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THE SCHRODINGER-HILL EQUATION

=y"(x) + q(x)y(x) = p - y(x)
ON ODD POTENTIALS ¢

BY
M. PAPADIMITRAKIS

Introduction

We consider Hill’s equation with Dirichlet boundary conditions:

(*) =y"(x) + q(x)y(x) =p-y(x), x€][0,1],

y(©) =»(1) =0
where p € C, the set of complex numbers, and g € L%[0,1], the set of real
valued square integrable functions on [0, 1]. It is known (see [1] or [3]) that the

eigenvalues of (*) form a strictly increasing sequence of real numbers
{p(g)}%-1 such that: p; < p, < -+ <p, > +o00. Also

pp = k%% + i, with Y i3 < +o0.
Conversely, for any choice of { i, }, such that Y2 < + o0 and p, = k%7% + fi,
is increasing, we can find a potential ¢ € L%][0,1] such that: p,(q) = u,. We

can also choose ¢ to be even, i.e., g(x) = g(1 — x), x € [0,1]. When ¢ is odd,
ie., g(x) = —q(1 — x), then one can prove that

pe(q) = K2 + i, (q) with 3 (kfi,)* < +oo.
The question is: given any sequence {fi,} such that Y(kf,)? < + o0 and

p, = k?m? + [i, is strictly increasing, does there exist an odd g € L%[0,1]
such that p,(q) = p,? Let

1> = {{ck}: ¥ (k%) < +oo}.
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We know [2, Theorem 4.1] that if ¢ is odd and continuously differentiable,
then

= A7k + ¢,
with {c,} € I2 and 4 some constant depending on g. This implies that

fiy + 28, + -+ +kji,
log k

—A ask > +o0.
In the following we will prove:

THEOREM. Given any odd q € L%[0,1), the eigenvalues n, of (*) are such
that
pi = k2m? + iy
where

G420, btk 1
S A= CLOL NSl

Consequently, {i,} & I} '/, and so the answer to the question posed is negative.

Section 1

In this part we prove that, for an odd g,

ne(q) = Kr + i, X (kii,)* < +oo.

This is already proven in [3], but we will find a form of fi,, which we will need
below.

Consider the solution y(x, g, ) of (*), such that y(0, u, g) = 0, y’(0, &, q)
= 1. It is known [3] that

siny/p x xsiny/p(x —¢) sin

y('x’”"q)= ‘/‘/ﬁﬁ +j(; ﬁ‘/ﬁ : ‘/‘éﬁtq(t)dt
& (X [ x siny/p (x — x,,)
R

. Sinyp (X = Xm-1) siny/ (x, — x;)

i "

sin\/ﬁx1

M

7

that for any fixed x, y(x, g, ¢) is an analytic function of p € C, and that the
p.(q) are the roots of the equation y(1, g, g) = 0.

(1)

q(x1) -+ q(x,,) dx;... dx,,,
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From now on we consider (1) with x = 1.
We observe that if ¢ is odd, then the second and fourth term of the right
side of (1) vanish (in fact every term of even order vanishes). By writing

‘/—=k77+r, p,recCri<l, keZ,,

we get the expansion:

siny/p? _ sinkat tcoskmt  sin kmt 1 2
‘/ﬁ T kw ( ka k22 gy o(r1*)

where “big-O ” comprises a constant independent of k, r, t (Jr| < 1, ¢ € [0, 1]).
Using this expression in every integral of the right side of (1) we arrive at

y(,p,q) = P(q) + Qu(q) - r+ Ry(q,7) - r?

where
nsinka(l —x,)  sinka(x, — x)
P(q) = mz;’zf f f kw o km
sin kvrx1

(xl) q('xm) dxl o dxm’

0.(q )"'( + Z/ f Oy, m(xl’ o Xp)

xq(x) -+ q(x,) dx, -+ dx,,

where Q, ,, is a sum of m + 1 expressions all, in absolute values, less than
2/(km)™*! and

R,(4.r) = 7= - O(1) + 2[ R )

Xq(x1) -+ q(x,) dx, -+ dx,

where |R,; | < ¢/(km)™*! and c is independent of k, r, x,,..., x,, (|r] < 1).
Hence

o0 1 X,
@) |Pg)|= X —(—I;r_)—'"?/ol'“fo lg(x,) ] -~ |q(x,,) | dxy -+ - dx,,

)
C(q) .
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In the same way,

(3) 0ua) = S 4 6,(0), 16.(0)] < (k("))

@ IR, r)| < EL.

Let r, = P,/Q, + r. Then

P\’
y(r) =y, p,q) = Q-1 + Re(ny) - (,1 - _Q_k) .

