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THE MAXIMAL OPERATORS RELATED TO THE
CALDER(N-ZYGMUND METHOD OF ROTATIONS

BY

LUNG-KEE CHEN

1. Introduction and result

Let ai, 1,..., n, be positive numbers, 0 < a < a 2 < < an. Define

tx ( taxl,..., taxn), > O,

where x (x1,... xn) if: R". Let z a + +a,. and v always denote a
unit vector,

v (v,..., v,) e s"-,

and do(v) denote the Lebesgue measure on S"-t. Let L’(Lq(S"-t)R")
denote mixed norm Lebesgue spaces. More precisely, if

IIgll() IIgll(s.-)l[<.) ._lg(v, x)Iq do(v) dx

then we say g(v, x) LP(Lq). Define

M,,f(x) sup 7 f(x 8tv) dt.
r>0

R. Fefferman [2] proved that if a a, 1 then Mof is bounded on
LP(L2), for p > 2n/n + 1. Further developments are found in [1] and [3].

In this paper, we prove the following theorem.

THEOREM. Iff Lp( Rn), then
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provided

(1) 1 <q<
n q n-l+

n-1 and 2 <P< ’n-l+-q

-ff q(n- 1)(2) n-1 < q and 2 < P < oz.
n-l+-

Let f denote the Fourier transform of f, and f denote the corresponding
inverse Fourier transform. C will denote some constants which may depend
on n, p, al,... a, and may change at different occurrences.

2. Proof of the theorem

Let f > 0. It is clear that

1 fff(x to) dt < 2supA,, f(x)Mof(x ) sup 7
r>O k

where

fR.Ak(X)g(X) dx f12g(2ktv) dt,

and k is integer. Let us define a family of operators (T, of ), where a is a
complex number. Let

(Ta, vf ) A (x)= fl2exp(i(82ktV) X)dr(1 + [82kXl2)--a/2f(X)
mk(V, X)flX).

Clearly TO
k, of(x) Ak, f(x). In order to prove the theorem, we need the

following three lemmas.

LEMMA 1. /fn > Rea > -1In then IlsuplZofl I1=(.=) CIIfll=.

LEMMA 2. Let 1 < p <_ oz. Then IIMofllL() CIIfllp-

LEMMA 3. /f n > Rea > n 1 then IlsuplZ,ofl IILP(Lq) CIIfllp, for
1 <q< o,1 <p< oz.

Using the analytic interpolation theorem with Lemmas 1 and 3, we have

[IMofllL(Lq) <-- Cllfllp,
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for

<q,p<2 n-1
n-l+-

Next, by interpolation between Lemma 2 and the trivial case, IlMofll(
cIIfll,.oo, for 1 < q < , we have IIMofll(o
Therefore the theorem follows by applying the real interpolation theorem to
the above results.

Proof of Lemma 1. One takes a smooth function, p C(R"), with
compact support and fp(x) dx 1. Let

1
Pk(X) (2k)rP(2-kX).

Then

)/2sup[ T, of[ < 1T, of P * f[
k k

+ MM. Mnf,

where Mif is the Hardy-Littlewood maximal operators acting on the x
variable. It is well-known that Mf is bounded on LP(R"). To prove that
SUPk[ Tk, ofl is bounded on L2(L2), it is sufficient to show that

(1.1) E [ Imp(v, x) (x)I
k aS

is bounded for every x e R". We claim that

fs._[mk(V, X) Pk(X)[2 do(v) < C min{162xl 2, 162xl-(2/n+2Rea) }.

By dilation invariance, we can assume k 0. If Ixl is near zero, m0(v, 0)
(0) 1, mo(v, x) and/3(x) are smooth functions. Therefore,

Im0(v, x) P(x)l -< Clxl.

It is clear that/3(x) < 1/Ixl /=. On the other hand, if Ixl is large, then

fl2 i(Btv)’x (1 Ixl) -/mo(v,x ) e dt +

ir(t).li dr(1 + ) /e Ixl =
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where r(t) (tax,..., ta") (OlXl,... VnX ). The last equality is bounded by

I1-1/"Ix[-Rea.

