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ON GENERALIZED ZETA-FUNCTIONS AT
NEGATIVE INTEGERS
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HELMUT MfLLER

1. In analytic number theory the Riemann zeta function (s), which is
defined for complex s with R(s) > 1 by

(1) ’(s) E n-,

plays an important role. It is well known that ’(s) represents an analytic
function of s in the whole complex plane except for a simple pole at s-- 1
with residue 1. By Euler’s identity, for R(s) > 1, ’(s) can also be defined by
an absolutely convergent infinite product, namely

(2) ’(s) 1-I(1-p-’)-
P

where the product is taken over all primes p. Formula (2) is the basis for many
analytical methods to get informations about the distribution of primes.

Zeta functions were also considered in a more general context, in particular,
the zeta functions in the theory of Beurling numbers [1], [3], [9]. Here the
primes p in (2) are replaced by certain real numbers. The corresponding "zeta
function" was studied especially as an analogue to the Riemann zeta function
[6], [10], [11]. Another kind of generalization was considered in [2].
Without using any information about the multiplicative structure of the

integers, in his thesis [7] J.H. Hawkins studied zeta-functions z(v, s) where the
integers n in (1) are replaced by real numbers Xn X(v); hence

(3) z(v,s) ., ,-*, s C, R(s) >1.
n--1

Here h is the n-th positive zero of the Bessel function Jp of the first kind of
order v, v > 1. Since ,(1/2) r n, n 1, 2, 3..., the case of the Riemann

Received July 23, 1986.

(C) 1988 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

222



GENERALIZED ZETA FUNCTIONS AT NEGATIVE INTEGERS 223

zeta function is included. It is easy to see that (3) converges uniformly on
compact subsets in R(s) > 1, so z(v, s) is analytic in that half plane. It has an
analytical continuation into the whole complex plane except for simple poles
at s 1,-1,-3,-5, The corresponding residues can be computed
recursively. More recently F.T. Howard [8] has studied some arithmetical
properties of z(v,2n) for several v, n N. In [5], E. Elizalde gave asymptotic
expansions for similar generalized zeta functions which turn out to be of
interest in theoretical physics.

In this note we take up the considerations of Hawkins again. But the only
condition which the numbers 2 in (3) now have to satisfy is an asymptotic
behavior for large n instead of the condition being zeros of a solution of a
certain differential equation (like the Bessel function). Therefore, the conclu-
sions become a bit more complicated, but the results are more general, of
course. The following theorem will be proved:

THEOREM.
expansion

Let P(x) be a real function defined for x > 1 with an asymptotic

(4) P(x) E Akx-k, Ak R,
k=,-1

with A .’= A_ > 0. Let )k
n
:= P(n) for n 1, 2, 3, If

(5) ’/,(s),= Eh;s, sC,R(s)>l,
n,=l

then e(s) represents an analytic function in the whole complex plane except for
a simple pole at s 1 (with residue A -x) and perhaps simple poles at s
-1,- 2,- 3, The corresponding residues can be computed recursively in
terms of the coefficients Ak.

Note: (4) means that for every N 0,1, 2,...,

N

e(x) E x-.
k--1

Examples. (1) The Riemann zeta function ’(s) is included by setting
A 1, A, 0 for k 0,1, 2,... and equality in (4).

(2) With A---l, A0= a, -l < a < 0, A,=0 for k--1,2,3,.., the
Hurwitz zeta function ’(s, 1 a) is also included.

(3) Let X be a Dirichlet character modulo m and L(s, X) ’= F,-xx(n)n-s
the Didchlet series. As L(s, X) m-’E-x(k)(s, k/m) this case is covered
by Example 2.
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(4) Let , > 1 and P(x) P(x) defined by P(0) 0 and

J,, ( P(x))cos(rx) + Y(P(x))sin(rx) 0,

where Y is the Bessel function of second kind. Then the zeros of J are given
by j, P(n), n 1, 2, 3, By McMahon’s expansion we have (4) with
A r, Ao 0, A (1 4,2)/8r, A2 0,

A3
(1 4,2)(28,2- 31)

384r3 /14-- 0,

a5
(1 4,2)(1328,4- 3928,2 + 3779)

15360r

(see [1, p. 115] or [12, p. 506]). As the zeta function z(,, s), which was studied
by Hawkins, is built like this e(s) we obtain the same analytical behavior, of
course.

2. The proof of the theorem is divided into two steps: in step I we fix an
integer N > 1 and consider the case,. An + Ao + Atn -t + +Avn-N.

In step II we return to the general case

). An + Ao + An-t + +ANn-N + RN with RN= O(n-N-).

Before we start the proof we introduce some simplifications. Because we are
interested only in the analytic behavior of e(s) and because ,’ is an entire
function of s we can omit finitely many terms in (5). As diverges with n we
can assume that

(6) ’,, > Xx > 0

holds for n 2, 3, 4, For t > 0 let

(7) f(t) := E exp(-hnt)-
n--1

With (6) we get

f(t) exp(-hxt)(1 + exp(-(h 2

=O(exp(-)tlt) for t

hl)t ) + exp(-(h hi)t) +... )

This means that the series in (7) is absolutely convergent for > 0 and even
uniformly convergent in 0 < to < t.
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Step 1. Following the classical methods of Riemann and D.B. Zagier [12]
we have to study the asymptotic behavior of f(t) for ---, 0 +. With

hn An + Ao + A1n-1 + +Alvn -n

we obtain

f(t) ., exp(-t(An + Ao + A,n-: +... +Ann-n))

exp(-tAo)g(t ).

