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ON THE THEORY OF THE REAL EXPONENTIAL FIELD

BY

A.J. WILKIE

1. Introduction and notation

Let L be the usual first order language of ordered rings together with a new
unary function symbol e. We are interested in the L-structure R
(R, 0, 1, +,., -, <, e) consisting of the ordered field of real numbers with
e(x) interpreted as the exponential function e (and we shall henceforth write
e x for e(x) in any L-structure). We denote by T the L-theory of R e. This
theory and its subtheories have been investigated by many authors and we
refer the reader to Macintyre [4] for a comprehensive survey. We are con-
cerned here with the problem of determining whether T is model complete,
that is whether k, K T and k

___
K imply k K, or equivalently k 1 K

(i.e., existential formulas with parameters in k are preserved down from K to
k). We shall prove the following:

THEOREM 1. Suppose k, K Te, k c_C_ K and k is cofinal in K (i.e., if a K
then b < a < c for some b, c k). Then k l K.

(Unfortunately there seems to be no general model theoretic argument that
allows us to deduce that k K here.)
We shall actually prove a result slightly stronger than Theorem 1 which

allows us to isolate a plausible conjecture that would imply the model
completeness of Te. To state this result we require some notation.

Let us fix a model K of T and a substructure k of K. We also assume that
k is a field. For n N we denote by k[] the set of all terms of L(k)
(defined as L together with a constant symbol for each element of k) in the
variables ’ x1,..., x factored by the equivalence relation

f-g iff Ter-Vf=g.

Since it is known (see [4]) that f--- g iff k Vf g it will be harmless to
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THE REAL EXPONENTIAL FIELD 385

identify the dements of k[’] with the corresponding functions on k (or on
K) or with the terms themselves.

Apart from being naturally an L-structure, k[] e also admits a differential
structure: for i= 1,..., n and f k[] we define

of

by induction on f by

Oa
iflX

0 for a k;

OXj
Ox

O(f +_ g)

1 if i=j
0 otherwise;

It can be shown (see [4]) that O/cgx respects the equivalence relation
and that the ring of absolute constants in the differential ring

k[Z] Ox"’" ax.
is the field k. It is also known that k[] is an integral domain and we denote
by k() the field of fractions of k[] e, but note that k() is not closed
under exponentiation although the partial derivatives extend naturally to
k(’) e. If h k() and ’ K" we say that h is defined at if h can be
written as f- g-1 with f, g k[] and g(ff) #: 0. Note that if h is defined
at ff then so are all its partial derivatives.
We now need to introduce Jacobians and a convenient way to do this here is

via the notation of differential forms.
For p N and M k[] or k()e, the set Fp(M) of differential p-forms

(over M) is defined to be M for p 0, {0} for p > n, and, for I < p < n, the
collection of objects of the form

where the summation is over all increasing p-tuples p taken from
the set {1,..., n } and each fi-" is an element of M.
Thus (in all cases) F,(M)is a free M-module on (;) generators.
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The exterior product A Fp(M) Fq(M) Fp+q(M) is defined as fol-
lows: if o is the p-form given above and

g

is a q-form, then

(0 J ’r) E(ff’" gD ( dxi, J Jdxip J dxjl J Jdxjq)

where the summation is taken over all increasing p-tubles p and
increasing q-tuples j ji ...jq from {1,..., n } and is put into the correct
shape for a (p + q)-form by invoking the rule

( dx A dx) -( dxj A dxi) forl_<i, j<n

(SO dxi/k dx 0 for 1 < < n) and specifying that A is associative and
distributive with respect to addition.
The exterior derivative d" M FI(M) is defined by

Ofdf=
i1

for f M.

The reader may easily verify that if f,..., fp M (1 < p < n) and 1 < i
< < ip < n, then the coefficient of dxil A... Adxi, in the p-form
dfl A A dfp is the determinant of the Jacobian matrix

o(i,,...,D)
O(Xil,..., Xip)

ofi
OXi

If o is the p-form given above and ’ K then we write o(’) 0 if each
f- is defined at ff and f.(’) 0. We call a point K exponential-algebraic
(e.a.) over k if for some fl,..., fn k[] we have

fl(&’) fn(8") 0 and (dfx A..- Adfn)(8") =/= O.

Our main theorem can now be stated.

