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1. Introduction

Let S denote an orientable surface of least genus on which the finite group
G acts in an effective and orientation-preserving manner. We define the genus
g(G) of the group G to be the genus of the surface Se. By the Neilson
Realization Problem [5], no generality is lost if we further assume S to be a
closed Riemann surface and G to be conformally represented in its action on

S. By a theorem of Schwarz, if S has genus at least 2 then G embeds with
finite index in the full automorphism group Aut(S), but little can be said
about the nature of the embedding. This is in sharp contrast to the situation
when G is assumed to be simple and (2, s, t)-generated [13].
The main purpose of this paper is to prove the following result.

THEOREM 4.2. Let G be a sporadic simple group other than McL or Fi4.
Then Aut(S) G where S is a surface of least genus for G. Moreover, if G is
isomorphic to one of McL, Fi(z4, then we have either Aut(S) G or Aut(S) =-
Aut G.

Pursuant to establishing this result, we are led to consider the following two
questions.

(1) Which of the sporadic groups are generated by an involution x and
element y of order 3?

(2) Among such groups, which are Hurwitz (i.e., have the additional
property that x, y can be chosen to have product of order 7)?

We are able to settle (1) for all sporadics; only Mll, M22, M3, McL fail to
have the prescribed generation. The table below summarizes the situation for
the remaining sporadics, with the relevant conjugate classes indicated in the
appropriate columns. (Descriptions of these classes, as well as the character
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Table 1. Sporadics which are (2, 3, t)-generated

G Out G 2 3

M12 2 2A 3A 10A

J1 1 2A 3A 7A

2 2 2 3 7A
HS 2 2B 3A llA

J3 2 2A 3B 10A

M24 1 2A 3B 23A
He 2 2B 3B 7D
Ru 1 2B 3A 7A
Suz 2 2B 3C llA
O’N 2 2A 3A llA
Co 1 2B 3C 7A
Co 1 2C 3A 23A
Fi:,2 2 2C 3D llA
HN 2 2B 3B 7A
Ly 1 2A 3B 7A
Th, 1 2A 3C 19A

Fi:z 1 2B 3D 23A
Co 1 2B 3C 23A

J4 1 2B 3A 37A

Fi4 2 2B 3D 29A
B 1 2D 3B 47A
M 1 2A 3C 47A

tables and maximal subgroup structures of the underlying groups, can be
found in [2].) No claim is made as to the minimality of subject to such
generation, although we do remark that in a number of cases (e.g., when Out G
is cyclic of order 2) our intention was to achieve small values for t. As for the
status of (2), we have attempted a treatment of only those sporadics for which
the maximal subgroup structure has been completely determined (viz. Mll,
M12, J1, M22, J2, M23, HS, J3, M24, McL, He, Ru, Suz, O’N, Co3, Co2,
HN, Ly, COl) [2]. This is because the problem of establishing Hurwitz
generation is inexorably linked to that of determining an effective upper
bound on the number of L2(7)-classes, the difficulty of which rises dramati-
cally with the order of the group. For the nineteen sporadics indicated above,
question (2) is entirely settled. There are precisely seven Hurwitz groups
among them, namely those which appear having the prescribed (2, 3, 7)-genera-
tion in Table 1.
We now introduce the notation we shall use in subsequent sections. Let G

be a finite group, gl, K2, K conjugate classes of G, and z a fixed representa-
tive of K3. We denote by AG(K1, K2, K3) the number of distinct ordered pairs
(x, y) satisfying

(i) x K, y K2,
(ii) xy z.
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It is well known that Aa(K1, K2, K3) is a structure constant of the algebra
Z(CG) and can readily be calculated from the character table for G by the
formula

A (Kx, K=,K3) IK I IK _I E X(x)x(Y)X(z )
IGI x irrG X(1)

(Obviously Aa(K1, K2, K3) is independent of the representative z of K
chosen.)
The number of such pairs which additionally satisfy

(iii) G= (x,y)

shall be denoted by A(K1, K2, K3). Clearly a group G admits (r, s, t)-genera-
tion if and only if there exist G-conjugate classes K1, K2, K3, whose represen-
tatives have respective orders r, s, for which A(K, K2, g3) > 0.

Finally, for H a fixed subgroup of G containing z, we denote by
H(Kx, K2, L) the number of distinct pairs (x, y) which satisfy (i), (ii), and

(iv) (x,y)_<H.

Here L denotes the H-conjugate class to which z belongs, while K, K2 are, as
before, G-classes. The reader should observe the fundamental difference be-
tween En(K1, g2, L) and An(L1, L2, L3) where L1, L, L3 are H-conjugate
classes. That is, each of H N K1, H N K2 decomposes into a disjoint union of
H-classes, and the symbol E serves to indicate that the number of pairs in
K g

2 which satisfy (i), (ii), and (iv) is obtained by summing over the
totality of such classes.

In what follows we rely heavily on the following elementary result which
appears as Lemma 3.3 in [14]:

(1.1) Let G be a finite centerless group for which we have

A(Kx, K2, K3) < C(z)l, zK3.

Then A(K1, K2, K3)= 0 and x, y) is a proper subgroup of G for all
xK, yK2 withxy=z.

Clearly (1.1) gives a useful criterion for non-generation.

2. Sporadics which are (2, 3, t)-generated

In this section we verify the data in Table 1. We first show the list of groups
appearing there is exhaustive.



HURWITZ GENERATION AND GENUS ACTIONS 419

LEMMA 2.1. Let G be isomorphic to Mn, M92, M93, or McL. Then G is not

(2, 3, t)-generated.

