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G*-FIBER HOMOTOPY EQUIVALENCE

BY
S.Y. Husseint!

Introduction and preliminaries

Let G be a compact, connected Lie group, and V, W two complex G-mod-
ules. Denote the unit spheres by SV, SW. In this article we shall be concerned
with maps over BG,

EG XSV, SV°) -1 EG x(SW, SW®)
BG

where EG — BG is a universal G-bundle. Such maps are studied in [9]. It can
be easily seen that they are exactly those induced by equivariant maps
EG X SV — SW, i.e., by the so-called G*-maps SV — SW. We shall say that
f is a G®-equivalence if, and only if, f is the degree-one map on the fibers.
Note that according to Dold’s theorem [8] a G®-equivalence is a fiber-homo-
topy equivalence, and therefore it admits a G*-equivalence as an inverse. Also
note that, in the equivariant case, the notion of a G*-equivalence is just the
notion of quasi-equivalence introduced in [13]. We shall say that the G*-
equivalence SV — SW is special if, and only if, it induces a T*-equivalence

(SV, SVT, SVS) — (SW, SWT, SWS),

where T C G is a maximal torus. It is easy to see that a degree-one G-map is
special [11].

In this article we first study how V and W are related to each other, given
that SV and SW are G®-equivalent. The answer is formulated in terms of an
appropriate K-theoretic degree, with values in the completion R(G)" of the
representation ring, defined in the manner of [12] and [7] and denoted by
deg; f. We shall say that deg f is rational if, and only if, it lies in R(G). It
will be shown in §2 below that degg; f is rational if V=W and f is a
G*®-equivalence, or if f is equivariant. However, the inverse of a degree-one
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G-map, which is always a G®-equivalence, need not have a rational degree (cf.
Example (6.4) of [13] and (9.5.1) of [7] and Proposition (2.2) below).

We first show (Theorem (1.1)) that if there are special G®-equivalences
SV &2 SW with rational degrees, then ¥ and W are equivalent up to conju-
gancy. Theorem (2.2) of [16] follows as a special case. Next we consider the
sphere bundles SV — B, SV — B of the complex G-vector bundles ¥ — B,
W — B over the trivial G-complex B. Given a G®-fiber homotopy equivalence
SV — SW over B, we show (Theorem (2.3)) that the summands of ¥V and W
defined naturally by the irreducible G-modules are stably equivalent, again up
to conjugamcy. This latter result is useful in the study of the question of the
injectivity of the equivariant J-homomorphism and whether the image is a
direct summand. As an illustration we state a result on the injectivity which
generalizes those of [3], [6], [10] and [11].

1. Statement of results
Let (X, A) be a compact G-pair. Put
XX (X, A) = K*(EG x5(X, A)),

where K* is the K-theory based on the Bott-spectrum [1], [15]. Note that, for
nice enough spaces, X*(X, A) is the completion of the equivariant K-theory
of Segal [14] (Theorem (2.1) of [2]). Also note that X * defines an equivariant
K-theory on the category of compact G-spaces and G®-maps.

Now let V and W be two complex G-modules, and denote by SV and SW
the unit spheres with respect to some invariant Hermitian metrics. The
K *-degree of a G®-map f: SV — SW is, by definition, the quantity deg f in
Xg*(Point) = K*(BG) = R(G)" such that

K (f)(pw) = degg(f) - py

where p,, and p, are the Thom-classes of
EGX; W - BG and EG X;V — BG

respectively. This is of course completely analogous to the notion of an
equivariant degree defined in [12] and §9.7 of [7] for equivariant maps, and
reduces to it in that case. Thus deg f is rational if f is a G-map.

Following the notation of p. 192 and p. 195 of [4], let K C (LT)* be a Weyl
chamber, I = ker{exp;: LT — T'} the integral lattice, and I* = {a €
(LT)*|a(I) € Z} the lattice of integral forms. For w € K N I'*, denote by
M, the irreducible G-module whose highest weight is w (p. 242 of [4]). Let us
note that the evaluation morphism

Homy(M,,V)® M, - V
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induces naturally an isomorphism

V=YVee M,

w

of G-modules, where V* = Hom(M,,, V') and « ranges over K N I*. Finally
for w € KN I* let & = 6(—w), where o is the element of the Weyl group
W4(T) of G relative to T which takes —K to K, (p. 261 of [4]).