THEOREM 2. Suppose k, K Te, k

_
K, and for all n N and all e.a.

points over k, (a,..., an) Kn, there exist a, b k such that a < a < b for
1,..., n. Then k K.
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Clearly Theorem 1 follows from Theorem 2. Of course to prove the model
completeness of T it would be sufficient to show that the hypothesis of
Theorem 2 on the models k, K is always satisfied. This has been shown for
n 1 by Dahn [1] but a proof even for the case n 2 seems to be beyond
present methods. Dahn’s result actually establishes something stronger, namely
the case n 1 of the following:

Conjecture. Let n, r N, n > 1, and suppose

fi(Y,..., Yr, Xl,’’’, Xn)

is a term of L for 1,..., n. Then there are terms

gl(Yl,’’’, Yr),’’’,gs(Yl,’’’, Yr)

of L U {-1) (where -1 is interpreted as multiplicative inverse, and is unde-
fined at 0) such that for all

IX IX Ix Ix + Ix +

if (working in the structure R throughout) f(h’) 0 for 1,..., n and

( fl ^-" , o

(where the exterior derivatives are taken with respect to x1,... Xn) then, for
some j, 1 < j < s, we have gj(al,..., at) defined and

lat[ < gj(at,..., Ixr) for r + 1,..., r + n.

The truth of this conjecture would clearly allow us to remove the hypothesis
of theorem 2, and hence would imply the model completeness of Te. However,
under present knowledge it is possible that T is model complete yet the
conjecture false.

2. Transfer

Since K T we may use results from calculus (say) when working in K
provided such results are first-order expressible in L uniformly in any parame-
ters that occur. When doing this we shall simply use the phrase "by transfer".
For example, suppose

fl’’’’’ 5 ( k()e (Z--- xl,... Xn, 1 < p < n)
and

tX IX IX K
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satisfies fi(’) 0 (and is defined) for 1,..., p and

(a/, ^... 0.

For convenience suppose the coefficient of

det
0 ( x,

_
+ ,..., x )’

does not vanish at ft. Then by the implicit function theorem and transfer,
there are neighbourhoods U of (al,..., an_p) in Kn-p and U’ of
(an_p+1,..., an) in Kp (i.e.,

U (ql,’" qn-p) Kn-p" - (ai- q,) < fl
i=1

for some fl K, fl > O, and similarly for U’) such that for any

(qx,-.., qn-p) U

there is a unique

such that

(qn-p+ l, qn) U’

f(q,...,q,,) fp(q,’",qn) =0

(and, of course, these are all defined). Further, the uniqueness here guarantees
that there are K-definable functions q,1,..., q,p: U K such that for all

’ U, fi(, ff(’),..., q,p(’)) 0 (i 1,..., p) and these functions will be
r-times differentiable in U (for any r N) according to the usual e-i defini-
tion interpreted in K, and their derivatives will be given by the usual formula
associated with the implicit function theorem (see [2] for example). More
generally, suppose g k() and let us consider the K-definable function

which we assume defined throughout U. For 1,..., n p let
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denote the th partial derivative of g. Then by the chain rule, for U we
have

0, ( Og P Og O dPj )’i () "i -- E OXn_p+j "i (’ 01(),"
j=l

In particular, since fs is identically zero for s 1,..., p, the right-hand side is
too for g fs. These equations can be expressed in matrix form as follows. Let

where

and

afa
X X

oi,,
X OX
Og Og
OX X

if i=j
otherwise

U (i) p zeroes).

Then we have Av) u) for 1,..., n p, where we evaluate at the point
cZ (Note that ki(al,..., a,,_p) a,,_p+ for i= 1,..., p.)
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Now if the rows of A are linearly independent then

dim(KerA) n (p + 1),

so for some 1,..., n- p, 0 Ao(i) (since the v(i)’s are clearly linearly
independent), hence

ag
)oOX ( Ol’ Oln_p

Also, the converse of this is clear from the original equations. Now by
elementary linear algebra, the rows of A are linearly dependent if and only if
all its (p + 1) (p + 1) submatrices have vanishing determinants. But these
determinants are exactly the coefficients of the p + 1-form

To sum up, we have (working in K)

(f, ^ ^G ")(;) 0

if and only if all the partial derivatives of , vanish at (al,..., an_p). In
particular if the p + 1-form

vanishes on

fl^ ^G@

(U U’) N {ff Kn" f/(ff) 0 for/= 1,..., p},
then g is constant on this set, and conversely.

3. Exponential varieties

Suppose fl,..., fp k[] e. We define

V(fl,...,fp ) ( Kn" fi() =Ofori= 1,...,p},

and

rns(/,..., Zp) ( r(/1,..., Yp)" (dy, ^... ,dyp)() 0}.
Thus V(f1,..., fp) is the "variety" determined by fl,--., fp, and

vns(fl,...,fp)

consists of its "non-singular" points.
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We wish to show now that if

fp) (p < n)

and

&" VnS(f,..., f,+) for anyfp+l k[] e,
then the f’s can be chosen with the additional property that whenever
g k[’] e, if g(ff’) 0 then g vanishes on U N V(fl,..., fp) for some neigh-
bourhood U of ’ in K n, a property we shall usually refer to by saying "g
vanishes on V(f,..., fp) close to ’". The proof of this goes by induction on
terms and the ranking of terms is defined (at least for the present purpose) as
follows. Let us suppose that k is countable. We define

Mi=k[x,...,x] for0_<i_<n

and

M+l=Mi[eg’ fori>_n,

where each g; M is chosen in some way so that k[] Ji.NMi Clearly
this is possible and note that each M (and its field of fractions) is dosed
under partial differentiation. We now define rank(f) (for f k[]e) as the
least such that f Mi.