Proof. For G isomorphic to Mll, M22, or M23 the result follows from [14],
so we assume G McL. Clearly only those instances which give rise to
positive values for AG(K1, K_, g3) need be considered. These appear below
with appropriate conjugate classes identified.

A(K1, K2, K3) K K2 K [CG(Z)[
3 2A 3A 12A 12
6 2A 3A 30A 30

49 2A 3B 7A 14
20 2A 3B 8A 8
27 2A 3B 9A 27
11 2A 3B 11A 11
7 2A 3B 14A 14

By (1.1) we see directly that G is not (2, 3,12)-, (2, 3, 30)-, or (2, 3,14)-gener-
ated. Moreover Zv(2A, 3B, 9A)= 27 for U < G isomorphic to U4(3) and
Y.r(2A, 3B, llA) 11 for K < G isomorphic to Mll. This proves non-genera-
tion of each of the types (2,3,9) and (2,3, 11). Now choose M < G with
M -= M2. Then ZM(2A, 3B, 8A) 16 whence

A(2A, 3B, 8A) < A(2A, 3B, 8A) Y,M(2A, 3B, 8A) 4.

Thus, by (1.1), G cannot be (2,3,8)-generated. Finally note that a fixed
element of order 7 is contained in precisely two conjugates U, Ug of U U4(3)
in G. As G is a rank-3 permutation group in its action on the G-conjugates of
U, we see that H U c Ug must be isomorphic to either 34: A6 or L3(4), the
two 2-point stablizers under this action. But this implies H -= L3(4 as H has
order divisible by 7. Thus

Y.v(2A, 3B, 7A) Zu (2A, 3B, 7A) 35,

7A)

and we obtain

Xv + Xvg- X/_z 49.

We now conclude that every (2, 3, 7)-subgroup of G is contained in either U or
Ug, whence G cannot be (2, 3, 7)-generated. The proof of the lemma is now
complete.
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LEMMA 2.2. The group M12 is (2, 3, lO)-generated.

Proof. This is given in [14].

LEMMA 2.3. The group J1 is (2, 3, 7)-generated.

Proof We first observe that, as 2, 3, 7 are pairwise co-prime, no (2, 3, 7)-
group can have a solvable quotient. Using this fact, along with the maximal
subgroup structure of J1 [2], it is clear that J1 possesses no proper (2, 3, 7)-sub-
group. The lemma follows as AjI(2A, 3A, 7A) 49.

LEMMA 2.4. The group J2 is (2, 3, 7)-generated.

Proof This is given in [4].

LEMMA 2.5. The group HS is (2, 3, ll)-generated.

Proof The only maximal subgroups of HS with order divisible by 11 are,
up to isomorphism, M_2 and Mll [2]. But the HS-class 2B fails to meet
groups of either type, as involutions in each are necessarily squares.
This proves HS has no proper subgroup of type (2B, 3A,11A); as
A/4s(2B, 3A, llA) 33 the result follows.

LEMMA 2.6. The group J3 is (2, 3, lO)-generated.

Proof The isomorphism types of maximal subgroups of J3 which contain
an element of order 10 are L2(16)’2, L(19), (3 A6)’2, and 21_+4. A [2]. We
claim the J3-class 3B fails to meet L(16)’2 and 2_+4:A5 subgroups. Indeed
each element of order 3 in L(16):2 centralizes an element of order 5, while
those in 2_+4:A5 commute with the involution in its center. Now for L < J3
isomorphic to L(19), we calculate EL(2A, 3B, 10A) 20. As a fixed element
of order 10 is contained in precisely two copies of L2(19) (one from each
J3-class) we get a net contribution of 40. Finally we establish an upper bound
on Er(2A, 3B, 10A), where K is the unique copy of (3 A6):2 in J3 which
contains a fixed element of order 10. First observe that K/O3(K =- PGL(9)
[2]. As At,(2D, 3A, 10A) 10 for P PGL(9), and every such pair is ac-
countable as the image of at most three such pairs in K, we have
Er(2A, 3B, 10A) < 30. Thus

A.3(2A, 3B, 10A) > As(2A,3B, 10A) 70 120 70 50,

i.e., J3 is (2A, 3B, 10A)-generated.
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LEMMA 2.7. The group M24 is (2, 3, 23)-generated.

Proof This follows trivially as AM24(2A, 3B, 23A) 23 and involutions in
copies of L2(23) are of type 2B while elements of order three in copies of M23
are of type 3A.

LEMMA 2.8. The group He is (2, 3, 7)-generated.

Proof. We show He is a (2B, 3B, 7D)-group. The isomorphism types of
maximal subgroups of He with order divisible by 42 are as follows:

2"L3(4).$3, 21++6.L3(2), 7:2L2(7), 3" S7, 71++2"(S 3),
S4XL3(2) and 7"3 XL3(2)[2].

For

H -= 7:2L2(7), K-= 71++’($3 3),

any (2, 3, 7)-subgroup of H or K must map onto a (2, 3, 7)-subgroup of

H/OT(H) SL(2,7) and K/O7(K ) S 3,

respectively. As SL(2, 7) has a unique (central) involution, this is clearly not
possible in either case. From [2] we see that elements of order 7 in
22"L3(4).$3 and S4 L3(2) subgroups are of He-type 7A or 7B. As 3"S7 is the
centralizer of a 3A element in He, its elements of order 7 must be of type 7C.
Finally, any (2, 3, 7)-subgroup of N --- 7:3 L3(2) must clearly be contained
in the unique complement L _= L3(2) in N, whence its 7-elements are of
He-type 7C. This proves any proper (2B, 3B, 7D)-subgroup of He is contained
in a copy of 21++6. L3(2). But from [1], we see that

YR(2B, 3B,TA) 21 for R -= 2++6"L3(2).