This critical estimate for mo(o, x) is obtained by the Van der Corput’s lemma
(see [4], age 1257). Without loss of generality, we can assume Ix1[--
max(lxx[,..., Ix, I}. It is clear that [xl [Xl[. So,

Imo(u, x)l -< ClUllXl I-/"lxl-.
Hence,

fs._xlmo(u, x)I= do(o) < Ixl-2ReaflollXll < 11 do(u)

+ flollxll> 1
Imo(o,x)12do(o)

a--[1 2/n-< cI/I -x-=R / C’lxl -- (Ixl 1/911) do1

<_ CIxI -(2/n+ 2p’e’)

Hence, we proved the claim. Note that Itxl I,1 where Y
(IXxl,..., Ixl). It is clear that Io1 0, I/Yl o if o, 171 0 and
I/JtYl is an increasing function of t. Therefore for every x Rn- (0} there
exist ko, Jo, 1 < Jo < n such that

Ixil/2goa, < 2a,

for every 1,..., n and 1 < IXiol/2koajo < 2%. Changing index in the sum
in (1.1) from k to k + ko it is sufficient to assume that Ixl < 2ai and
I < Ix.l < 2aj for some j. Therefore,

L._lm,(v, x) p(x) do(o) <_ C min{2kB, 2 -kv(2/n+2Re’O },

where fl, V are positive. Hence,

Im(v, x) 3(x)I= do(v) < oo

for every x R", if Re a > -1/n. Lemma 1 is proved.
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Before proving Lemma 2, we need the following lemma.

LEMMA 4. Suppose IlSuPklAk* fl IILq(Lx) < CIIfllLq.
(I) Suppose 1/2 1/Po 1/2q. For arbitrary functions Uk( V, x) on S
R, define the operators Lk by

Lku u(v, x + 32ktv) dt.

Then the following vector-valued inequality holds:

k L’O(L) L(Sn L,o(R")

(II) Suppose 11/2- 1/Pol 1/2q and (gk)=l are arbitrary functions
defined only on R". Then we have the same inequality as in (I), namely

iA * gl
9-

k LPO(L1)
2) 1/2

Proof of Lemma 4. (I) Since Po > 2, there exists a positive function,
h Lq(Rn), with unit norm, such that

lZul lLul h(x) dx
k LPO(L1 k LI(sn-l)

(1) <_ cff
k

cffEu {o, y)A
k

* h(y) do(v) dy

(2)
2

k Lq(L1)
Po

C lull 2

L(v) Po

where the inequalities (1) and (2) are established by HSlder’s inequality.
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(II) By (I), the vector valued inequality holds if P0 > 2. On the other hand,
if P0 < 2, 1/po + 1/p 1 then

Elzx gl 2 sup ZAk gk(X)Uk(V, x) do(v) dx
k L,o(L1)

n-1
k

supffEg (x)L u (v, x)ao(v)dx
k

(3)
k Ll(v)

(4) supll(xl  l=)  =ll XlL u I =
Po k L’b(L1)

where the supremum is taken over all indicated (uk } k with the unit norm in
LP’(L(12)). The inequalities (3) and (4) follow by H/51der’s inequality, and
the inequality (5) is supported by (I). Lemma 4 is proved.

The proof of Lemma 2 follows the ideas of J. Duoandikoetexa and J. L.
Rubio de Francia [5], but in this lemma, we need to consider the extra
Ll(Sn-1)-norm. We will use the same notation as in the proof of Lemma 1.
The proof of Lemma 2 will be obtained by induction.

Proof of Lemma 2. We separate the proof into two parts: the boundedness
on L2(L) in the first part, and the boundness on LP(L) in the second part.

Part 1. It is enough to show

k LI(v) L2(x)

If n 1, it is clear that

A*f< CMf.

Suppose that for n- 1 dimensions, sup, lA,.fl is bounded on
L:(L(S"-2), Rn-), n > 2. In n dimensions, let v (v’, v,,) S"- where
v’= (v,..., V_x), and x (x’,x,,) Rn, where x’ R-, and ,tv’=
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(tal/)l,... ta"-ll)n_l). Let

We claim that suPklA-l, f(x)l is bounded on L2(LI(Sn-1), R"). Let us
make a change of variables for o, 0 Sn-1. Let don_ 2 denote the Lebesgue
measure on S-2. Since

After a change of variables for x, (i.e., x’ - (1 S2)1/2x t, x ---) Xn) we let

1/2i(x’, x,,) l((a s) x, x,,).
By the induction hypothesis, the term in parentheses is bounded on

L2(Li(Sn-:),Rn-i )

for almost every x R. Therefore, the last inequality is not bigger then

flllfsll.(l_ S2)(n-1)/4(1 52)(n-3)/2 dS.

Then we change variables again. The inequality above becomes

f_ Ilfll(1 S)<"-3)/-dS <- Cllfll:,
1
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if n >_ 2. Therefore, we have

k L(S-1) L2(Rn)

Let p be a smooth function in R, (this p is different from the p in Lemma 1),
p C(R), and fp(x)dx 1. Let

p(x) p
Let

(Ac-I (R) p), f= ff2f(x’ 2ktl)’, X y.)p(y.) dtdy=.