LEMMA 1. Suppose n N, n >_ 1, and let S be any non-empty subset ofK.
Then for some p N, 0 <_ p < n, there are h,..., hp k[] such that:

(1) rank(hi) < < rank(hp).
(2) For some S,

hi(if’) hp() 0 and (dh / Adhp)() * O.

(3) Either p n or for any fl S and h k[] e, /f

hl(/) hp () h () 0 and ( dh A A dhp ) () =/: 0

then h vanishes on V(hx,..., hp) close to

Proof Suppose we have proved the lemma with Mj in place of k[] for
some j > 0 (it being trivial for j 0), Denote the corresponding three
conditions by (1)j, (2) and (3)j. We wish to extend the set {h,..., hp) so
that (1)/, (2)./ and (3)j+1 are satisfied for the extended set.

Case 1. (3)j+ is satisfied with the same h,..., hp.
Clearly there is nothing to do here since (1). and (2)j are certainly still

satisfied.
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Case 2. Not Case 1.
Then there is some h Mj+ and:
(*) There exists B S such that

hl(]) hp() h(]) 0,

( dhl / / dhp) ( j) =/= 0

and h does not vanish on V(hl,..., h/,) close to B.

Subcase2(a). j<n.
Then h .,_oaix+ 1, where a0,..., a Mj and we may suppose that s is

minimal such that (,) holds, witnessed by/3 (fll,..., fin> S say. By (3)j,
h Mj and hence (1)j+l holds for {hi,..., hp, h }. Also

hl() hp() h() 0

by (,). Now suppose, for contradiction that

Since

we have

^ ^ O.

(dhl A Adhp)() ::/:: 0

F(/) q:0 for somel <i < <ip<j

where F is the coefficient of dxil A A dxi in dh A A dhp (note that
P

Of/Ox 0 for all f Mj and > j). Since the coeffioent of

dxii A A dxi,,Adxj+ in dh1A dh
l,
A dh

is clearly

we have

tgh

By the minimality of s this implies that tgh/tgxj+ vanishes on

V(hl,...,hv)U= Y,
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say for some neighbourhood U of fl in K". But clearly

((fl,...,,Sg)) 5< U’
_
Y

for some neighbourhood U’ of (fig+ 1,---, fin) in K n-g, so the polynomial- iai( ff)x.7_ ( K[xj+I])
i=1

is identically zero. So

as() al() =0,

and since h(fl)=_00, we have ao(fl)= 0 also. But by (3)j this implies a
vanishes close to fl on V(hl,..., he) for i-0,..., s, and hence so does h,
contradicting ( ). This establishes (2)j+ 1-

To show that (3)j+1 is satisfied for (hi,..., hp, h } consider any H
and " S such that

hl(’) hp(") h(’) H() 0

and

(dh, ^ dh)() . o.

Now (by the Euclidean algorithm) there exist F1, F2 Mg+ 1, m N such that

aT. H= FI h + F

(this being an identity in the ring Mj+I) where F2 has degree < s (as a
polynomial in Xg+l over Mg). Clearly F2(’) 0 so by the minimality of s, F2
vanishes on 17(hl,... hp) close to . Since h obviously vanishes everywhere
on 17(hl,..., he, h) it follows that a,m- H vanishes on 17(hl,..., he, h) close
to ’. However, using the minimality of s again and (3)g it is easy to show that
as(’) 4= 0 and hence (by transfer)a is non-zero throughout some sufficiently
small neighbourhood of ’ in K n. It follows that H vanishes on
17(hl,... h,, h) close to ’ as required

Subcase 2(b). j > n.
Write g for gg. Then h E__oaie’g, where a0,..., a Mg an we may

suppose again that s is minimal such that (,) holds, witnessed by fl S, say.
As in subcase 2(a) we have (1)g+ holding for (hi,..., he, h } and

hi(5) hp() h() O.
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To show (dh A A dhp A dh )(fl) 4: O, we let

a dh A Adhp

and consider the (p + 1)-form

z= ao. (o A dh) h (o A dao).