(Indeed there are three pairs of R-classes (2X, 3Y) for which AR(2X 3Y, 7A)
7; for remaining pairs A g 0.) We also see from [1] that elements of order

7 in R are of He-type 7D. By comparison of centralizer orders, it is easy to
show that a fixed element of order 7 lies in precisely seven conjugates of R in
He. Thus

Ae(2B 3B, 7D) > AHe(2B 3B, 7D) 7(21) 441 147 294,

whence He is (2 B, 3B, 7D)-generated.
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LEMMA 2.9. The group Ru is (2, 3, 7)-generated.

Proof. The only maximal subgroups of Ru with order divisible by 42 are
(up to isomorphism)

26:U3(3):2, 23+8:L3(2), U3(5):2, As, L2(29), L2(13):2 [2].

Let H be a proper (2B, 3A, 7A)-subgroup of Ru. As H cannot have a solvable
quotient, we see immediately that H embeds in one of

26:U3(3), 23+S:L3(2), U3(5), A8, L2(29), L2(13).

But elements of Ru-type 2B are necessarily non-squares, whence involutions
in U3(5), A8, and L2(13) are of Ru-type 2A. Thus H embeds in one of
26:U3(3),23+8:L3(2), L2(29). Let K < Ru be isomorphic to 26:U3(3), so that
K= 02(K):U with U-= U3(3). From [2] we see that O2(K ) is 2A-pure;
moreover involutions in U are squares so are of type 2A as well. As
ARu(2A,2A,2B) 0, all involutions in K must be of Ru-type 2A. In [9] it is
shown that all involutions of Ru-type 2B in J _-- 23+8: L3(2) must lie in 02(J),
whence Ys(2B, 3A, 7A)= 0 easily follows. Thus H embeds in L2(29). It is
easy to establish that a fixed element of order 7 lies in precisely six conjugates
of L -= L2(29) and that L2(29) contains no proper (2, 3, 7)-subgroup. As each
involution in L2(29) commutes with an dement of order 7 there, we see that
involutions in L2(29) are of Ru-type 2B. Thus YL(2B, 3A, 7A)= 28 and it
follows that

A,,,(2B, 3A, 7A) AR,,(2B, 3A, 7A) 6(28) 560 168 392.

Thus Ru is (2, 3, 7)-generated as claimed.

LEMMA 2.10. The group Suz is (2, 3, ll)-generated.

Proof Up to isomorphism, the only maximal subgroups of Suz with order
divisible by 1.1 are U5(2), M12:2, and 35: Mn. From [2] the Suz-class 3C fails to
meet U5(2). Moreover, involutions in Mxx and M12 cannot be of Suz-type 2B,
as involutions in Mn are 4th powers and those in MI_ are 6th powers (in
Mx2:2). As any (2,3,11)-subgroup of M2:2 must dearly lie in M12, we
conclude that Suz contains no proper (2B, 3C, llA)-subgroup. As
AS,z(2B, 3C, llA) 715, the lemma follows.

LEMMA 2.11. The group O’N is (2, 3,11)-generated.

Proof Up to ismorphism, the only maximal subgroups of O’N with order
divisible by 11 are J1 and Mx [2]. By comparing centralizer orders, one easily
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sees that a fixed dement of order 11 is contained in a unique copy J of J1 and
in precisely four copies N1, N2, N3, N4 of Mll (two conjugates from each class)
in O’N. As Y.v(2A,3A,11A)= 55 and Evi(2A 3A llA)= 11 (i 1,2,3,4),
we conclude that

A,N(2A, 3A, llA) > Ao,N(2A, 3A, llA) 55 4(11) 715 99 616

and the proof is complete.

LEMMA 2.12. The group Co3 is (2, 3, 7)-generated.

Proof We show Co3 has no proper (2 B, 3C, 7A)-subgroup; as

ACo,(2B, 3C, 7A) 504

the result will immediately follow. Let then H be a proper (2B, 3C, 7A)-sub-
group of Co3. Clearly H must be contained in a maximal subgroup with order
divisible by 42. We list these by isomorphism types as follows:

McL:2, HS, U4(3):22, M23, 2"$6(2), U3(5)’$3, 24"A8,
La(4):D2 S X L2(8):3 [2].

But H cannot possess a solvable quotient. Thus H embeds in one of the
following appropriate subgroups:

McL, HS, U4(S), M23, 2"$6(2), U3(5), 24"A8, L3(4), L2(8).

But involutions in each of McL, U4(3), M23 U3(5), and L3(4) are necessarily
squares, so are of Co3-type 2A. Thus H embeds in one of HSI 2"$6(2), 24"A8,
or L2(8). We now consider elements of order 3. Such elements are cubes in
L2(8), so of Co3-type 3A. As 2"$6(2) is the centralizer of an involution of type
2A, elements of order 3 in 2"$6(2) must be of Co3-type 3A as well. Let be an
element of order 3 lying in a copy of HS. Then centralizes an element of
order 5 there, so has Co3-type 3A or 3B. Finally, let E < M with E--24,
M McL. M has two classes of such subgroups which fuse in Aut M ---McL:2, in any case Nlvt(E ) =- 24"47 AS Co has a unique class of 24 sub-
groups [3], we have NM(E ) < N(E) =_ 24"48 Thus every element of order 3 in
N(E) lies in a conjugate of M. As such elements are cubes, they are
necessarily of type 3A or 3B and we have reached a contradiction.

LEMMA 2.13. The group Co2 is (2, 3, 23)-generated.

