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DOMINATING MEASURES FOR SPACES OF
ANALYTIC FUNCTIONS

BY

DANIEL H. LUECKING

The mixed norm space H(p, q, a) is the collection of functions f analytic in
the unit disk with finite norm

x(1 r) aq-1 f=lf(re’)l" do drIlfll,, q,
"0

Sufficient conditions on a family of measures (gr: 0 < r < 1} on U and a
measure r on [0,1] are given to obtain an inequality

( )q/P[]fllpq,q,a C/ flflP d.r d.(r), f H(p, q, a)

with C independent of f. Similar results are obtained for spaces of "slow
mean growth" (q oo) and the Hardy spaces (q , a 0). In the case of
the Bergman spaces (p q) these conditions are an improvement over those
obtained in [5] and [6].

1. Introduction

Let U be the open unit disk { Iz[ < 1} in the complex plane C. For 0 < p,
q < + oo and a > 0, the mixed norm spaces H(p, q, a) are defined as follows.
For any Borel measurable function f on U define

( )1.Mt,(f r) f:’lf(re’) : ao
0

if p<

Define

Moo(f, r) sup{ If(re’) I" 0 <_ o < }.
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If q < + o0 define

I
(1 r)q’-M(f r) q dr) 1/q

and define

lifll.. .: sup((1 r)<’Mp(f, r)" 0 <r < 1}.
Let B(p, q, a) denote the class of functions f with Ilfllp, q, < + o and let
H(p, q, a) denote the subspace of B(p, q, a) consisting of analytic functions.
The space H(p, c, a) has been called the space of functions of slow mean
growth [8]. H(p, , 0) is the Hardy space Hp, and H(p, p, ( + 1)/p) is the
weighted Bergman space commonly denoted Ar,’. If q < +o then
H(p, q, O) (0).

Let dm/ denote the measure (1- r)lrdrdO on U. In [3] necessary and
sufficient conditions were obtained in order that a set G c U satisfy

fu[flP dm# <_ cfJflp dm# for all f Ap’#

In [6] this result was used to obtain conditions on a measure/ in order that

flflp dma <_ cflfl" dl.

In [4] the first result was extended to harmonic functions f and in [7] a special
case of the second was generalized to include Hardy space norms. The
methods used for harmonic functions differed from those used originally for
A p’ #. Here, rather than deduce an inequality like S lfl dm# < Cflfl’ dlx for a
relatively general class of measures from a like inequality for the measures
X dmn, we use the method developed in [5] for harmonic functions and adapt
it slightly to apply directly to the more general measures /. Moreover, the
same basic method may be used for all the mixed norm spaces H(p, q, a). The
main result (Theorem 2) is a sufficient condition on a family of measures
{ ]r: 0 < r < 1)on U and a measure v on [0, 1) in order that Ilfllpq, <
Cf(f[f[p dP, r)q/P dv(r) for all f H(p, q, a). If either q or p is +o the
corresponding integral is replaced by an essential supremum. Our sufficient
condition is somewhat difficult to state at this stage, but amounts to a
condition that r cannot, locally, be concentrated too near the zeros of a
locally defined class of analytic functions. The condition is very easy to apply
and provides a variety of examples which could not be obtained by previous
methods.

In Section 2 we obtain some elementary estimates on functions in the spaces
H(p, q, a) and prove two lemmas, the purpose of which is to establish for
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each f H(p, q, a) the existence of a "large" set F on which If(z)Ip is
comparable to the mean of Illp over a neighborhood of z. This will restrict the
oscillation of Ifl enough that pointwise estimates can be made on F. The
lemmas show that F is large enough that estimates made on F dominate those
on U.

In Section 3, we investigate the zero sets of a certain class of analytic
functions. As previously mentioned, the condition we obtain on the measures
It, is that they not be concentrated too close to these zero sets. To obtain
quantitative results we need some estimates on these zero sets.

In Section 4 we complete the special case H(p, p, l/p) which is the
Bergman space Ap’. We separate this special case for several reasons. The
argument is somewhat simpler and the theorem is easier to state. The special
case may be of independent interest to readers not concerned with mixed
norm spaces. And, finally, the Bergman space has been the main focus of my
previous work and I wish to show that even in this case stronger results have
been obtained.