Now
n

"r o A e g ., F ds
l=1

where, for 1 1,..., n,

Oh Oao)F e-g ao-l h-t
[(Oae-g" a -! + iai-li=0

sl( Oai+ Og Oao)a Ox + a(i + 1)ai+t Ox! ai+l-ff-Xli=0

pz(e g) say,

eig

where p is a polynomial over Mj. of degree < s.
Now since the coefficients of o are all elements of Mj it follows that the

coefficients of are all of the form e g. (eg) where is a polynomial over Mj
of degree < s. Hence if (o A dh)(fl) 0, then (fl) 0 (since h (fl) 0)
and so by the minimality of s, z vanishes on V(ht,..., h_) close to fl, -.that is
o A (aodh hdao) vanishes on V(h,..., hp) close to/3. Now if ao(fl) 0
then

(e-g. (h- ao))() =O,

so by (3)j and the minimality of s (and the fact that e-g(fl) 4: 0) bot_.h a 0 and
e-g. (h a0) would vanish on V(hl,..., h,) close to Bhence
so would h, contradicting (,). Thus a0(B) 0 and we may write

aodh hdao= a2o. d(h a)
and conclude that o A d(h.a-dt) is defined and vanishes on V(h,..., hp)
close to B However, by the comments in Section 2, this implies that h a is
constant, hence 0, on V(h,..., h) close to B which contradicts (,) and
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establishes (2)j+
is similar to the proof in subcase 2(a) and is left to the reader.

This completes our inductive construction, which clearly implies the lemma,
since for some J0, case 1 must hold for all j > J0 and every g k[x--’] lies in
some Mj..

We now slightly modify our notion of rank.
We call a subring M of k[] of heig___ht 0 if M k[2’], and of height

<j+ 1 if M=M[eg] for some gM, where M has height <j. An
element, h, of M has degree < s (in M)if h E=oaieig for some a0,..., a
M.

LEMMA 2. Let j, n N, n > 1 and suppose K n. Let M have height j
and suppose p is maximal such that for some gl,..., gp M,

&* vns(gl,..., gp).

Ifj > 1, suppose that gl,--., gp all have degree <_ s. Then there are hi,..., hp
M such that:
(1) If j > 1 then hi,..., he_l have degree <_ 0 in M and hp has degree

<s (inM).
(2) ff vns(hl,..., hp).
(3) If h M, p < n and h() O, then h vanishes on V(hl,..., hp) close

to ft.

Proof. By the proof of Lemma I (i.e., using the result of Lemma 1 with M
in place of k[] e) we can find hi,..., hp, satisfying the first clause of (1), (2)
and (3) (where we are applying Lemma 1 with S (’)). Now p’ < p, by the
maximality of p, and since &,..., gp all vanish, in particular are constant, on
V(hl,..., hp,) close to , we have (by Section 2) that

(dhl A Adhp, A dgi)() =0 fori= 1,...,p.

The fact that this implies p p’ now follows from the following result, the
simple proof of which is left to the reader:

Suppose o is a q-form and %..., Oq+ are 1-forms such that

(oA oi)(’) =0 fori= 1,...,q+ 1.

Then either o(ff’) 0 or (o A A Oq+l)(’) O.
Now recall that he was chosen (in the proof of Lemma 1) of minimal degree
such that he(Y) 0 but such that h did not vanish on V(hl,..., he_l) close
to if’. Thus, if this degree is > s, a similar argument to the above shows that
(dh A A dh,_ A dg)()= 0 for 1,..., p, which again contradicts
(**).
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4. Constructing e.a. points

Let A(f) be an existential formula of L. Since the sentences

Vx, y((x O v y O) x y O),
X/x, y((x O A y O) x 2 + y2 O),

and

Vx, y(x < y 3z((y x)z2- 1 0))
are all in Te, we may assume (modulo Te) that A() has the form

aZF(y; Z) O,

where F(f, ’) is a term of L. Now if k, K T and k

___
K, it follows to show

that k 1 K it is sufficient to show that for any F(’) k[’] e, if F has a zero
in K, then it has one in k. The next lemma reduces this problem to one of
studying e.a. points.

LEMMA 3. Suppose F() k[] and V(F) q: . Then V(F) contains an
e.a. point of K over k. (We only assume here that k

_
K, k a field.)

Proof We may clearly suppose k countable, so let hi,... hp
by Lemma 1 for S V(F). Since (2) asserts that

be as given

S CI vns(hl,. hp) =/: ,
it is sufficienf to show p n, so suppose for contradiction that p < n.

Choose

S ( wns(hl,...,hp)

and let f(ff’) be a coefficient of dhl A... A dh

an+l f(ff’)-l. Set
such that f() 4: O. Letp

hp+l(X Xn+l) Xn+ f(X) 1.

Then

(, an+) (S K) 0 V(h.,..., hp+l).