THEOREM (1.1). Suppose that
f

are special G®-equivalences such that det f and det; g are rational. Then
for allw € K N I*.
The proof is given in §2 below.
As dimc V> is the multiplicity of M, in M, and as M, and M are
equivalent as real G-modules, the following is an immediate corollary.
CoOROLLARY (1.2). V and W are isomorphic as real G-modules.
The special case when f and g are G-maps is proved in [11]. Also, the case
when f and g are the G-maps and V¢ = {0} = WC is proved in [16],

Theorem (2.2).
Next let us consider the complex G-vector bundles

V=Y)YV°®eM,»>B, W=) W'®M, > B,

where w € K N I*, M, is the irreducible G-module whose highest weight is w
and V* = Homg(B X M,, V). The base-space B is by assumption a trivial
G-space.

THEOREM (1.3). Suppose that

sv L5 sw

is a special G®-equivalence over B, and that B is a connected finite cell complex.
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Then
ve+ (V*)* > B, W+ (W°)* > B
are stably equivalent as vector bundles, for all of 0 + w € K N I*.

The proof is given in §3 below.
The preceding theorem yields the following information on the equivariant
J-homomorphism. Consider the complex G-module

V=Vy+ Y V°® M,

where w ranges over the set € = {w,,...,w,} € KN (LT)* of non-zero
maximal weights of ¥, and V* = Homg(M,, V). Thus V¢ = V,. Define
Mapl..(SV) to be the space, with the compact-open topology, of special
G>-equivalences. Then the sub-space of linear maps is U, X -+ XU, , where
m,, = dim V. Passing to limits and classifying spaces, we obtain the map

J: (BU)™ - BMapl.(SV°®)

where (BU)** is the k-fold product of the classifying space of the infinite
unitary group, and Map2-(SV ®®) is the limit of Map2(SV) as my,...,
m; — 0.

Let f: B — (BU)** be a map, and denote by f, the component corre-
sponding to w € . Also denote by c: BU — BU the classifying map of the
dual of the universal bundle, and put f$ = f, o c.

COROLLARY (1.4). The composite
G -1 BU™* —L> B Mapl.(SV )

is null-homotopic if, and only if, f, + f5 is null-homotopic for all & € §, where
addition is that induced by the Whitney sum.

Similar results are proved for the map
(BU)*™* - B Map (SV ®*)

in [3], Theorem (11.1), and in [6], [10], and [11], with B a sphere. When B is
just a finite complex, the case when G = S> or S! and the action is free is
established in [3]. This latter result is used there (in [3]) to prove that the image
of J’ on the homotopy groups is a direct summand. Corollary (1.4) plays a
similar role for the general case.
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2. Proof of Theorem (1.1)

Consider ¥ and W as T-modules, and denote by V(A) and W(A) the weight
spaces of ¥ and W that correspond to A € I*. The key step in the proof is the
following.

Assertion (2.1): For all A € I*,
Assuming (2.1) for the time being, let us prove Theorem (1.1). Put
P={Ae KnI*ldimcV(A) + dimcV(—A) # 0}.
As —\ and A belong to the same orbit of the Weyl group W(T'), we note that
dimcV(A) = dimcV(—-A) and dimcW(A) = dimcW(-1).
Hence,
P={Ae KnI*|dimcV(A) + dimcV(X) # 0}
= {A € KN I*|dimcW(A) + dimcW() # 0.
Now let w € P be a maximal element with respect to the usual order
[4, Definition (2.2), p. 250]. Then either M, or M is a G-summand of V.
Similarly, either M, or M; is a G — summand of W. Thus proceeding
inductively, we can show that
dimcV® + dimcV® = dimc W + dimW® forallw € K N I*,

which is what is to be proved.
To prove Assertion (2.1), let

A={Aer*|V(A) # {0}} and T ={yeI*|W(y)=+ {0}}.
Regarding A as a homomorphism T — S, we can identify it with
K°(BA)(t) € K°(BT),

where ¢t =¢* — 1 and £* is the dual of the Hopf-bundle over BS!. By
definition, let

IAl= TT(A)™, T = yel‘lr(y)'"’

AeA

where m, = dimcV(A), m, = dimc W(y).
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The first step in the proof of Assertion (2.1) is the computation of deg,(f).
PROPOSITION (2.2). |T'| = deg,(f) - |A].