Proof Any proper (2, 3,23)-subgroup of Co. must lie in a copy of M23
therein [2]. But involutions in M_3, being 4th powers, must be of Co2-type 2A
or 2B. As ACo2(2C, 3A, 23A) 69, the lemma follows.
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LEMMA 2.14. The group Fi22 is (2, 3,11)-generated.

Proof The maximal subgroups of Fi22 with order divisible by 11 are, up to
isomorphism, 2"U6(2), 21:M=, and M12. By examination of the relevant
permutation characters [2], it is easily shown that the class 3D does not meet
any copy of 2"U6(2) or 21:M22 in Fi=. We now consider M <_ Fi= isomor-
phic to M2. Under the (possibly erroneous) assumption that each of 2C and
3D meets M, we see that 2C n M must constitute the M-class of central
involutions and 3D q M that of Sylow-central elements of order 3. (Indeed,
the non-central involutions in M are 4th powers, so necessarily of Fi22-type
2A or 2B; while each non-Sylow-central element of order 3 in M commutes
with a central involution there, so is not of type 3D.) Thus

(2C, 3D, llA) < AM(2B 3A, llA) 11.

As a fixed element of order 11 is in precisely two conjugates of M in Fi22, we
conclude that

A}i2_(2C, 3D, llA) > av=(2C, 3D, llA) 22 1980 22 1958

whence Fi22 is (2C, 3D, 11A)-generated.

LEMMA 2.15. The group HN & (2, 3, 7)-generated.

Proof From the maximal subgroup structure of HN [2], any proper
(2, 3, 7)-subgroup of HN must embed in one of

A2, 2"HS.2, U3(8):3, (01o X U3(5))"2, 23.22.26.(3 X L3(2)).

Let H be a proper (2B, 3B, 7A)-subgroup of HN. As 2"HS.2 is the centralizer
of an involution of HN-type 2A, we see from [2] that elements of order 3 in
2"HS.2 are of type 3A. Similarly, elements of order 3 in (D10 X U3(5))’2 are of
type 3A, as they centralize the 5A elements lying in D0. As H cannot have a
solvable quotient, we therefore see that H embeds in A12 U3(8), or
23.22.26.L3(2). But every element of order 3 in U3(8) commutes with an
element of order 7, so is of HN-type 3A. We now show such elements in
23.22.26.L3(2) are of HN-type 3A as well. Let M < HN be isomorphic to

23.22.26.(L3(2) X 3).

Choose x M of order 3 such that Z(M) (if) where M M/O2(M). As
09_(M)(x) < M, a Frattini argument yields

M 02(M)NM((X>) 02(M)CM(X).
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In particular C() CM(x ), whence 7 divides the order of Ct(x) and x is
of HN-type 3A. As Cm(x) -= 3 A9,_we immediately have C(x) (x) x
K where K embeds in A9. Thus K-= L3(2), and checking the maximal
subgroup structure of h9 [2] we conclude that K embeds in A8. But Cmv(X)
_< A for some subgroup A of HN isomorphic to A12. The restriction k $ A,
where k is an irreducible character of HN of degree 133, enables us to identify
the HN-type of elements of order 3 in A, so also in K. As only those elements
of A with cycle structure [33] have HN-type 3B, we conclude that 3-elements
of K are of type 3A. Thus, as K embeds in 23.22.26.L3(2), elements of order 3
in the latter group are of type 3A as claimed. We have only to consider A12.
Clearly, from centralizer orders, a fixed element of order 7 lies in a unique
copy A of A12 in HN. The restriction 133 $ A determines, once more, the
HN-type of elements of A. We easily obtain

Y.A(2B, 3B, 7A) AA12(2C 3D, 7A) 140.

Therefore

Av(2B, 3B, 7A) Anv(2B, 3B, 7A) 140 2660 140 2520,

and HN is (2B, 3B, 7A)-generated. The proof of the lemma is now complete.

LEMMA 2.16. The group Ly is (2, 3, 7)-generated.

Proof The maximal subgroups of Ly with order divisible by 42 are
G2(5), 3"McL:2, and 2"An [2]. From centralizer orders, one easily determines
that a fixed element of order 7 is contained in precisely eight conjugates of
H =-G2(5), four conjugates of M 3"McL:2, and a unique conjugate of
A =-TAn. It is an easy matter to identify the appropriate Ly-classes with
those of H, M, and A and to determine

En(2A, 3B,7A) 546, Et(2A 3B,7A) 49 and EA(2A, 3B, 7A) 56.

As ALy(2A, 3B, 7A) 8680, we have

A*y(2A,3B,7A) > 8680- 8(546) -4(49) 56 4060

so that Ly is (2A, 3B, 7A)-generated.

LEMMA 2.17. The group Th is (2, 3,19)-generated.

Proof Observe from [2] that all p-local subgroups of Th have been
determined. Checking the list, we see that any proper (2, 3,19)-subgroup must
be simple (as 2, 3, and 19 are pairwise co-prime); by Lagrange’s Theorem and
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the classification of finite simple groups, L2(19) and U3(8) are the only
possibilities. But dements of order 3 in L2(19) are cubes, so not of Th-type
3C. Similarly, 3C cannot meet any copy of U3(8) in Th (should one exist) as
the only classes of elements of order 3 in U3(8) which are non-cubes have
centralizer order 1512, which fails to divide [CTh(.)I for x 3C. Thus Th has
no proper (2.4, 3C, 19A)-subgroup. As Arh(2A 3C, 19/1) 6194, the lemma
follows.

LEMMA 2.18. The group Fi23 is (2, 3,23)-generated.