Further, we have

V(hl,..., hp+l) vns(hl,..., hp+l).
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To see this suppose

< n+l> V(hl,..., hp+l)-

Now if f(k) is the coefficient of dx/x A dxi, (where 1 < < <

ip < n) in dhl A A dh, then f(2-’) is clearly the coefficient__, of

dxiA Adxi, A dx,,+t in dh A Adhp+, and since hp+t(fl, fin+l) O,
f( fl ) 4= O, whichroves (,).
Now suppose is any point of k and (by transfer) let {’, ,,,+1) b_.e a point

of (the "closed" set) V(h,..., h+, F) at minimal distance from {,0); that
is, { ’, ",+) is a minimum of the function

n

Dg(* Xn+l) E (Xi- i)2 _[.. X2n+l
i-----1

(k[,xn+ll e)

on V(h,..., hp+t, F).
Since VnS(hl,..., hp) (this follows from (,)) and F(’) 0 (i.e., S)

we have, from (3) of Lemma 1 (note p < n), that F vanishes on

V( hl, hp)

close to ’, and hence on

V( h, hp+)

close to (, 3’,+ 1>" Thus (, ]tn+l> is actually a local minimum of the function

V’ on V(hx, hp + 1)- But then clearly the function

D(’) (x -8i)2 + f(.)-2
i=1

(k() e)

is defined on V(hx,..., hp) close to and has a local minimum there. Thus
(by Section 2) (o A dD )() 0, where o dhx/x A dhp.

Let

G(k’) F(k’)2 + f(_)6 (sum of the squares of the coefficients of o A dD-).
Then G(k’) k[’] e, " V(G) C_ V(F), and ’ vns(hl,..., hp) so we may
clearly repeat the above argument with G in placof F, ’ in place of ff (note
f(’) 4: 0) and any point i’ of k in place of i, to produce a point " of
vns(h,..., hp) such that

(o A D,)(") 0, f(’) * 0, G(’) 0.
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The latter two imply that we also have

(o/x dD)(’) 0 and F(") 0.

Continuing, we see that for any r N and if(o),..., -(r) k n, there is

vns(hl,..., hp)0 V(F)

such that (o A dD,)() 0 for 0,..., r. We now apply this with

for j 1,..., n,

and

)i).... (1 if i=j
0 otherwise for i, j 1,..., n,

so that dD, dDo 2 dx for 1,..., n, and obtain a point

vns(hl,..., hp)N V(F)

such that

(o ^ 0

and

(o A (dDto,- 2 dxi))() 0 for i= 1,..., n.

These equations imply

(O / dxi)() 0 for 1,..., n.

However, since o is a p-form and p < n this contradicts the results (, ,)
mentioned in the proof of Lemma 2 (since o() 4:0 and
(dx/x Adxp+)() 4: 0), and Lemma 3 is proved.

By the remarks at the beginning of this section we have the following
immediate consequence of Lemma 3.

COROLLARY 1. Suppose that k, K Te, k c_ K, and for all n N and all
e.a. points K" over k we have k. Then k 1 K.
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5. More results for transfer

To prove Theorem 2 it only remains to show (by Corollary 1) that if k, K
satisfy the hypotheses of that theorem then every e.a. point of K (for all
n N) lies in k". To do this we require generalizations of the intermediate
value theorem and some results on functions defined on space curves.

LEMM 4. Suppose B R, B > 0, n N, n > 2, and let

gl,’", gn-l" Rn R

be continuously differentiable. Let

V-- { Rn" gi() =O fori= 1,...,n 1}

and suppose that for each V,

det
o(gx,..., g,_x) )

Suppose further that V is the union offinitely many connected components.
For a R, define

g { (o2,... O/n) Rn-l" [oli[ < ol for 2,..., n },
and let Ua be the closure of U. Let 131 R, 11311 < B, r N, r > 1, and
assume that

vn ({&} x u,,)= vn ((&} x e.+:)

and that these sets contain exactly r points.
Then there exists c, d R, -B < c < fll < d < B such that for each a

[c, d], V n ((a) UB) contains exactly r points and, further, if Ol (C, d }
then for some (al, a2,..., a,) V we have

max{ la,l" 1 <i < n } (B, B + 1}.

Also, for a (c, d) and any (al, a2,... an) V, setting

max{lail’l <i<n} =0

we have either O < B or O > B + 1.