As exp(-tAo) is analytic in 0 it is sufficient to look at

g(,) E ,xp(-,(an + aln +... +a,,,-")).

Hence we are led to sums like

(8) Fk(t) := E n-kexp(-tAn), k N, > O.
n-1

Here we need the following:

Let t > O, A >0, k N and Fk(t) defined by (8). Then for

Fk(t) (_l)k (At) k-1
(k- 1)! log + P(n_l)(k; t) + O(tn)

where P(n-1)(k; t) is a polynomial in with a degree less than N.

Proof We use induction on k. For k 1 we have

Fl(t ) _, n-exp(-tAn) -log(1 exp(-At)
n--1

and therefore

Fl(t ) + log t -log
1 exp(-At)

As (1 exp(-At))/t is analytic in 0 and doesn’t vanish for Itl < 2r/A,
Fx(t) + log t is analytic in this domain, too; i.e., the assertion is tree for
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k 1. If k > 1 and if the lemma is true for k 1 then F(t) -AFk_x(t)
implies that for fixed to > 0,

tFk(t ) A Fk_l(X ) dx + Fk(to)

A ftO((_a)k- (Ax) k-2

(k- 2)! logx + P(N_x)(k- 1; x) + O(x

+Fk(tO).

After computing the integrals and using the estimation m= O(tN) for
rn > N, 0 + we get the assertion for k.
Then we obtain

g(t) _, exp(-tAn)exp(-t(An-X + +Ann
nl

Z exp(-tAn)Z (--t)k
’-1 k-O v + e-k

k
X -" (Aln-1) 1Vl! VN! (ANn-N) oN

E exp(-tAn)+ E (-11 k

n-1 k-1

AI Aj
Fo

01+ ...ONffiffik Vl! VN! -1"22+ +NoN

Since E,_exp( tAn)- (At) -x is analytic at 0 there exist polynomials
p(,_x)(k; t) of degree < N- 1 with

(9) g(t)
k.,,1 v + +vN-k 1"

(/it)m_1 )p(n_l)(k; t) + (-1)m(m_ 1)!logt + O(tN)

t0+,

where m vl + 202 +... +NoN. Finally we expand exp(-Aot) into its
series. Multiplying term by term we get

N-2 N-1

o(10) f(t) , Bnt n + logt C.t + o(tN), --. 0 +
n- -1 n-1

with certain well defined real numbers B,, C. For s C, R(s) > 1, using the
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Mellin-transform we obtain

+ /(t)ts-ldt

=I +I2.

By (6) we know that 12 converges for all s, even absolutely and uniformly on
compact sets; i.e., 12 represents an entire function on s. With

I E nntn ts-ldt=
n-- --1

N-2 Bn
n+s

and

x
logt Cnt n s-

n--1 n=l (n + s)2

it follows that

N-2 Bn
n+s

N-1

E
n-1 n 3

N-2 N-1 }
n- -1 n=l

where the integral converges for all complex s with R(s)> -N (see (10))
absolutely and uniformly on compact sets. Hence the function

has an analytical continuation into R(s)> -N. We see that F(s)e(s ) is
analytic in this complex half plane except for simple poles at s 1 and s 0
with residue B_ (resp. B0) and double poles at s -1, -2,..., -N + 1. It
is well known that F(s) has simple poles at s -n, n 0,1,2,... (with
residue (-1)"/n!). Therefore p(S) has at most simple poles at s
1,- 1,- 2,...,-N + 1 where a pole at a negative integer only occurs when
the coefficient C (which can be computed recursively by comparing (9) and
(10)) doesn’t vanish.

This proves the theorem in the case where N > 1 is fixed and

N

RN:ffiP(n)- E Akn-k=O.
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Step II. Let # .’= P(n) ,l._lAkn-k + RN )n + RN where RN
RN(n ) O(n-N-), n --, oo, and the involved constant may depend only on
N. In step I we proved that ;p(S) E%t, is analytic in R(s) > -N except
for at most simple poles at s 1, -1, -2,..., -N + 1. Considering

a(,) ,= E E (x%-
n-1 n-1

with h,/ An for n oo and RN O(n-N- t), we get

Hence the series of d(s) converges uniformly on compact subsets contained in
the half plane R(s)> -N; i.e., d(s) represents in this region an analytic
function and therefore ’e(s) has the same singularities as ’,(s) d(s).
As N can be chosen arbitrarily large the theorem is proved.

3. Finally we give the values of the first residues of ’e(s) where we assume
for simplicity A0 0.

c.
hi

-AzA
A2

2 AA3T + A1T
A A2

-A4- -AA2T
A4 A A

As- + a- + A1A3T
A2

Ress_ _.’/,(s)
hi

2A2A

3A3A2 + 3AA

4A4A3 + 12AIA2A2

5A5A4 + 10A.A3 + 20AtA3A3

+ 10At3A2

If one replaces Ak by the coefficients of McMahon’s expansion (see Example
4)) the same values appear as those determined by Hawkins.
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