Proof Once again, all p-locals are determined [2]. From the list (and the
classification theorem), the only possibilities for proper (2, 3, 23)-subgroups of

Fi23 are (up to isomorphism) L2(23), M23, M24, or a subgroup of 211"M23 Now
in L(23) there exist commuting representatives of the (unique) classes of
elements of order 2 and 3. As no such representatives are to be found in the

Fi3-classes 2B, 3D, we see that at most one of 2B, 3D meets any copy of
L(23) in Fi23. The same argument holds for any copy of M23 in Fi23, should
one exist. Now suppose Fi3 contains a copy M of M4. As central involutions
in M are 4th powers, they are necessarily of Fi3-type 2C. Suppose the
remaining M-class of involutions lie in 2B. As each representative of this class
commutes with a representative of the M-class 3B, the above argument implies
that elements of M-type 3B are not of Fi3-type 3D. Thus if 3D meets M, we
must have 3D q M equal to the M-class 3A. This cannot occur, however, as
elements of M-type 3A centralize elements of order 5, while those of Fi23-type
3D do not. We conclude that at most one of the two Fi23-classes 2B, 3D meets
M. Finally, we consider the group 211"M23 (which occurs as a subgroup in

Fi3 ). Clearly, an element of order 23 in M23 acts irreducibly on 2ix (regarded
as an 11-dimensional vector space); thus the action of M23 on 2xx is irreducible
as well. We now observe that tp(t) 2 where is the irreducible 2-modular
character for M93 of degree 11 and M23 is an arbitrary element of order 3.
From this, it is easily checked that must have a 5-dimensional fixed point
space in 211, whence 25 divides CFi23(t)]. This proves is not of Fi.a-type 3D.
We have therefore proved that Fi23 can possess no proper (2B, 3D, 23A)-sub-
group. As AFi3(2B, 3D, 23A) 11592, we conclude that Fi23 is (2, 3, 23)-gen-
erated as claimed.

LEMMA 2.19. The group Co is (2, 3, 23)-generated.

Proof. From the maximal subgroup structure of Co [2], we see that the
only such groups with order divisible by 23 are Co2, 211:M24, and Co3. But
restriction of the irreducible character of degree 276 to the appropriate
subgroups shows that 2B fails to meet either Conway group, while 3C fails to
meet M_4. Thus Co contains no proper (2B, 3C, 23A)-subgroup. As
ACol(2B, 3C, 23A) 138, the lemma follows.
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LEMMA 2.20. The group J4 is (2, 3, 37)-generated.

Proof Observe that all p-local subgroups of J4 have been determined [2].
From this (and the fact that 2, 3, and 37 are pairwise co-prime) we see that
any (2, 3, 37)-subgroup of J4 must be simple. Let H be a proper (2, 3, 37)-sub-
group of J4- By the classification of finite simple groups, the only possibility is
H -= U3(ll). But involutions in H are then 4th powers, so of Ja-type 2A. As
Aj4(2B, 3C, 37A) 15577, the lemma follows.

LEMMA 2.21. The group Fi4 is (2, 3, 29)-generated.

Proof For p 4: 2, the p-local structure of Fi4 has been determined [2]. It
is now easy to show that any proper (2, 3, 29)-subgroup of Fi4 must be of the
form K= O_(K).L2(29) (the extension not necessarily splitting). But the
smallest non-trivial (t)-module (over Z2) for K of order 29 is 28-dimen-
sional. Thus clearly O2(K ) 1; i.e., K =- L2(29). As every element of order 3
in L2(29) centralizes an element of order 5, the former cannot be of Fi(a-type
3D. As AF;4(2B, 3D, 29A) 47096, the lemma is proved.

LEMMA 2.22. The group B is (2, 3, 47)-generated.

Proof We first observe that AB(2D, 3B, 47A)= 5048364. Once again, the
p-local structure of B is completely determined for__p 4:2 [2]. Letting H be a
(2,3, 47)-subgroup of B, we see from this that H H/O2(H) must be a
simple (2,3,47)-group, which (as 2"B < M) must be involved in the
Fischer-Griess Monster M. We now consult the list of all prospective simple
sections of M [2], from which we conclude H B. Thus H B and B is
(2, 3, 47)-generated as claimed.

LEMMA 2.23. The group M is (2, 3, 47)-generated.

Proof Arguing as in the previous lemma, any proper (2, 3, 47)-subgroup K
of M must satisfy K K/O2(K) B. As a Sylow 47-subgroup P of B has
centralizer of order 94, and as the minimal dimension of a non-trivial irre-
ducible P-module over Zz clearly exceeds the 2-rank of M, we see that K =- B
or 2"B. In either case, we see that the M-class 3C fails to meet K by
comparison of centralizer orders. Thus M has no proper (2A, 3C, 47A)-sub-
group. As At(2A, 3C, 47A) 470, the lemma follows.

THEOREM 2.24.
appears in Table 1.

A sporadic simple group is (2, 3, t)-generated if and only if it

Proof This is an immediate consequence of Lemmas 2.1 through 2.23.
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3. Hurwitz generation of sporadic groups

In this section we investigate those sporadic groups for which the maximal
subgroup structure has been completely determined, namely

Mll, M12, J1, M22, 4’ M23, Ha, 4’ M24,
McL, He, Ru, Suz, 0 ’N, Co3, Co_, HN, Ly, Co1.