Section 5 presents the main theorem, Theorem 2, of which Theorem 1 in
Section 4 is a special case. By Section 5, enough preliminary work has been
done so that.the statement of the theorem takes more effort than the proof.

Section 6 presents some examples of applications of Theorem 2.

2. Preliminary estimates with mixed norms

The "norms" 11 I[,,q, are true norms only if p, q > 1. If we let s
min(p, q, 1) then fl(f, g) Ilf- gll,q,, is a metric under which H(p, q, a)
is complete. Unless q < + and a 0 (a case we henceforth formally
exclude) each H(p, q, a) contains H and the point evaluations f ---, f(a) are
continuous functionals on each space.
The pseudohyperbolic metric # on U is defined by

p(z, w) Iz- wlll zl.
As usual, for a set E, p(z, E) inf{ p(z, w): w E ) is the distance from z
to E. Let C, denote the circle of radius r centered at 0 and let

where e is any conveniently chosen number with 0 < e < 1. If r < e then K
is the disk of radius (r + e)/(1 + er) and center 0. Otherwise, K is the
annulus centered at 0 with inner radius

and outer radius

r, (r- e)/(1 er)

r* (r + e)/(1 + er).
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It is clear that

and

l+e(1-r)(l+e)(1-r) <l-r,< 1-e

1-e(l_r) <l-r* <(1-e)(1-r)l+e

2e(1-r) <r*-r, <

Because M,,( f, r) increases with r, there is a constant C C(e) such that

C-1M;(f, r,) 1 r /I’ dm <_ CM;(f, r*) (2.1)

for all f analytic in U, r > e. Here m mo is just Lebesgue area measure
rdrdO. Define B,(f,r)= [(1- r)-lfrrlf[p dm]1/. It is then easy to verify
that for p < + oo the norm on H(p, q, a) is equivalent to

f01B,(f, r)q(l r)aq-ldr

sup(1 r)"B,(f r)

if q<

if q= +oo.

The next lemma generalizes an observation in [3]. Our method for proving
the main theorem is to integrate a certain pointwise estimate. This estimate is
not valid at all points of U and the following lemma will be used to show that
the set of points where it is valid is large enough. For the e fixed earlier define
the sequence (r, } by r0 0, r,+ r* (r, + e)/(1 + r,e). Also, let

D(z) (w U: p(z, w) < e} forz U.

LEMMA 1. Let v be a measure on [0,1) such that

0 < v[r_ 1, r) < Cv[r, rn+l).

There is a number > 0 and a constant K such that iff is analytic in U and

F= {z U: [f(z)l’> sfo [fl’dm/m(D(z))}(z)

then

fM (f r) q dr(r) < rf  (xd, r) q dr(r),
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provided both sides of the inequality are finite. The constant 8 depends only on e,
p/q, and

sup

Proof. Let iS be a positive number (to be specified later); let F be defined
as in the statement of the lemma, and let E U \ F so that we have

]xe(z)f(z) fo)lfl dm/m(D(z))

8f,,, <)(w)lf(w)lm(V()) am(w)

where r Izl. (We use the fact that Kr D(z)= D(z).) Putting z re
and integrating with respect to 0 gives

Mff(xf r) < 8fKrlf(w) [’fo2’r XD(w) (reia)
m(D(rei))

< 8CS:(f, r)

dO dm (w)

(2.2)

because m(D(rei#)) (1 r) 2 and fo2’XD(w)(re io) dO < C(1 r). Raise to
the q/p power and integrate with respect to d,(r) on the interval [r._t, r.):

f.r. xef r) d,(r) < (C) q/p (f, r) dr(r)

<_ C’(c)q/PMq(/,rn+l)l[rn r.)