Let us write

A,f_<lA,f- (-: (R)Pk)*fl + sup[A’-:* Mnfl,
k

where M is the Hardy-Littlewood maximal operator acting on xn variable.
From (2.1) the second term of the right hand side of the above inequality is
bounded on L2(L:). On the other hand, the first term is dominated by the
square function,

)
1/2

o(:) EI,/- (,-’ (R) p),:l’
k

To show G(f) is bounded on L2(L:), by the Minkowski’s inequality and the
Plancherel’s theorem, it is sufficient to show that

---1(/3t, Xt)(2kanxn)I’1 :(x’, x.)I
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On the other hand, as in the proof for Lemma 1, using the Van der Corput’s
lemma, and/3(x) < 1/Ix I, we have, if 12kax is large,

la(o, x) a.:,(v,, x’)(2ka.x,,) <_ C151-x/" + 12ka"Xnl-1
< CI2ka.x.o.I -/"

2kanxwhere (2kaXXlO1,..., non). Hence, we get

]k(O, X) :-1(0’, Xt)k(Xn) <__ Clon1-1/n mJn{2ka"lxnl,

So

E I(o, ) v’(o’, x’)(x,) I’ _< c.o,. -’/.

k

Hence G(f) is bounded on L2(L1), if n > 2. That is to say

IlsuplAk*fl -<
k L2(L1)

Part 2. Now, we start to prove that suPklA * fl is bounded onLP(L1),
1 < p < o, again, via in duction argument at dimension n. As above, when
n 1, SUPklA * fl < CM(f). Suppose that for dimension n 1,

k LI(Sn-2) Lt’(Rn-)
< CIIfll l<p< o.

(Note that

LX(S"-x) L(Rn)
-< CIIfll ,,(n-).

by the same proof as in (2.1) of part I.)
Let us consider a partition of unity on (0, o). That is, thereexists a function

h C(R) supported in [2-a",2a"] and such that 2jh(2a"Jt) 1. Define

Sjf(x’, Xn) h(2a"Jixni):(x ’, Xn).
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Then

) 1/2suPlA* fl < EI(A A-1 (R) P)* fl

j

/ sup I(A%-1 (R) p), f
k

/nk- (R) p)* Sj+f )
1/2

/ sup [(A-I (R) p)* f [.
k

By (2.4) the second term of the last inequality is bounded on LP(L). Let

rjf (Z[(Ak A-I(R) p#),Sj+z<f[:)
k

First, let us compute the L2(L)-norm of Tf. We have

From (2.2), we have

(2.6) II Ts.fll ,_(e) _< C min{2 -’-, (2a’J)I/n }[[f[[2-
Next, applying (2.3) and (2.4) (just with p 2) to Lemma 4 (II) (let g
Sj+f), and using the classical Littlewood-Paley theorem and the vector
valued maximal operators, we have

Ela , s + il
k Ls’O(Ll)

<- cIIfllpo,

and

k Lt,O(I))

<_ C EIM,,Ss+fl <_ CIIfllpo,
k Po
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where 11/2- 1/pol 1/4. Hence

Interpolation between above inequality and (2.6), yields

II Tfll<b < C mJn{2-ea"J, 2ea"j/n }llfllp,

where I1/p 1/21 < 1/4 and 0 < e < 1, e depending on p. Hence, from
(2.5), we have

k Le(L) k L’(Lx)
/ llTfll<v)< CIIfll,

J

if I1/p 1/21 < 1/4. Again, applying (2.8) to Lemma 4 (II), finding the new
range of p of inequality (2.7) and repeating the procedure as above, we
conclude that (2.8) holds if 1 < p < o. Lemma 2 is proved.

Proof of Lemma 3. If n > Re a > 0. Let G denote the Bessel potentials,
(See [6], page 132). Then

G"Z(y) (1 + ly[U)

and let

Gk(y ) (1 + Izyl ) /

Then

Tk",of(x) fll.f(x y 2to)G;(y) dy dt

) f12G"(y 8,0) dt dy.

It is well known that G(x) is controlled by

ixl n-Rea
as Ixl 0
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and is rapidly decreasing as Ixl c. Therefore, ft2G(y 8tv)dt is domi-
nated by

X lYl < C

Since v (v,..., v,) Sn-l, there exists vi, say Ol, such that v2t > 1/n. So
the integration term is not bigger then

X lyl < c

lYt tal vii Re

It is easy to see that if n 1 < Re a < n, the above integral is bounded by a
constant which doesn’t depend on v Sn-1. Hence T, of(x) < CMf(x).
Lemma 3 is proved.
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