From the Riemann-Hurwitz equation, one easily obtains the following
lower bound for the genus g of any finite hyperbolic group G:

g>l+ IGI
84"

(A hyperbolic group is one which admits no effective orientation-preserving
action on the 2-sphere or torus.) Within this context, the Hurwitz groups can
be described as the family of hyperbolic groups for which this lower bound is
achieved. Hurwitz groups are further characterized by their (2, 3, 7)-generation.
Now, among all finite non-abelian simple groups, only A5 is non-hyperbolic

(by virtue of its action on the icosahedron, whose barycentric subdivision
embeds in the 2-sphere). Thus, in particular, all sporadic groups are hyper-
bolic, and those with order divisible by 42 are candidates for Hurwitz groups.
We wish to point out that the results of this section, although central to the

study of genus actions, are in no way required for the proof of Theorem 4.2.
Thus the reader may view Section 3 as a slight departure of sorts, and can
safely proceed to Section 4 without disrupting logical sequence.

LEMMA 3.1. The groups Mn, M12, M22, M23, J3 and McL are non-Hurwitz.

Proof
rem.

This is a trivial consequence of Lemma 2.1 and Lagrange’s Theo-

LEMMA 3.2. The group M24 is non-Hurwitz.

Proof. We first observe that

AM24(2A 3A, 7Z) AM24(2B 3B, 7Z) 42,

AM,_4(2A, 3B, 7Z) 0 and AM=4(2B 3A, 7Z) 7.

Choose any subgroups M and L of M24 isomorphic to M23 and L2(7),
respectively. Then an easy calculation reveals

Y.M(2A,3A,7Z) 35 and EL(2B,3B,7Z) 7.
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Thus for all possible combinations for X, Y we have

At2,(2X, 3Y, 7Z) < 42 ICt_,(s)l s M24 of order 7,

so that non-generation follows from (1.1).

LEMMA 3.3. The group HS in non-Hurwitz.

Proof. One easily calculates

Ans(2A, 3A, 7A) 35 and Ans(2B, 3A, 7A) 28.

Now a fixed dement s of order 7 stabilizes an edge (pointwise) in the action of
HS on the rank-3 graph of valence 22 on 100 vertices [2]. Thus s M N Mx

where M Mx =- M22 and M ( M --- M21. From [2] it is immediate that
involutions in M are of HS-type 2A. As

YM(2A,3A,7A) 28 and YMnr,(2A, 3A,7A) 21,

we obtain

A*ns(2A, 3A, 7A) Ans(2A 3A, 7A) 2(28) + 21 0,

proving that HS is not (2A, 3A, 7A)-generated.
We next claim that K < HS isomorphic to 43:L3(2) contains a subgroup of

HS-type (2B, 3A, 7A). Indeed, as K contains a Sylow 2-subgroup of HS, we
can choose x K of HS-type 2B. Write x ab with a O2(K) and b L,
where L is a fixed complement of L3(2) in K. As the involutions in O2(K) are
squares (so of HS-type 2A) we have b 4: 1. Thus b clearly has order 2 as
b2 L 02(K ). We can therefore choose y L of order 3 such that the
element by has order 7. But then xy has order 7 as well, as xy= by
(mod O2(K)) and HS has no element of order 7n with n > 1. We conclude
that (x, y) is a Hurwitz subgroup of K of HS-type (2B, 3A, 7A).

Consider now the sporadic group Co which is known to contain (as
maximal subgroup) a copy G of HS. From the restriction b $ G of the
irreducible character q of degree 23 for Co3, we are able to identify conjugate
classes of G with those of Co3. In particular, we discover

G 2B 3A 7A

Co 2B 3B 7A

As ACo3(2B, 3B, 7A) 84 and s of order 7 is in precisely six conjugates of G,
we see that A(2B, 3A, 7A) < 14. If A(2B, 3A, 7A) 4: 0, it now follows that
A(2B, 3A, 7A) 14 as Cutc(xy) of order 14 normalizes each of the G-classes
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2B, 3A, 7A. But this implies

Aco,(2B, 3B, 7A) 6 A(2B, 3A, 7A),

whence Co3 can have no Hurwitz subgroup of type (2 B, 3B, 7A) other than the
six aforementioned conjugates of G. This of course contradicts the earlier
established existence of (x, y). Thus A(2B, 3A, 7A) 0, whence HS is not
(2B, 3A, 7A)-generated. The proof of the lemma is now complete.

LEMMA 3.4. The group Suz is non-Hurwitz.

Proof First observe that a fixed element of order 7 lies in precisely four
conjugates of K _= G2(4), which is the stabilizer of a vertex of the Suzuki graph
[2]. Moreover any two conjugates must clearly intersect in a two-point stabi-
lizer having order divisible by 7, i.e., in a conjugate of J J2- It is routine to
identify Suz-classes with those of K and J, and we consequently obtain

A}u(2B, 3C, 7A) < As.(2B 3C, 7A) 4 /(2B, 3C, 7A)

+6 Yv(2B, 3C, 7A )

1260 4(336) + 6(70)
336.

Now from [10] we see that Suz has two classes of self-normalizing L2(7
subgroups of type (2B, 3C, 7A). As those involutions which are squares in K
have Suz-type 2A, it is clear that no L2(7) of type (2B, 3C, 7A) can lie in K, or
in any conjugate thereof. Thus each class of (2B, 3C, 7A)-type L2(7) subgroups
gives rise to 168 7.24 distinct pairs (x, y) with x 2B, y 3C and xy a
fixed representative of 7A. (We have used the fact that xy lies in precisely 24
conjugates from each class.) Thus A]uz(2B, 3C,7A) 0 and Suz is not
(2B, 3C, 7A)-generated. The only remaining non-zero (2, 3, 7)-structure con-
stant is Asuz(2A, 3C, 7A), which equals 77. As the centralizer of a 7A-element
has order 84, non-generation follows from (1.1).

LEMMA 3.5. The group O’N is non-Hurwitz.