C’(C) q/p f"+My(y, r) dr(r)
rn-1

where C depends only on e and C’ may differ from one line to the next, but it
depends only on e and ,. Sum on n and raise to the power s/q to obtain

(0, xef ) < "/(0, f)

where fl is defined in a manner similar to/3 at the beginning of this section:

fl(f, g) foM(f g, r)q d’(r)
s/q

(with s rain(p, q, 1) as before) and 7 (3C’)S/q(SC)s/l. Since fl is a metric
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we get

(0, Xvf ) (xef f) > fl(O, f) (0, xef ) > (1 ")fl,,(0, f).

Now choose 8 (2C)-1(3C’) -’/q so 2 -s/’, and let K= (1- .)-q/s.
Note that depends only on e, v and the ratio p/q. ]

There is a formulation of Lemma 1 for q + oo, which requires consider-
ably weaker hypotheses on v:

LEMM 2. Suppose v[r,_ 1, r,] > 0 for every n. There is a number i > 0 and
a constant K such that iff is analytic and F is as in Lemma 1, then

v-ess sup(1 r)Mp(f, r) < K v-ess sup(1 r)Mp(xf, r),

provided both sides are finite. In case a 0 we need only require v[r, 1) > 0 for
every r < 1.

Proof. From (2.1) and (2.2) it follows that

(1 r)M(xef, r) < 8I/PC(1 r’)M(f, r’)

whenever r,_ < r < rn and r,+ < r’ < r,+ 2. Thus a similar inequality holds
between the v-essential suprema. If a 0 the weaker hypothesis is sufficient
because Me(f, r) is increasing. Now we can use the same argument as in
Lemma I on an appropriate distance function. []

3. Zero sets of analytic functions

The type of condition we are heading for is that the measures/Xr[D() do not
"lie too close to" the zero set of any function in a certain class of analytic
functions on D(z) when Izl r. In this section we will discuss the class of
analytic functions and its zero sets. The analytic functions are just those
suggested by the definition of F in Lemma 1, namely those satisfying

If(z) >_ 8fo Ifl dm/m(D(z)).
(z)

By taking appropriate conformal transformations from D(z) to U we may
concentrate on the collection (i) defined by

analytic in U: If(0) -l fjlf(z)lp dm< 1).
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Our next lemma will provide some estimates on the possible zero sets of if(iS).
This lemma is not needed in the proof and is used only in later examples of
applications of the main theorems. It may be omitted on first reading.

LEMM 3. lff is analytic in U with zero sequence { ak } and f(O) 4= O, then

loglf(0) +
lakl<RE 1Oglakl 2 1 R2

1 fl loglfldm (3.1)’n’R 2 I<R

for any positive R < 1. In particular if f f(i) then the number of zeros in

Izl < R is at most (4/p)log(1/8)/(1 R2) 2. Moreover, all the zeros satisfy

[ak[ >_ 1/pe-1/2"

Proof Take Jensen’s formula

log[f(0) + E log
r

lakl<r
[akl fo2 loglf(re’) IdO/2r,

multiply it by 2rdr and integrate from 0 to R to obtain (3.1). By Jensen’s
inequality the right hand side of (3.1) is at most

This will be nonpositive when R 1. Thus for f in ()

1 [ 1
log lal_ (1 lal)] < p-log(1/t). (3.2)

A power series expansion shows that

1
log 1 x x X2/.’"

We apply this to x 1 [akl 2 in (3.2) and sum only over [akl < R to obtain

N(1 R2)2/4 < p-log(1/8)

where N is the number of a with akl -< R. Finally, taking only a single term
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in (3.2) we get

[log(1/la,I -) 1]/2 < p-qog(1/a)

which leads to ak[ > ax/’e- t/2.

The next lemma, while quite simple, is the key to the main theorem.

LEMMA 4. Let 0 < R < 1 and let g be a family ofprobability measures on

zl <- R such that no measure # in the weak* closure ofg is supported on a zero
set of f(6), then there is a positive constant 1 depending only on , p and g
such that f Iflp d/ > If(0)[r for all f f(8).

