\tilde{\pi}_1} T(L)$$

where $R_{\bar{g}}$: $G \to G$ is right multiplication. This dualizes to a diagram of complexes

This shows that the maps $\tilde{\pi}_0^*$ and $\tilde{\pi}_1^*$ in cohomology $H_G^*(T(L)) \to H^*(\mathfrak{G})$ differ by $Ad^*(\bar{g}): H^*(\mathfrak{G}) \to H^*(\mathfrak{G})$. It is well known that for G connected, the co-adjoint representation on $H^*(\mathfrak{G})$ is trivial [2].

Moreover, the entire construction $\tilde{\pi}^*$: $H_G^*(T(L)) \to H^*(\mathfrak{G})$ is unique up to isomorphism.

4.2 LEMMA. If $(L_1, \langle \ , \ \rangle_1, \alpha_1)$ and $(L_2, \langle \ , \ \rangle_2, \alpha_2)$ are two prequantization bundles for \mathfrak{D} , then there is an isomorphism $\tau^* \colon H_G^*(T(L_1)) \to H_G^*(T(L_2))$ such that the diagram

$$H_{G}^{*}(T(L_{1})) \xrightarrow{\tau^{*}} H_{G}^{*}(T(L_{2}))$$

$$H^{*}(\mathfrak{G})$$

commutes.

Proof. The prequantization bundle is unique in a strong sense [6]. There is a vector bundle isomorphism τ : $L_2 \to L_1$ such that:

(i)
$$\langle \tau(v), \tau(w) \rangle_1 = \langle v, w \rangle_2; \ v, w \in L_2;$$

(ii) $\tau^*(\alpha_1) = \alpha_2;$ (4.3)

(iii) $\tau(L_g v) = L_g \tau(v)$, $v \in L_2$, $g \in G$. In view of (i), τ yields an isomorphism of T-bundles $\tau: T(L_2) \to T(L_1)$ which is G-equivariant by (iii). If $p \in L_2$ is any chosen point then we use p and $\tau(p)$ to construct the maps

$$\tilde{\pi}_2 \colon G \to T(L_2)$$
 and $\tilde{\pi}_1 \colon G \to T(L_1)$.

Clearly $\tilde{\pi}_1 = \tau \circ \tilde{\pi}_2$ and τ^* : $H_G^*(T(L_1)) \to H_G^*(T(L_2))$ is a suitable isomorphism.

We remark that the isomorphism τ^* in Lemma 4.2 is essentially canonical. If τ_0 , τ_1 : $L_2 \to L_1$ both satisfy conditions 4.3, then

$$\bar{\tau} = \tau_1 \tau_0^{-1} \colon L_1 \to L_1$$

preserves $\langle \ , \ \rangle_1$, α_1 and the G-action on L_1 . It follows that $\bar{\tau}$ comes from the right action R_t of some fixed element $t \in T$ on $T(L_1)$ [6]. This shows that τ_0^* and τ_1^* can only differ by the right action of T on $H_G^*(T(L))$.

The differential form $V = \alpha \wedge (d\alpha)^q \in \Omega^{2q+1}(T(L))$ is G-invariant since α is invariant, and closed since $\dim(T(L)) = 2q + 1$. We obtain a cohomology class

$$[V] \in H_G^{2q+1}(T(L)).$$
 (4.4)

Notice that we can also write $V = \alpha \wedge \rho^*(\omega^q)$ where $\omega \in \Omega^2(\mathfrak{D})$ is the symplectic form. Since ω^q is a volume form on \mathfrak{D} and α is non-zero on vectors tangent to the fibres of T(L), we see that V is a volume form on T(L). On can regard α as a contact structure that gives rise to the volume form V.

4.5 LEMMA. The class $[V] \in H_G^{2q+1}(T(L))$ is well defined up to the isomorphism τ^* in Lemma 4.2.

Proof. If $(L_1, \langle , \rangle_1, \alpha_1), (L_2, \langle , \rangle_2, \alpha_2)$ are two prequantization bundles then the isomorphism $\tau^* \colon H_G^*(T(L_1)) \to H_G^*(T(L_2))$ is induced by a G-equivariant map $\tau \colon T(L_2) \to T(L_1)$ with the property that $\tau^*(\alpha_1) = \alpha_2$. \square

Lemmas 4.1, 4.2 and 4.5 show that the class $\tilde{\pi}^*([V]) \in H^{2q+1}(\mathfrak{G})$ does not depend on the choice of prequantization bundle $(L, \langle \ , \ \rangle, \alpha)$ or on the choice of $p_0 \in T(L)$ used to define $\tilde{\pi} \colon G \to T(L)$. We now return to the specific model for $(L, \langle \ , \ \rangle, \alpha)$ described in Section 3. In particular, we take $T(L) = G/K_f$ for some $f \in \mathfrak{D}$. Using eK_f (where $e \in G$ is the identity element) as the point $p_0, \tilde{\pi} \colon G \to G/K_f$ becomes the usual projection $\tilde{\pi}(g) = gK_f$. Since α is characterized by $\tilde{\pi}^*(\alpha) = f$, one also has $\tilde{\pi}^*(V) = f \wedge (df)^q$. This proves the following theorem.