Proof Using the implicit function theorem, the hypotheses imply that
there exist open intervals (possibly infinite), I1,..., 1 (say, where m N)
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and continuously differentiable functions

*i" Ii---> Rn, -- (t, ,(2i)(t),..., (for 1,..., m)

such that
m

v= U U
i=1 tI

and the outer union is a disjoint one. In particular, for a R, distinct points
of V cq ((a) Rn- 1) lie in distinct connected components (and so this set has
at most rn points). Let us suppose, without loss of generality, that the suffices
1,..., r correspond to the components of the points in V 6 ((ill} UB)-
Define

max (for I).
2<j<_n

By the continuity of the i at 1 (for those such that fix Ii), we can find
e > 0 such that for (ill e, fll + e) we have

I and IO(t)l < B for i= 1,..., r, and, for j r + l,..., m, if

I then I%(t)l > B / 1,

(since for such j, Ij(t)l >_ B + 3/2 for close to fix)-
Let d’ be the supremum of those a > fix + e for which (,) holds for all

(ill e, a). If d’ > B (or d’ o) we may clearly set d B. Otherwise,
note that lim/ d-d(t) certainly exists for 1,..., r, and this point must lie
in V (since V is closed). It clearly follows that d’ I and Ii(d’)l < B for

1,..., r, and, for j r + 1,..., m, if d’ Ij then [j(d)l> B + 1. Now
we must have either [i(d’)[ B for some 1,..., r, or else Iy(d’)] B +
1 for some j r + 1,..., m such that d’ I., for otherwise, by the continu-
ity of the ’s (when defined) at d’ we could find r/> 0 such that (,) held for
all (fl e, d’ + ) contradicting the definition of d’. Thus we may set
d d’. The construction of c is similar. [3

LEMMA 5. Suppose that r N, r > 1, and

fx,--.,f: [a,b] R (a,bR, a < b)

have continuous non-vanishing derioatives throughout [a, b]. For o, "r { +,
and x a, b] define

S(o, ’, x) ( i" 1 < < r, fi(x) is a’oe andfi’(x is "ve }

(where denotes differentiation).
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Let Z ( i" 1 <_ <_ r, fi has a zero in [a, b]). Then

[Z[=r-IS(+,+,a)[-{S(-,-,a)[-IS(+,-,b)l-[S(-,+,b)[.

Proof If f/ is + ’ve on [a, b], then by the intermediate value theorem

iff

iff

fi(a) 0 orfi(b ) 0or S(-, +, a) O S(+, +,b)
q S(+, +,a) to S(-, +,b).

Similarly if fi’ is -’ve on [a, b],

i Z iff i S(-,-,a) tO S(+,

Since the sets S(+, +, a), S(-,-
disjoint, the result follows.

,a),S(+, -, b), S(-, +, b) are pairwise

LEMMA 6.
tiable, and let

Suppose n > 2, gl,..., gn-: Rn R are continuously differen-

V= ( W" gi() =O fori= 1,...,n- 1).

Suppose that for each Y V,

det

Let B,c,dR, B>0, -B < c < d < B, and suppose that for each a

c, d ], V q ({ a } Us) contains exactly r points where r N, r > 1, and we
use the notation of Lemma 4. Suppose further that for a (c, d), V N ({ a }
u) v ((} u).
Let g: R --* R be continuously differentiable and define g*" V- R by

Ox---- Ox"’" OXn
O(gl,’",gn- ))-1

Ogn-1
OX

and suppose that for all V, g*() 4= O.
Then the number of zeroes of g on V q ([c, d] Us) is given by

r -IS(C)(+, +)l -Is(c)( -)l -Is(d)(+, -)l -Is(d)( -, +)l
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where for example,

S(d)(+,--) {’ Vt")((d} )" g(")> 0 andg*(E)< 0).

Proof By the implicit function theorem there are continuously differen-
tiable functions

where (c’, d’) is some open interval containing [c, d] such that

i-----1 t[c, d]

where the outer union is a disjoint one.
For (c’, d’) and 1,..., r define

fi(t) g(t, dp(2i)(t),..., b(ni)(t)).

Then a calculation similar to those of Section 2 shows that

fi’(t) g*(t, k(2i)(t),..., (ni)(t))
for (c’, d’), 1,..., r. The result now follows from Lemma 5.

(The importance of the formula for the number of zeroes in Lemma 6 will
be that it makes no reference to any parameterization of the variety V.)

Unfortunately Lemmas 4 and 6 are not immediately transferable to an
arbitrary model of T (in the case that gl,-.., gn-1, g are terms) because of
the connectedness hypothesis. However, all is well because of the following
result of Khovansky [3].

PROPOSITION. Let m, n N, n > 2,

f= (yl,...,y,,), if’= (xx,...,

and suppose fl(f, ),..., fp(f, ) are terms of L. Then there is N N such
that for any R" the subset

vos(/l( ;

of R has at most N connected components (and hence at most N points if
p=n).
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It thus follows that Lemmas 4 and 6 can be expressed as first-order
sentences of L (in the case gl,---, gn-1, g are terms) uniformly in the
parameters occurring in the g’s.