Proof. Let t’ denote the weak* closure of t’ so that ’ is compact in
the weak* topology. () is a normal family in U and so it is a compact set in
the topology of uniform convergence on compacta. It is routine to verify that
the function (#, f) fill’ d# is jointly continuous on t’ () and the
hypotheses imply it is never zero on this compa__ct set. Since its infimum is
attained we obtain f Ill’ d# > > 0 for all # ’ (and so in particular for all
# t’) and all f (). Since If(O)l’ < r-tflfl’ dm < 1, this is what was
wanted, rn

4. The Bergman spaces

In this section we consider the special case A’ H(p, p, l/p). The prob-
lem here is to find conditions on the measure/ on U such that

fill dm <_ cfill for all f

This is apparently more general than the Bergman space case of the main
theorem, in that we do not here require the measure # to have the form
d#r(z)dv(r). It would certainly be more general if we required /r to be
supported on Izl r. However, if we put d/ Cxrr dl/(1 r) and dv
C-rE(1 r,)8, for appropriate constants and with r chosen so that (K.)
partitions U, then d# d# d,(r) and Theorem 1 (to follow) is a consequence
of Theorem 2. Nevertheless, for clarity we treat this special case separately.
The method of proof will be to make estimates of the form

< fo)Ifl dl/m (D( z ))

and then to integrate these pointwise estimates with respect to dm(z). These
pointwise estimates are much too strong, however; so we make them only at
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the set of points F described by Lemma 1, a set varying with f. The pointwise
estimates themselves are obtained by applying Lemma 4 to a class
consisting of normalized Mobius translates of localizations of #.

DEFINITION 1. /t’ g.
following process" Let

is the collection of all measures formed by the

1
(z)=-l_z

Then qa maps D(a) onto U. Form a X {I z < R (g o p 1) and let ’the collection of all normalizations #a/ll#ll as a varies over U.
be

What we have done is considered the restrictions of # to each of the disks
D(a)

_
D(a), where D(a) (z" O(z, a) < Re), then transferred these re-

strictions to the disk zl < R via ka, then normalized them. We are now
requiting that e and R both be fixed numbers in (0,1). The derivative

satisfies k’a(Z)./p’a(a) (1 lal2)2/(1 iz)2= (1 + ew)2

a(Z). If z D(a) then Iwl < R, Consequently,
where w

(1 eR)
9-
< < (1 + eR)

and larg(q’a(Z)/k’a(a)) is bounded away from r. Thus the distortion pro-
duced in/xlb(a by ka is under control (independent of a) and the reader may
think of a as obtained by translating and dilating #[b(a)" (In fact all of the
following could be done with this as a definition of /a, but that would
complicate Lemmas 1 and 2 and some of the manipulations of integrals to
follow.)

Let and K be as in Lemma 1 with d,(r)= rdr and p q. Thus if
f Ap and

F= (z u:lf(z)l > $fjg,z)Ifl’ dm/m(D(z))},

Now let a F and let

fJflV dm Kf[fl dm.

ez+aq,(z) -t(z) 1 + ez
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Then

f(a(0))I =l f(a) ’ > 8fD(a)lflP dm/m(D(a))

8fulfO al’Idp’al 2 dm/m(D(a)) > 8’fulfO dpal t’ dm.

The last inequality is from the estimate ICk’a(Z)12/m(D(a)) > c > 0 with c
independent of a and z (depending only on e). Thus f Ca will belong to
f#(8’) when appropriately normalized. If we assume that the family t’
satisfies the hypotheses of Lemma 4, then we immediately obtain

r/I f(a)l I/’nlf(’/’a(O))

<- fJf Ckal’ dla/lltall

flz I<_llfCkal" dtda/t(D(a))
f(a)I/1 d// (b( a )).

If we assume additionally that I(D(a)) > cm(D(a)) we may integrate this
inequality over F with respect to dm(a), obtaining

fFlfI" dm< Cfulf(z ) l"fF,[Xofa)(Z)/m(D(a)) dm(a) d(z)

<_ C’fuIfl
where we have used fD(z)m(D(a)) -1 dm(a)< constant. Finally, Lemma 1
gives us

The following theorem reflects all of the above considerations:

THEOREM 1. Let 0 < e < 1 and 0 < R < 1. For z U, define D(z) and
D(z) to be the p-disks about z with radii e and eR, respectively. Let p > O.
There is a constant ’ > O, depending only on e, such that the following holds.
Let l be a positive measure on U, and /[ the family of measures defined in

Definition 1. If inf{lx()(a))/m(D(a)): a U} > 0 and if no weak* limit
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point of is concentrated on a zero set of f(8’), then there is a constant C
such that for all f AP, f Ifl dm <_ Cf Iflr dt.