4.6 THEOREM. Let $\mathfrak D$ be any co-adjoint orbit and $(L, \langle , \rangle, \alpha)$ a prequantization bundle for $\mathfrak D$. Then $i(\mathfrak D) = \tilde{\pi}^*([V])$.

The model G/K_f for T(L) also gives us a way of computing $H_G^*(T(L))$. Indeed, ${}^{G}\Omega(G/K_{f})$ is a model for ${}^{G}\Omega(T(L))$ and the former can be identified with $\Lambda(\mathfrak{G}^*)_{K_f}$ via $\tilde{\pi}^*$. We see that $H_G^*(T(L)) \cong H^*(\mathfrak{G}, K_f)$. In particular

$$H_G^{2q+1}(T(L)) \cong \mathbf{R}$$

in view of Corollary 2.6.

- 4.7 THEOREM. There is an isomorphism $H_G^*(T(L)) \cong H^*(\mathfrak{G}, K_f)$. Moreover, $H_G^{2q+1}(T(L)) \cong \mathbb{R}$, generated by [V].
 - 4.8 COROLLARY. The following are equivalent:
 - (a) $i(\mathfrak{Q}) = 0$.

 - (b) $\tilde{\pi}^*$: $H_G^{2q+1}(T(L)) \to H^{2q+1}(\mathfrak{G})$ is the zero map. (c) The map $H^{2q+1}(\mathfrak{G}, K_f) \to H^{2q+1}(\mathfrak{G})$ induced by the inclusion $\Lambda(\mathfrak{G}^*)_{K_f}$ $\hookrightarrow \Lambda(\mathfrak{G}^*)$ is the zero map.

We remark that for computational purposes, it is often easier to work with $H^*(\mathfrak{G}, \mathfrak{R}_f)$. The map $H^*(\mathfrak{G}, K_f) \to H^*(\mathfrak{G}, \mathfrak{R}_f)$ arising from $\Lambda(\mathfrak{G}^*)_{K_f} \hookrightarrow \mathfrak{G}^*$ $\Lambda(\mathfrak{G}^*)_{\mathfrak{R}_f}$ need not be an isomorphism, since K_f need not be connected. However, in the top dimension 2q + 1, we do have $H^{2q+1}(\mathfrak{G}, K_f) \cong$ $H^{2q+1}(\mathfrak{G}, \mathfrak{R}_f) \cong \mathbf{R}$ as was shown in Lemma 2.5 and Corollary 2.6. In particular, $i(\mathfrak{D}) = 0$ if and only if $H^{2q+1}(\mathfrak{G}, \mathfrak{R}_f) \to H^{2q+1}(\mathfrak{G})$ is the zero map. This observation allows one to use the Hochschild-Serre spectral sequence E_r for the pair $(\mathfrak{G}, \mathfrak{R}_f)$ to study vanishing of the invariant. The map $H^i(\mathfrak{G}, \mathfrak{R}_f) \to$ $H^{i}(\mathfrak{G})$ can be written in terms of the spectral sequence as a composition

$$H^i\big(\mathfrak{G},\,\mathfrak{R}_f\big)\cong E_2^{i,0}\twoheadrightarrow E_\infty^{i,0}\hookrightarrow H^i\big(\mathfrak{G}\big).$$

This shows that $i(\mathfrak{D}) = 0$ if and only if $E_{\infty}^{2q+1,0} = \{0\}$.

5. Square integrable representations

Suppose that ρ is an irreducible unitary representation of G corresponding to a co-adjoint orbit $\mathfrak{D} \subset \mathfrak{G}^*$. Then ρ is square-integrable modulo the center Z(G) of G if and only if $G_f = Z(G)$ for $f \in \mathfrak{O}$ [7].

5.1 **THEOREM.** If G has one-dimensional center and ρ is square integrable modulo the center, then $i(\mathfrak{D}_0) \neq 0$.

Proof. We need only show that $H^{2q+1}(\mathfrak{G}, \mathfrak{R}_f) \to H^{2q+1}(\mathfrak{G})$ is not the zero map. In the present case, $\Re_f = \{0\}$ since it is a codimension-one subalgebra of \mathfrak{G}_f .