6. The proof of Theorem 2

Recall the hypotheses: k, K Te, k G K and for all n N, n >_ 1, and all
e.a. points xl,..., an) of Kn over k, there is a k such that Icti] < a for

1,..., n. By Corollary 1 it is sufficient to show that for all n N, n >_ 1,
every e.a. point of K lies in k.
We shall prove the following by induction on { j, s) N 2 (ordered lexico-

graphically).

Pj,s: Suppose n N, n > 1, = xl,..., xn and M G k[] has height < j
(cf. the definition before Lemma 2). Suppose gl,-.-, g M all have degree
< s (in M) (in the case j > 1). If ff vns(gl,..., gn) then ff k.
For all s N, P0, is clear since it is well known that the coordinates of an

if’ vns(gl,..., gn), where gl,---, gn k[], are algebraic over k, and k, K
are real-closed fields (being models of Te).

Since Pj/l,0 is immediately implied by Vs NPj.,, the inductive step
amounts to showing that for each j, s N, Pj./ 1, implies Pj.+ 1,/ 1-

So suppose j, s, n N, n > 1, Y’= (Xl,... Xn) M G k[] has height
< j, g M and gl,.--, gn M[eg], where each gi has degree _< s + 1 as a
polynomial in e g over M, and " vns(gl,... gn) (*)
Of course we also suppose that Pj+ 1, holds, and we want to show that

Our first aim is to modify the gi’s so that Lemmas 4 and 6 are applicable.
By Lemma 2 (with p n) there are hi,..., h,, M[e] such that

(1) hi,... h,_ M and h,
(2) * vns(hl,..., h,).

v-,s/
2.,i=oaieig for some a0,..., as+l M,

Let o dh A A dhn_ 1. If

a0(’) =0 and ( o A dao ) ( ) 4:0

we may immediately apply Pj+ 1, (in fact Pj.+ 1,o) to conclude that ’ k". If

a0(ff) =0 and (oAda0)() =0,

then let h e-g(h,, ao) so that h has degree < s (in M),

V(hl,... hn_l,



404 A.J. WILKIE

and

(o ^ dn)
(e-g[(o A dh,,) (o A da0) (h ao). (o A d(e-g)))(ff)
(e-g(o A dh,,))() 4: O,

so ’ vns( hi, h,_ 1, h,) and we may again conclude that ’ k by
Pj/x,s. Thus we may suppose that ao(ff) 0.
Now define h, f k[, Xn+X] by

and

h Xn+ ao 1

s+l

f l + x,,+l _,
aieig (=1 +x,,+l(h,,-ao)).

i=1

Let et,+ ao(ff’) -1 and set = M[Xn+I] so that /t has height <j (as a
subring of k[ff’, x+ ). Then hi, hn_l, h M, f M[eg], f has degree
<s+ l(in M[eg])and

(ff’,Ctn+l) V(hl,... hn_l, h,f).

Further, since f x/ h h, we have

(O A dh A 4)(, n+X) (O A dh A d(Xn+lhn))( n+l)
-<o dh dh)(,+x)
(0 A dh d(Xn.lhn))( n+l)

(since A 0 for any 1-form )
(Xn+ (O dh dhn))( n+l)

(since h () 0)
(.+1 "ao" (o .+1 n)( n+)"

(The last equality follows since dh x,+ dao + a o dx,+ and o A dao A dh,
0 since it is an (n + 1)-form over k[Xl,..., x,]e.) NOW a,+ 0, ao(Y) 0

and since (o A h,)(Y) 0 (by (2)) it follows that

(0 .+ h.)(, .+1) 0.

Thus we have shown that (a a,+l) V"S(hl,..., h,_ 1, h, f).
It now follows that in (,) we may as well assume that g,..., g,_ M,

+1 ig for some al, a m.and g, 1 + E=aie +
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Now since (dg A /x dg,,_l)(ff) 4:0 we may suppose (by permuting
variables if necessary) that

(det J)(’) 4:0 where J
O(gl,...,g,,_l)

Note now that det J M, so by the "de-singularizing trick" of considering

g Xn+ det J- 1

and showing that

and

(", (det j)(&)-l) vns(gl,..-, gn-1, g, gn)

det
O(gl,...,gn-l,g)

is non-vanishing throughout V(gl,... gn-1, g) we may as well suppose that
det J is non-vanishing throughout V(gl,..., g,-1) (and that we still have
gl,"-, gn-1 M).
Now let us consider g* (in the notation of Lemma 6). By Section 2, the

points on V(gl,..., g,-1) at which g* vanishes are exactly those points where
dg /x /xdg,, vanishes. In particular, g*(Y) 4: 0. Now note that (det J).
g* is of the form

bi" OX
i=1

where bl,... b M.