Proof We calculate AO,N(2A, 3A, 7A) 343 and AO,N(2A, 3A, 7B) 931.
In the former case, non-generation follows from (1.1) as the centralizer of a
7A-element has order 1372. In the latter case, R.A. Wilson [11] has accounted
for all relevant pairs within conjugates of F --- 42"L3(4), J --- J1, and L L3(7
in O’N. The lemma follows.
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LEMMA 3.6. The group Co2 is non-Hurwitz.

Proof We first calculate

Aco2(2C, 3A, 7A) 28, Aco2(2B, 3B, 7A) 91, Aco2(2C, 3B,7A) 238,

with all remaining (2, 3, 7)-structure constants being zero. As YM(2B, 3B, 7A)
49 for M < Co2 isomorphic to McL, we have A*Co(2X, 3Y, 7A)< 84

ICco(S)] for s 7A and (X, Y) ((C, A),(B, B)). Thus, by (1.1), it remains
only to establish non-generation of type (2C, 3B, 7A).

Consider the action of Co2 on its rank-3 graph of valence 891 on 2300
vertices [2]. Under this action the stabilizer of a vertex is isomorphic to
U6(2).2 while U4(3).22 and 29:L3(4):2 represent the double point stabilizers.
Thus we may choose U,U with U---UX- U6(2).2 and s UA U_
U4(3).22. Restriction of the character q Irr(Co2) of degree 23 identifies
the involutions in the derived group of U as 2B-elements. Thus
Y. cux(2C, 3B, 7A)= 0, as a Hurwitz group cannot have solvable quotient.
We also calculate Z(2C, 3B, 7A) 84.

Let now G < Co be isomorphic to Co2. The restriction tp $ G( Irr(COl)
of degree 276) reveals that the G-classes 2C, 3B, 7A are of COl-type 2C, 3B, 7B.
Under the assumption that G is Hurwitz, we thereby obtain

Acol(2f,3B, 7B) >- ICco(S)l + 2.(2C, 3B,7A) 1176 + 2(84) 1344,

where s is a representative of 7B. (Indeed as Ccol(G)’= 1, ICo(s)l is a lower
bound on the number of distinct pairs (x, y) with x of Cox-type 2C, y of
Cox-type 3B, xy s and (x, y) conjugate to G.) This contradicts the fact that
Aco(2C, 3B, 7B) 1274. Thus Co2 is non-Hurwitz as claimed.

LEMMA 3.7. The group Co is non-Hurwitz.

Proof We list below all non-zero (2, 3, 7)-structure constants for Co1.

X Y Z Aco(2X, 3Y, 7Z)
A B B 147
A D A 497
B B B 14
B D A 17640
B D B 2352
C C B 392
C D B 16464
C B B 1274
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As the respective centralizers of a 7A and 7B element have orders 17640 and
1176, we conclude from (1.1) that Co is not (2X, 3Y, 7Z)-generated for
(X, Y, Z) equal to any of (A, B, B), (A, D, A), (B, B, B), (C, C, B). We now
treat the remaining cases.

(a) (X, Y, Z) (B,D,A).
morphic to G2(4). Thus

Here E(2B, 3D, 7A) 336 for G < Co iso-

A*Cox(2B,3D, 7A) .< ACol(2B,3D, 7A) 336 17304

and non-generation follows from (1.1).

(b) (X, Y, Z)= (B, D,B). Wilson [12] has accounted for all relevant
pairs in conjugates of N 2xx: M24 in Cox. Thus every Hurwitz subgroup of
type (2B, 3D, 7B) is proper.

(c) (X, Y, Z) (C, D, B). Let K, M denote subgroups of Co isomor-
phic to Co3, M24, respectively. Once again we use character restriction to
identify relevant conjugate classes:

Co 2C 3D 7B

K 2B 3C 7A

M 2B 3B 7A.

Let us further assume M is a complement in X 2xx: M24. Letting L denote a
copy of L2(7) in M, we see from [12] that Ncol(L) is contained in X, which is
the stabilizer of a vector of type (4) in the 24-dimensional 2-modular represen-
tation of the Leech lattice. Furthermore, involutions in L are of M-type 2B,
while elements of order 3 in L are of M-type 3B. As O2(X) consists only of
elements of type 2A and 2C, we now see that L acts fixed point freely on
O2(X) (as 3D fails to commute with 2A and 7B fails to commute with 2C)
whence L is self-normalizing in Cox. Thus a fixed element s of order 7 is in
precisely 336 conjugates of L. A similar but much easier count yields that s
lies in precisely 28 conjugates of K. Recalling from Lemma 2.12 that
A,.(2B, 3C, 7A) 504, we now obtain

Aox(2C, 3D, 7B) moo1(2C, 3D, 7B) 28(504) 336(7) 0.

Thus Co is not (2C, 3D, 7B)-generated.

(d) (X, Y, Z) (C, B, B). As YI,:(2C, 3B, 7A) 238 for K < Co iso-
morphic to Co2 (the K-class 7A lying within the Cox-class 7B), we have

Aox(2C, 3B, 7B) < ACo(2C, 3B, 7B) 238 1036.
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Non-generation now follows from (1.1), and the proof of the lemma is
complete.

THEOREM 3.8. The groups J1, J2, He, Ru, Co3, HN, Ly are Hurwitz; the
groups MI1, M9., M22, M23, HS, J3, M24, McL, Suz, O’N, C09., Co are non-
Hurwitz; the question is unresolved for Fi92, Th, Fi23 J4, Fi4, B, M.

Proof. This is merely a restatement of Lemmas 2.3, 2.4, 2.7, 2.8, 2.9, 2.12,
2.15, 2.16, and Lemmas 3.1 through 3.7.