Theorem 5.1 was also proved in [1] using different methods. When $\dim(Z(G)) > 0$, one can obtain useful information by studying the spectral sequence for $(\mathfrak{G}, \mathfrak{R}_f)$. Since \mathfrak{R}_f is a subalgebra of $Z(\mathfrak{G}), \mathfrak{R}_f$ is an ideal in \mathfrak{G} and \mathfrak{G} acts trivially (via ad*) on $H^*(\mathfrak{R}_f)$. As noted in Section 2, the E_2 -term in the spectral sequence is thus tame, $E_2^{i,j} \cong H^i(\mathfrak{G}/\mathfrak{R}_f) \otimes H^j(\mathfrak{R}_f)$. In fact, $H^j(\mathfrak{R}_f) = \bigwedge^j(\mathfrak{R}_f^*)$ since \mathfrak{R}_f is abelian. Note that $E_2^{i,j} = \{0\}$ for $j \ge j$ $\dim(Z(G))$ and hence $E_{\infty} = E_{\dim(Z(G))+1}$. In particular, the invariant vanishes if and only if $E_{\dim(Z(G))+1}^{2q+1,0} = \{0\}$. The differential $d_2: E_2^{i,1} \to E_2^{i+2,0}$ is given by

$$d_2([\alpha] \otimes [h]) = (-1)^i [\alpha \wedge d\tilde{h}] \text{ for } h \in \Re_f^* \text{ and } [\alpha] \in H^i(\mathfrak{G}/\Re_f)$$

where $\tilde{h} \in \mathfrak{G}^*$ is any linear functional extending h to \mathfrak{G} (that is, $\tilde{h} | \mathfrak{R}_f = h$). This can be written as $d_2([\alpha] \otimes [h]) = \tau([h]) \cdot [\alpha]$, where $\tau: H^1(\Re_f) \to$ $H^2(\mathfrak{G}/\mathfrak{R}_f)$ is given by $\tau([h]) = [d\tilde{h}].$

5.2 THEOREM. Let ρ be square integrable modulo the center Z(G) of G where $\dim(Z(G)) > 1$. Let \mathfrak{D} be the corresponding orbit and $f \in \mathfrak{D}$. If $\tau: H^1(\mathfrak{R}_f) \to \mathfrak{D}$ $H^2(\mathfrak{G}/\mathfrak{R}_f)$ is not the zero map, then $i(\rho) = 0$. Moreover, if $\dim(Z(G)) = 2$, then this condition is also necessary for the vanishing of $i(\rho)$.

Proof. $E_3^{2q+1,0} = \{0\}$ if and only if $[V] \in H^{2q+1}(\mathfrak{G}/\mathfrak{R}_t) \cong E_2^{2q+1,0}$ is in the image of d_2 . Equivalently, we must be able to write [V] in the form $\tau([h]) \cdot [\alpha]$ for some $[h] \in H^1(\Re_f)$, $[\alpha] \in H^{2q}(\Im_f)$. Since \Im_f is a nilpotent Lie algebra of dimension 2q + 1, $H^*(\mathfrak{G}/\mathfrak{R}_f)$ satisfies Poincaré duality and $E_3^{2q+1,0} = \{0\}$ if and only if $\tau([h]) \neq 0$ for some $[h] \in H^1(\Re_f)$. The condition $E_3^{2q+1,0} = \{0\}$ implies $E_\infty^{2q+1,0} = \{0\}$ and thus $i(\rho) = 0$.

If $\dim(Z(G)) = 2$ then one has $E_{\infty} = E_3$ so that $i(\rho) = 0$ if and only if $\tau \neq 0$.

We remark that for ρ square integrable, \Re_f is an ideal in \Im and hence independent of $f \in \mathfrak{D}$ chosen. It follows that the condition in Theorem 5.2 makes reference to an invariant τ that depends only on (the equivalence class of) the representation ρ .

The content of Theorem 5.2 can be clarified by carrying out computations using explicit bases. Suppose that \mathfrak{G} has basis $\{Z_1, Z_2, X_1, \ldots, X_n\}$ where $\{Z_1, Z_2\}$ is a basis for $Z(\mathfrak{G})$. Suppose that ρ is square integrable modulo Z(G) and corresponds to an orbit \mathfrak{D} with $f \in \mathfrak{D}$. Let $\{\lambda_1, \lambda_2, \alpha_1, \ldots, \alpha_n\}$ be the dual basis for \mathfrak{G}^* . We must have $f|Z(\mathfrak{G}) \neq 0$, so that $f|Z(\mathfrak{G}) = a\lambda_1 + b\lambda_2$ where $a \neq 0$ or $b \neq 0$. Hence, $\Re_f = \langle bZ_1 - aZ_2 \rangle$ and \Re_f^* is generated by $b\lambda_1 - a\lambda_2$. According to Theorem 5.2, $i(\rho) = 0$ if and only if $[b d\lambda_1 - a d\lambda_2]$ $\neq 0$ in $H^2(\mathfrak{G}/\langle bZ_1 - aZ_2\rangle)$.