Proof. Most of the argument was given prior to the statement of the
theorem. The ’ in the theorem is c where is from Lemma 1 and depends
only on e, and

c inf([<(z)[2/m(D(a))’z U, a U}
1 e21a12)2

inf
l1 aezl 4 z U, a U

Thus 8’ depends only on e. D
It will be instructive to consider examples where Theorem I may be applied.

Example 1. Let X dm. This is the case solved in [3]. The condition on
G which guaranteed fill dm < Cflfl’ d was that (S)> cm(S) for all
Carleson "squares" S. In [3] this was shown (for this particular form of/) to
be equivalent to (D(a))> cm(D(a)) for some value of the radius eR of
D(a) and all a U. Let us see how this implies the relevant condition on

t’,. It is not hard to see,that a/ll/xa[[ haXG, dm where Ga a(G CI D(a))
satisfies m(Ga) > C > 0 and h is bounded above and below. Thus weak*
limits cannot be concentrated in a finite number of points and so cannot sit on
a zero set of any analytic function. (This argument could be applied almost
without change for harmonic functions and is essentially the same as the proof
in [4]).

Example 2. Let/.t a.E(1 [al)2/a where 8a denotes a unit mass at a.
Suppose the set E satisfies card(E N/3(a)) > N where N is an integer
independent of a. (One condition that will guarantee this is that E be an
q-lattice in the sense of [1] for small rl. Another is that E consist of
concentrated dusters of points, each duster containing N points and the set
consisting of one point from each cluster forming an eR-lattice). It is clear that
a typical measure a/ll#al[ in t’ has more than N point masses. If we
further suppose that E is separated (i.e., inf( p(a, b): a, b E, a b } 0)
then the amount of mass placed by the measure/a/ll/al[ at each point of its
support is bounded away from zero. Furthermore, the distances between these
masses are bounded from zero. Thus weak* limits consist of at least N point
masses. If

N > (4/p)log(1/8’)/(1 RE)2
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then, by Lemma 3, ’separated plus
satisfies the hypotheses of Theorem 1. Thus E

card(E b(a)) > (4/p)log(1/8’)/(1 R2)2

is sufficient for

fill dm < C E (1- lal)Zlf(a)l,
a.E

fAp.

Another condition sufficient for this inequality is that E be separated and

sup inf
zUa.E

p(z, a) < e(8’)l/Pe -x/2.

This comes from consideration of the last part of Lemma 3.

The previous two examples (except for the specific quantitative estimates in
Example 2) were known (e.g., see [5], [6], [7]). The following example illustrates
the advantage of Theorem 1 over previous methods. It could not be obtained
from previous results.

Example 3. We build a set L by including in L the two radii [0,1) and
[0, -1) and the two half radii [1/2i, i) and [- 1/2i, -i), and, at the nth stage, the
outermost segment of 2-t radii of length 2t- which bisect the 2-t arcs
determined by all previous segments of radii. Thus, if 1, [1- 2 -"+1,1),
then

oo 2"

L.J U I.exp[ik2-"+]
n-1 k-O

Let d/ be (1 Izl) ds where ds is arclength on L. A moment’s consideration
(or tedious calculations) reveals that there are choices for e and R and a
positive number c, such that D(a) will contain a segment from L of length
> c(1- lal), for any choice of a U Then Ira/Ill,all will be boundedly
absolutely continuous with respect to arclength on a circular arc with length
bounded away from zero and with Radon-Nikodym derivative bounded away
from zero. Weak* limits will then be non-zero functions times arclength on
non-degenerate circular arcs. These dearly cannot be concentrated on zero sets
of any f(/). Thus f Illv dm < Cf Illv d/x for this particular/.