By our supposition on gn above, this is of the form

eg. biPi(eg) e g p(e e,)
i--1

where P1,-.-, P,, and hence p, are polynomials over M of degree < s, for
1,..., n. Thus using de-singularization again (i.e., considering Xn+

p(eg) 1, etc.) we may as well suppose that g* is non-vanishing throughout

V(gl,..., gn-1) V,

say, and that gl,---, gn-1 all have degree < s in M[eg]. (We possibly have to
sacrifice the condition gl,---, g,-1 M, of course.)
We are now in a position to apply Lemma 4 (using transfermsee the

remarks at the end of Section 5) because, by the proposition of Section 5 and
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the hypothesis of Theorem 2, there certainly exists a B k such that for some
r N, r > 1, (in the notation of Lemma 4 applied in K), there are exactly r
points in V ({ a) Un), Y is one of them, and V 3 (( Otl} x UB)= V (q

({ al} UB+2). We thus obtain c, d K satisfying the (transferred to K)
conclusion of Lemma 4. We want to show that c, d k.
To see that d k we first choose a point (provided by Lemma 4)

(l,’’’,n) ff vns(gl,’", gn-1)

with i1 d and max( I1:1 < n } 7, where 7 (B, B + 1 ) (so 7 k).
We may suppose Idl , for otherwise we are done. Now choose e K,
e > 0, and a neighbourhood U of i in K" so that d- e > c and:

(3) For each h (d- e, d + e) there is a unique ’ (71,-.., nn) in

V f vns(gl,...

(4) If r/ (d- e, d] and i, i’ are such that 1 < i, i’ < n and Il < [i,I
then I1 < I,1 (in the notation of (3)).

(This is possible by the implicit function theorem and transfer, since

det ) * o

and the local parameterization functions are continuous.)
Now the final conclusion of Lemma 4 and (4) clearly imply (in the notation

of (3)).

For each fix (d- e, d), there is some such that 1 < < n, 11 7
and Irlil : 7.

We now let p be maximal such that for some gx,---, gp

vns(gl,..., rp).

Clearlyp=n-lorp=n.

M[eg],

Case l. p n -1.
By Lemma 2 we can find hi,... hn_ satisfying (2) and (3) of that lemma.

In particular gl,-.-, g,-x all vanish on V"S(hl,..., h,,_) close to 8, as does
any function of the form x + 7 which happens to vanish at i. But it now
follows from (5) that if

(’O,..-, ’r/n) vns(hl, hn-1)
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and " is sufficiently close to i then ’0x > d. However, since 1 d this implies
(by consi_.dering a (necessary continuous) parameterization of vns(hx,..., h 1)
close to 8msee Section 2) that for any , > 0, , K, there is ’01 [d, d + ,)
and distinct points , r vns(hl,..., hn_l )

both having first coordinate ’01- Further, ’ and ’ may be chosen arbitrarily
close to 8 (for sufficiently small choice of ,). Since

VnS(hx, hn_l) c_ VnS(gl,..., gn-1) close to 8
this contradicts (3).

Case 2. p n.
By Lemma 2 we can find hx,..., h ,-1 M and h,, = M[eg] such that

vns(hx,...,hn).

Now if we can choose h of degr_.ee < s then we can apply the inductive
hypothesis Pj+ x,s to deduce that i k and so, in particular, that d k as

require_.d. However, in the proof of Lemma 2 (or, rather, Lemma_ 1 with
S (8 }) recall that h is chosen of minimal de_.gree so that h(8) 0 and hn
does not vanish on Fns(hl,..., hn_l) close to 8. It therefore follows that if h
cannot be chosen of degree < s, then any h M[eg] of degree < s with
h() 0 vanishes on FnS(hl,..., hn_l) close to 8. In particular this is so for
h gl,..., gn-1, X -t- 2’ and we may proceed to a contradiction as in case 1.

This completes the proof that d k.

The same argument shows that c k and a similar one shows that for any
1 k with c < fix < d, the r points of V q ((fix} Un) all lie in k" (and
these points are in (fix} U if c < fix < d). It now follows from this (and
the assumptions above on gx,..-, g,) that the hypotheses of Lemma 6 are
satisfied when interpreted in K and when interpreted in k. But clearly the
formula given there for the number of zeroes of g, on

gives the same answer no matter whether it is computed in K or in k (since it
only depends on the signs of gn and g*, which are elements of k(’) e, at
certain points of k and k is a substructure of K). Thus all points of

vns(gl,.--, gn) N ([C, dl x

lie in k". In particular k", as required.
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This completes the induction and establishes that Pj, holds for all j, s N,
which clearly implies Theorem 2.
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