As an example, consider the Lie algebra ® with basis

$$\{Z_1, Z_2, X_1, X_2, Y_1, Y_2\}$$
 where $[X_1, Y_1] = Z_1 = [X_2, Y_2]$

and all other brackets vanish (this is the Lie algebra for the direct product of a Heisenberg group with **R**). Let $\{\lambda_1, \lambda_2, \nu_1, \nu_2, \mu_1, \mu_2\}$ be the dual basis and $f = \lambda_1$. Then $\mathfrak{G}_{\lambda_1} = Z(\mathfrak{G})$ so that $\mathfrak{D} = \mathfrak{D}_{\lambda_1}$ is square integrable. Since $d\lambda_2 = 0$, we must have $i(\mathfrak{D}) \neq 0$. Indeed, $i(\mathfrak{D})$ is represented by the form

$$2\lambda_1 \wedge \mu_1 \wedge \nu_1 \wedge \mu_2 \wedge \nu_2$$

which is not exact in $\Lambda(\mathfrak{G}^*)$. Next consider \mathfrak{G}' , the Lie algebra obtained by introducing another non-zero bracket: $[X_1, Y_2] = Z_2$. As before, $\mathfrak{D} = \mathfrak{D}_{\lambda_1}$ is square integrable but now $d\lambda_2 = \mu_2 \wedge \nu_1 \neq 0$. In fact $[d\lambda_2] \neq 0$ in

$$H^2(\mathfrak{G}'/\langle Z_2\rangle) = H^2(\langle Z_1, X_1, X_2, Y_1, Y_2\rangle)$$

so that we now must have $i(\mathfrak{Q}) = 0$. Indeed, one has

$$2\lambda_1 \wedge \mu_1 \wedge \nu_1 \wedge \mu_2 \wedge \nu_2 = d(2\lambda_1 \wedge \lambda_2 \wedge \mu_1 \wedge \nu_2) \quad \text{in } \wedge (\mathfrak{G}'^*).$$

In general, $\mathfrak{D}_{a\lambda_1+b\lambda_2} \subset \mathfrak{G}'^*$ is square integrable for any $a, b \in \mathbb{R}$, with $a \neq 0$, and $i(\mathfrak{D}_{a\lambda_1+b\lambda_2}) = 0$. These are the orbits of maximal dimension in \mathfrak{G}'^* . In addition, there are two dimensional (non-square integrable) orbits

$$\mathfrak{D}_{a\lambda_2 + b\nu_2 + c\mu_1} = \{ a\lambda_2 + x\nu_1 + b\nu_2 + c\mu_1 + x\mu_2 \colon x, y \in \mathbb{R} \}, \quad a \neq 0,$$

with

$$i \Big(\mathfrak{D}_{a\lambda_2 + b\nu_2 + c\mu_1} \Big) = a^2 \big[\lambda_2 \wedge \mu_2 \wedge \nu_1 \big] \neq 0.$$

The remaining orbits in \mathfrak{G}'^* are single points in the subspace $\langle \nu_1, \nu_2, \mu_1, \mu_2 \rangle$ and correspond to characters.

REFERENCES

- C. Benson and G. Ratcliff, An invariant for unitary representations of nilpotent Lie groups, Michigan Math. J., vol. 34 (1987), pp. 23-30.
- C. CHEVELLEY and S. EILENBERG, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., vol. 63 (1948), pp. 85-124.
- 3. W. GREUB, S. HALPERIN and R. VANSTONE, Connections, Curvature and Cohomology. Vol. 3, Academic Press, New York, 1976.
- G. HOCHSCHILD and J.P. SERRE, Cohomology of Lie algebras, Ann. of Math., vol. 57 (1953), pp. 591-603.
- A. A. KIRILLOV, Unitary representations of nilpotent Lie groups, Russian Math. Surveys, vol. 17 (1962), pp. 53-104.

- B. Kostant, "Quantization and unitary representations" in "Lectures in modern analysis and applications III," C. T. Taam, editor, Lecture Notes in Math., vol. 170, Springer-Verlag, New York, 1970.
- 7. C. Moore and J. Wolf, Square integrable representation of nilpotent groups, Trans. Amer. Math. Soc., vol. 185 (1973), pp. 445-462.
- 8. K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math., vol. 59 (1954), pp. 531-538.

University of Missouri-St. Louis St. Louis, Missouri