In general, examples can be created at will by putting conditions on
that prevent /.t

a from being concentrated on a zero set and making sure the
conditions are uniform in a and.preserved under weak* limits of/a/ll/al[.
The additional condition It(D(a))> cm(D(a)) was shown in [6] to be

necessary (for some eR < 1) provided f lf[’ dl < Cf f[ dm was satisfied.
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(This is a so-called Carleson inequality, the reverse of that considered by
Theorem 1). Thus, if it is assumed that A

___
L’(#), a portion of the

hypotheses of Theorem 1 is necessary for the conclusion and the conclusion
amounts to saying that A is closed in L(/).
The arguments in Example 1 apply almost without change to measures of

the form h dm when h is bounded and positive. The conclusion is that the
necessary condition fDa)h dm > cm(D(a)) is sufficient. It is easy to show that
this is equivalent to the necessary and sufficient condition given in Corollary 1
of [3].

5. Mixed norm spaces: The main result

We assume that (/: 0 < r < 1} is a family of positive fitite measures on U.
The particular case where/r is concentrated on zl r is more or less typical
of the more general case and may be assumed on first reading. This is the case
considered in [2], though there the setting was the unit ball in Cs, the/, were
always discrete, and only the Bergman and Hardy spaces were studied. The
generalization of the present results to Cv would be routine and is left to the
reader. (See [2] for certain special cases.) In this section we study inequalities
of the form

where u is a measure on [0,1). As in the previous section we need a family of
measures on zl < R.

DEFINITION 2. Let S be a subset of [0,1). Let ’(S) be the collection of
measures formed as follows. Let ka be as in Definition 1. Form all

I-ta X Izl < R ( ftlal t; 1)
as a varies with lal S. Let t’(S) denote the collection of aH fta/llftall thus
obtained.

We wish to allow for the possibility that many/.t may be zero. In that case
we would take S to consist only of r for which/r is not zero. What follows is
the main result and is the mixed norm version of Theorem 1.

TaOREM2. Let 0<p, q< +oo and a > O. Let { #r: O < r < l } be as
abooe and let , be a positioe measure on [0,1). Suppose

inf #,(/(re’)) > (1 r)Xs(r)
0
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where S is some subset of [0,1). Define dvs Xs dv and assume

Vs([r, r*)) > ClVs([r,, r)) > cc2(1 r) qa

for some c > 0 and all r [0,1). There is a ’ 8’(cx, p/q, e) such that if
(S) and f(’) satisfy the hypotheses of Lemma 4 then

Ilfllq, q, -< C Ifl a/

for all f H( p, q, a), with C independent off.

Note. The hypothesis

inf I()(rei)) > (1 r)Xs(r)

may easily be changed to

inf [l()(re’))] q/p > h(r)Xs(r)

provided the definition of vs is changed to

dvs(r ) [h(r)/(1 r)] q/PXs(r) dr(r).

The form stated in the theorem is no loss of generality because we can
multiply/r by any function of r on any set S and divide v by the q/p power
of that same function on S without altering any of the integrals in the
conclusion.

Proof. We have, from Lemma 4, the definition of t’(S) and the argument
preceeding Theorem 1, that

If(re) <_ cfb(reiO)Iflp d/xr(1 r) -,
provided r S and rei F where F is as defined in Lemma I relative to vs.
(Note: 8(cx, p/q, e) and ’ is obtained from 8 just as in {}4.) Multiply this
inequality by xF(re) to get an inequality holding whenever r S. Integrate
it with respect to to obtain

0i(re )If(re
"0

,o) [ dO cfvlf(z) Ig(z) atxr(Z)(1 r) -,
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where g(z) fo2XFcb(z)(rei) dO < C(1 r). So, for r S,

fo2"(xlflP)(re) dO <_ cfuIfl did, r.

Raise this to the q/p power and integrate with respect to Vs. If we observe
that the hypotheses on ’s are just those of Lemma 1 we obtain

( )q"fMg(/, r)dvs(r ) <_ cf fll dl.[ dr(r).

It remains only to observe that

fr+’Mqp(f r) dvs(r ) >_ Vs([rn, rn+))M:(f rn)

> c(1 rn+l)qaM:(/, rn)

> c M(f, r)(1 r) qa-1 dr, n > 1.
-1

Summing on n gives cllfll, q, <- fM,(f, r) dvs(r ), completing the proof.