Finally as g(G) 1 + IGI/84 for G a Hurwitz group, we trivially obtain:

COROLLARY 3.9. The genera of J, J2, He, Ru, Co3, HN, Ly are given by:

G g(G)

J1 2091
S2 7201
He 47980801
Ru 1737216001
Co 5901984001
HN 3250368000001
Ly 616252131000001

4. Automorphism groups of surfaces of least genus

LEMMA 4.1. Let G be a sporadic simple group and S a surface of least genus
on which G is effectively and conformally represented. Then the full automor-
phism group Aut(S6) of S6 embeds faithfully in Aut G.

Proof In [14] it is shown that MI and M22 admit (2, 4,10)- and (2, 5, 7)-
generation respectively. We show directly that McL is (2, 4, l l)-generated.
Indeed AtcL(2A, 4A, llA) 143, while Et(2A, 4A, llA) 22 for M --- M2and E,(2A, 4A, llA)= 11 for A =- Ml1. As a fixed element of order 11 is
easily seen to lie in two Aut(McL)-conjugates M, M of M (one from each
McL-class) and in a unique conjugate of A, and as no other maximal subgroup
of McL has order divisible by 11, we conclude that

A%cz(2A, 4A, llA) > AMcz(2A, 4A, llA) 2(22) 11 88

and McL is (2, 4, 11)-generated as claimed.
By [6], the above generations, together with those established in Theorem

2.24, yield the existence of a surface H/A for G (G non-isomorphic to M23)
where A is the torsion-free kernel of the canonical epimorphism T(2, s, t) - G



434 ANDREW J. WOLDAR

and H is the classical hyperbolic plane. (Here T(r, s, t) denotes the Fuchsian
triangle group with presentation (X, Y, ZIX" ys Zt XYZ 1).) From
the Riemann-Hurwitz equation, we compute

1 (1- 11 (1_7 7genus(H/A) 1+ I-J-I [-2 + (1- -)+ )+ )
whence it follows that

g(G) _< genus(H/A) < 1 +

To complete the lemma, we shall need the following result from [13], which
we state below without proof.

THEOREM B. Let G beJa finite simple (2, s, t)-group with genus action on the
Riemann surface S arising from the short exact sequence

Then G is normal in Aut S. Moreover, if F is a triangle group, then Aut S
embeds faithfully in Aut G.

Clearly, from Theorem B and Lemma 6.2, the lemma is proved for G a
sporadic group non-isomorphic to M23. But a genus action for M23 arises from
either (3,4,4)- or (2,6,7)-generation [14]; indeed non-generation of type
(2, 2, 2, 3) has been established by S.P. Norton [7]. Thus F is a triangle group,
and a final application of Theorem B yields the desired conclusion for M23 as
well.

We are now in a position to prove our main result.

THEOREM 4.2. Let G be a sporadic simple group other than McL, Fi4. Then
Aut(SG) G where SG is a surface of least genus for G. Moreover if G is
isomorphic to one of McL, Fi4, then we have either Aut(S6) G or Aut(S6)
Aut G.

Proof By the previous lemma, the result follows at once for those spo-
radics with trivial outer automorphism group, viz. Mxl, J1, M23,
M24, Ru, Co3, Co2, Ly, Th, Fi3, Cox, J4, B, M. For the remaining sporadics we
have

IAut G:Aut(SG)I < IAut G:GI 2.

Thus, by Theorem 1 of [8], G is extendible in a genus action only if S arises
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from a short exact sequence of the form

1 A r(r,r,t) - G- 1.

The minimal genus attainable from such an action is given by g*= 1 +
IGI/24, which occurs precisely when r 3 and 4. Using the earlier
established (2, s, t)-generations, one easily verifies that g(G)< g* for G
isomorphic to any of M12, My., J2, HS, J3, He, Suz, O’N, Fi22, HN. We con-
clude that only McL and Fi4 can be extendible in their genus actions, and the
theorem is proved.

Remark. We comment briefly on the status of Theorem 4.2 for the "excep-
tional" groups McL and Fi(4.

M McL. As (2, 4,11)-generation has been established there are three
possibilities which give rise to an extendible genus action for M [8].

(1)
row exact diagram of the form

M fails to admit (2, 4, 5)-generation and there exists a commutative

1 -- A T(2, 3, 8) J> Aut M 1

(In this, and all successive diagrams, the rows indicate canonical epimorphisms
while the vertical arrows are (left to fight) the identity, inclusion, and inclusion
maps, respectively.)

(2) M fails to admit (2, 4, 5)-, (2, 4, 6)- and (3, 3, 4)-generation and there
exists a commutative row exact diagram of the form

1 A r(2, 4, 5) Aut M 1

1 ,A----, T(2,5,5) M ----1.

(3) M fails to admit (2, 4, t)-, (3, 3, 4)-, and (2, 5, 5)-generation (5 < < 8)
and there exists a commutative row exact diagram of the form
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Each of these cases must be eliminated if one is to extend the result
Aut(Sa) -= G of Theorem 4.2 to include McL.

F Fi4. As (2, 3, 29)-generation has been established there are two possi-
bilities which give rise to an extendible genus action for F [8].

(1) F fails to admit (2, 3, t)- and (2, 4, 5)-generation (7 < < 11) and there
exists a commutative row exact diagram of the form

1 A T(2, 3, 8) Aut F 1

1 ---.A----,T(3,3,4)----, F ,1.

(2) F fails to admit (2, 3, t)-, (2, 4, 5)-, (2, 4, 6)-, and (3, 3, 4)-generation
(7 < _< 14) and there exists a commutative row exact diagram of the form

Once again, both cases must be eliminated if one is to extend the result
Aut(Sa) =- G to include Fi4.
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