Consider also g(r;) = Q, - r;- Then, because of the asymptotic relations (2),
(3), (4), if k is larger than some k, = k(q),

ly(r) = g(r) | =|Ri(r)| <|QulInl=lg(r)]

P
rl—'Q—I;

for all r, such that

SN A i C))
Nl =8=25 5 r

By Rouche’s theorem y(1, p, g) = 0 has exactly one solution p, such that

Yo =k = (P(9)/Qu(2)) + 1y

where |r;| < 8 = O0(1/k*), if k > k,(q). Remembering that the fourth term
in (1) vanishes,

P(q)
0:(q)

1 1%, .
k31r3j; _/; sin kar(1 — x,)sin kw(x, — x;)

sin kwx;q(x;)q(x,) dx, dx, + 0(-]%)

G +0(55)
n*

1 %2 1
kz,‘_rz/(; '/0 Kk(x2’ xl)q(xl)‘I(xz) dx, dx, + 0('k—4)
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where
(5) K (x5, x;) = 4sinkn(1 — x,) - sin kw(x, — x;) - sin kax,.

So p, = k*7? + i, where

© e [ [Klex)a(0q(x) dxar + 0 35
1

Now we observe that

k=1,

fI/’K(t x)K, (¢ x)dxdt={%’
0Jo NIRRT 0, k#l

So { K, } is an orthogonal system for L*[0 < x < ¢ < 1] and hence
Y (ki) < +o0,ie. (i} €}

Section 2
By (5),
K, (t, x) = sin2kmx — sin2kat + sin2kw (¢t — x)

from which we have
~ 1 [t
fo= [ Kt x)a(x)a(e) dxar
0 Yo
= fl sin2k1rx{—2q(x)fxq(t) dt + flq(t)q(t - x) dt} dx
0 0 x
= fl sin2kmx - G(x) dx.
0
Hence

0
G(x) ~2 Y i, sin2kwx + even function.
k=1
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If we consider

g(x) = G(x) — 2G(1 - x)

~24(x) [ (1) de

+ %[/xlq(t)q(t —x)dt — /ll_xq(t)q(t -1+ x)dt
A(x) + B(x),

then

[o 0]
g(x) ~2Y [, sin2kmx.
k=1

B(x) is a continuous function of x € [0, 1] and
(7) B(x) — %flqz(t) dt asx — 0.
0

Also

1/2

F[1wia < 3(flawra) [ [ laola) o

< 3 [racora) (< 1ot Para)
<3 [laorac 5
=2 ["la(x) " ax.

(8) %f:u(x)uxw as 8 = 0%,

From (7) and (8),

©) 1 fj

Let ¥(x) = (3 — x)[oq?(¢) dt.

dx >0 asé—> 0.

8(x) - 3 [0 d
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Then (9) becomes

(10) %foalg(x) —¥(x)|dx—>0 asd—>0".

Now

Nl‘zn

fl g(x)sin2kwxdx =
0

>

1/2 . 1 1
fo ¥(x)sin2k7x dx = mfoqz(t) dr.

Hence

Nlr—-

n: 1 12 n 1
gu —zq;foq(f)dtkgp

j(;l/z(g(x) - ¥(x)) i sin2kawx dx

k=1

1/2
= [ (8(x) = ¥(x)) D, (x) dx.
D,(x) has the following two properties, see [4]:

(@) |D,(x)| <n,

.. cos7x — cos(2n + 1) 7x
@ D0 = ptdet D

S%, 0<x<

Therefore

X

4,0 < n [ g(x) = ¥(x) dx + 3 /j/fI_g_(_x_)_—_‘Pm 0

=
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The first term — 0 as n = + oo by (10). To handle the last term, we consider

F(x) = 5 [ 18() = ¥(0) ar.

Then |g(x) — ¥(x)| = (xF(x)) = F(x) + xF'(x) and

1 ;12 F(x)

[13 ” 1 l l
last term 21/n ” dx + F(z) 2F(n)'
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By (10), given & > 0 there exists x, such that

F(x) <e if0 < x < x,.

Then
% 1/2 F(x) dx=—;— 1/2 F(x) de + %/Xo F(x) x
i X v X im X
1 r12F(x €
sfj;o (x)dx+~2-(logn+logx0).
So
A, _ ni/8(x) — ()l dx e elogxy
logn = log n 2 2logn
1
L1 VzF(x)d s zF(i)—iF(;
210gnf x @ log n
Hence
— 4, _ e
lim logn =2
n—oo
and
A, 0
Tog 1 , h— +o0,
= = 143442
ot ot 1, : n
2logn 47r,/0q (1) di log n -0,
fototh 1,
Tog 7 _*277,/(;‘1(0‘#’ n—- +o.
So, by (6),

fig + 20, + --- +nf, 1 n
1 210gn N 472f0q2(t) dt, n— +oo.

The last assertion of the theorem comes from the above because if

Z(n3/2ﬁ’n)2 <+ 0,

then

- a2 1\1/2
iy + - +nf, (M%+-~~+(n3/2pn)2) (1+...+;)
logn -0
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and so

[a(ya=0, g=o.
0

This theorem is sharp, because there exists a g,

(x) 1, 0<x<i,
x) =
7 “1, l<x<l,

for which {fi,} € I2 for every a, 1 < a < $ since

- fi? , k even,
Be = 1
- 2_k—'7—7'. . k odd.
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