Proof. Put V, = V7. We shall prove only the case when V, # {0}, the
other being similar. It is easy to see that

A7 (SV,) = K*(BT) @ K*(SV,),
and that
X *(SV) = K*(BT) ® K*(SV).
Let V’ C V be the T-orthogonal complement of V; in V, and denote by

B € X *(SV, SV,) the Thom-class of the normal bundle of SV’ in SV. The
Thom Isomorphism Theorem implies that

KA (SV, SV,) = A7 (V')[B].

Moreover the homomorphism T = U,,, m’ = dimV”, defined by the T-mod-
ule V7, and the naturality of the Euler class imply that

A7 (V') = K*(BT)/(Al),
where (|A|) is the ideal generated by |A|. Since X7*(SV) is torsion-free as a

K*(BT)-module, we see immediately that the exact sequence of (SV, SV})
becomes the short exact sequence

23 0 —» K*(BT) ® K*(sV) 255 k*(BT) ® K*(SV,
0
- XX (SV, SV,) = 0.
Similarly, the sequence of (SW, SW,) is
(24) 0 K*(BT) ® K*(SW) 5> K*(BT) ® K*(SW,)
> X F*(SW,SW,) - 0.
Now let
By, € K2(DV,, SV,) and py, € K¥(DW,, SW,)
be the Thom classes of

ET Xy Vo —» BT and ET X; W, - BT,
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respectively, and define
[SVo] € 72 (SV,), [SV]expF(SV), [SW] X (SW)
and
[SW] exx(Sw)

to be the elements whose coboundaries are the Thom classes of the corre-
sponding vector bundles. As |A| and |T'| are the equivalent Euler classes of ¥
in ¥V and W, in W, it follows that the first morphisms of (2.3) and (2.4) take
[SV] to |A| - [SV,] and [SW] to |T'| - [SW,]. Finally, the given map f
induces a map of (2.4) to (2.3). By naturality we see that |T'| = (deg; f)|A| as
required.

The second step in the proof of assertion (2.1) is the computation of |A|
and |T'|. So choose an isomorphism 7: T — S* X .-+ XS of T with the
r-fold product S?, with r = dim 7. Regarding the components 7,,..., 7, of 7
as elements of K*(BT), we see immediately that K*(BT) = R[[7,..., 7]},
where R = K*(Point), and the latter is isomorphic to Z[u, u~!] [1, p. 13]. A
homomorphism A;: T — S! induces in turn a homomorphism

L(A)*: L(SY)* > L(T)*

of the duals of the Lie algebras, which can be expressed in the form

L(A)*(dt) = Y\, ;dr, 1<i<k,

i=1
where [A;;] is an integral matrix. An easy computation shows that
. A
(2.5) A= ( Y (r+1) ) - 1.
j=1

Similarly,
(2.6) Y = (H (7, + 1)7") -1
j=1
Now set x; = (7;+ 1) for j =1,..., r, and consider the equation

2.7) IT| = (degr f) - |1A].

Since deg,(f) € R(T) by assumption, and since |A|, |I'| € R(T), then (2.7)
is an equation in R(T'). The third step in the proof of Assertion (2.1), is to
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exploit the divisibility of |I'| by |A|. Recall that
R(T) =2Z[X,,..., X;(X,... X,)7"].