Remarks. (1) The choice of 8 in Lemma 1 depends only on the constant
in the hypothesis on ,, the original e, and the ratio p/q. This determines the
set F and a 8’ to define f(8’). t’(S) is required to satisfy Lemma 4 for this
8’ and some choice of R.

(2) In case q + o, a > 0 we have the functions of slow mean growth.
In that case we use Lemma 2 and obtain

,s-eSssup(1 r)aM,(f r) < K ,-esssup Ifl dl

provided vs satisfies the hypotheses of Lemma 2, namely ,s([r, r*)) > 0, all r.
It is easy to see that this alone implies

sup(1 r)aM(f r) <_ C ,s-ess sup(1 r)M’(f r).

In case a 0 (the Hardy spaces, Hp H(p, , 0)) we require only ,s([r, 1))
> 0, .all r. This gives the following.

SCHOLIUM. Theorem 2 remains valid when q + o if we replace the condi-
tion on vs with the weaker conditions above and replace the conclusion with

Ilfll, oo, C v-ess sup Ifl’ dl
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(3) The case p + o0 will be left to the reader or a later work. The
corresponding result would have a conclusion such as

Ilfllqoo,q, _< cf(tr-eSssuplfl) q dr(r).

The most straightforward theorem could be obtained by replacing L’ norms
by L norms in all definitions, lemmas, and theorems, and little good would
be served by playing out the details here.

6. Some examples in He

In [7] it was shown that if r, --, 1- and if points ank k 1, 2,..., k were
chosen appropriately (see page 331 of [7]) with lankl rn, then

k

sup E [f(a,k) ’ (1 G).
n k-1

This follows from the q + oo, a 0 case of Theorem 2. (See the remarks
following its proof.) We would take 0 if r { rt, r2,... } and

k

The measure v could be any measure with positive mass at each of the r, and
S could be {r1, r2,...}. The a, need to be chosen separated (i.e.,
inf( p(a,j, a,k)" j 4= k, n 1,2,... } > 0) and such that )(Gei) always con-
tains more than N of the points { a,k) where N is as in Lemma 3:

N > (4/p)log(1/$)/(1 R2)2.

Or chosen separated but closer together than e51/’e -x/2 in the metric p. (The
H(p, q, a) analogue of this example was observed in [2] to follow from the
methods of [71.)
As a second example let G -’ 1- again, and let G be measurable subsets of

zl 1. Then a sufficient condition that there exist a constant C such that

sup. flf( e’) ( dO Csup. f .lf(r,,e’) I" dO (6.1)

for all f H’, is that there exist positive constants B and b such that

arclength(G. [0, 0 + B(1 G)]) > b(1 G)
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for all n and all 0. This follows from Theorem 2 if we define measures
supported on Izl r to be arclength on r,G.. Notice that

g,.()(r,e’)) arelength(G, I,)
where I, is an interval about 0 whose length is proportional to 1 r,. A
sequence G, can be constructed based on the example constructed in [5, page
158], which shows that (6.1) may fail for f H. There is an H(p, q, a)
analogue for this example as well.

Finally, consider the set L constructed in Example 3, Section 4. Let K, be
the annulus with radii 1 2 -"+ and 1 2-". Let L, K, C L. Thus L,
consists of 2" equally spaced segments of radii that lie in A,. Let # ds on
L, if r 1 2 -n, /tr 0 otherwise. Then there is a constant C such that

sup, fir(re ao Csup fz.[f[’ ds

for all f H’. Moreover, there exist constants C’ and C" such that

sup(1 r)M,(f, r) < C’sup(1 r.) l/l" ds
/" 1

for all f H(p, oo, a), and

(fL )q/Pf01(1 r)qa-xM(f, r)dr < C"E(1 rn) qa Ill’ ds
n

for all f H(p, q, a). Any one of these inequalities may fail if the left
member of the inequality is infinite (i.e., if f is not in the appropriate
H(p, q, a) space).
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