Assume that the elements of |A| C (LT)* are ordered so that |A;| > |A;| for
1 <i<j <k, where |A\|?=X’_,(\;;)* For every integer s, define

a:Z[ X, .., X (X,... X)) 7] > Z[X; X7

to be the homomorphism which takes X, to X /*4), where a, is the
coefficient of 7; is the sum 7, = a;7; + -+ - +a,7,, with the coefficients a; € Z
chosen so that (7, v) # O for all y € I'. Putting p_ = s\, + 7,, we see easily

that
a,(A)) = XPor) — 1,

a,(T) = [T(xr# —1)™, yer
Y

where (-,- ) is the usual inner-product, and m, = dim ¢ W(y), the multiplicity
of y. Let us observe now that (2.7) implies that A, divides |T'| in R(T).
Hence, for sufficiently large s, X #) — 1 divides a,(|T|). Since the prime
factors of the polynomials that appear in a (A,) and a (|T'|) are the cyclo-
tomic polynomials that correspond to the factors of (A, p,) and (v, p,), we
see immediately that (A, p,) divides (v;, p,) for some v, in I' and infinitely
many integers s > 0. Therefore, either |y,| > |A;| or |v;| = |ALl- If 14| >
|A;|, then arguing as above by using the T™-map g, whose ) *-degree is in
R(T), we would obtain an element A’ € A such that |A’| > |y,| > |A,|. But
this would contradict the maximality of |A,|. Hence |y,| = |A,|, which
implies that A, = tv,, since |\;| = |y;| and (v, p,) is a multiple of (A, p,)
for infinitely many s € Z.

Finally, repeating the argument for A\ {A;} and T'\ {v;}, one sees that
after a finite number of steps, given A € A, we can find y € T’ such that
A = 1y, and conversely. This proves assertion (2.1) and hence Theorem (1.1).

3. Proof of Theorem (1.3)

The proof proceeds in stages. Let

V=)YV°®@M,>B and W=) W*®M, > B

w w

be two complex G-vector bundles over B as in §1, with w € K N I*. Observe
that on adding appropriate G-vector bundles to V and W we can reduce the
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theorem to the special case where W* — B is the trivial bundle for all
0 # w € K N I*. Thus the theorem is equivalent to the following statement.

(3.1) Forall 0 + w € K N I*, the complex vector bundle V* + (V®)* — B
is stably trivial.

For each A € I*, put V(A\) = X m(\, w)V®, for 0 + w € K N I* where
m(A, w) is the multiplicity of A in M,,. The first step in the proof of (3.1) is to
show that it is implied by the following assertion.

(3.2) For all 0 # X\ € I*, the complex vector bundle V(X)) + V(—A)* -» B
is stably trivial.

Put
P={weKnI*|dimcV* + dim(V®)* # 0},

and choose an element w € P such that, for all y € P with y > w, the bundle
VY + (VY)* - B is stably trivial. Then

V(o) =Ve+ Y m(w,y)V, V(@)=V"+ Y m(w,y)V7,

Y>w ¥>o

since m(y,v) = 1 = m(%, ¥). But m(w, y) = m(w, y), for all y (cf. proof of
Proposition (4.1), p. 261 of [4]), since M; = M *, and as —w and « belong to
the same Wg(T)-orbit, it also follows that m(—w,Y) = m(w,y). Hence
V(w) + V(—w)* - B is stably equivalent to V* + (V°)* — B, since V¥ +
(V¥)* > B is stably trivial for all y > w. Now (3.2) implies that V¢ + (V®)*
— B is stably trivial. Arguing by induction, we can deduce (3.1) assuming
(3.2).

To prove (3.2), note first of all that V(A) = Hom,(B X C,, V), where C, is
the T-irreducible module defined by A € I*. Now we proceed as in [11],
adapting the proof to K-theory. The isomorphism

TS X - XS,

defined in §2, induces naturally a splitting §{ = §, + --- +§£, of £ as a sum of
line bundles, where £ is the principal 7-bundle

ET X SV — (ET X SV)/T = ET X SV.

Define t; € X*(SV) = K*(ET Xy SV) to be [§*] — 1, where £* is the dual
of £, and put

(3.3) P(V) = )\I;IOP(V(A)),
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where P(V(A)) = X™ + ¢;(V(A)X™ ! + - -+ +¢,, (V(N)) is the K-theoretic
Grothendieck defining relation of ¥(A) — B evaluated at A (Theorem (7.1) of
[5]). The following result is the K-theoretic analogue of [11]. The proof will be
omitted, it being similar.

Put V= V7, V=¥, + V*, and denote by B the Thom-class of SV in
SV. Regard P(V') as an element in K*(B)[[t,..., ]|, where #,,...,¢t, are
regarded as indeterminates.

THEOREM (3.4). The map ET X, SV — B induces an isomorphism

K*(B)[[1,.... ,1]/(P(V))[B] - A7 (SV, SV;)
of K*(B)-modules, where (P(V)) is the ideal generated by P(V').

Denote by A and T the non-zero weights of the representation of T, defined
by the fibers of ¥V — B and W — B, respectively. Then the existence of a
T>-fiber homotopy equivalence over B, f: SV — SW, implies
(35) P(V) = (degrf) 7'+ IT|

where deg,(f) is the X';~degree of f|S(V,), with b € B, and V,, is the fiber at
b. But, according to Proposition (2.2), deg,(f) = |I'|/|A|. Hence equation
(3.5) can be written in the form

(3.6) P(V) = |A|.

Consider first the case when dim T = 1. Since for every A € A, there is a
T-equivalence

S(¥(A) ® €)) — S(V(A)* @ C,)
B

where V(A)* — B is the dual of the V(A) — B, we can adjust the components
of ¥V — B so that the given bundle V' — B becomes

Vo+ Y, (V(AN) +V(-A)*)®Cy\—> B
A#0

where A € A ranges over the positive elements. (Recall that when dim 7 =
1, I* = Z.) Denote the positive elements of A by {A,..., A}, and assume
that A, is the smallest element. Now consider the equivariant Grothendieck
polynomial

P(V) = [H{(x* = )™+ a(r)(X* =)™ "+ -}

i=1
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where V! = V(A)) + V(—A)* m; = m, =dimcV/, and X = ¢ + 1. Collect-
ing the terms that involve the ﬁrst Chern classes of the components V,’, we
obtain the expression

ch(v XM =1)™ (XN =)™ (XM= 1) ™

The leading coefficient of ¢,(V}’) is the monomial
XM= yramy  xAemy

and, since A, is the smallest element of {A,,..., A}, it follows easily that this
monomial does not occur anywhere else in P(¥V) — |A|. Thus the equation
P(V) = |A| implies that ¢,(¥y) = 0. This means that ¥} is stably trivial and,
hence, c,(Vy) =0 for j+1,..., m,. Therefore P(Vy)= (X — 1)™ and,
after dividing the equation P(V) = |A| by (X™ — 1)™, which is the same as
(A)™, we obtain a similar equation involving one less character. Proceeding
inductively, we prove the theorem in the special case when dim 7" = 1.

Now let us turn to the general case when dim T # 1. Choose an element
A, € A of maximal length as in §1 and a character

a= Y a1 inI* c (LT)*

i=1

such that

@ (a,A) > (a,N)forall A’ € A, and
(i) (a,p)# 0forall p € A.

The element a = X/_,a,7, defines a homomorphism ¢,: S* — T which takes
e2™" to the tuple (e?™", ..., e?™%™). Considering the bundle

k
Vo+ LV(A)®C\ —> B
i=1

as an S’-bundle by means of the homomorphism ¢,, we can conclude, because
of condition (ii) above, that V'S' = V. Put

N={(\,a)i=1,...,k},

and by definition let A;,..., )\’p be its distinct elements. Write ¥ in the form

P
Vo+ X V(X)) ® Cy, — B.

i=1
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(This is just the decomposition of ¥ as an S'-bundle.) It is easy to see that
condition (i) above implies that V(A;) = V(A,) and V(—X;) = V(—A,). Pro-
ceeding as in the special case when dim7T =1, we prove that V(A,) +
V(—A,)* — B is stably trivial. Now, continuing inductively, we finish the
proof of the theorem for T with dim 7" > 1.
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