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1. Introduction

Let X be a separable Banach space. A sequence {Yn}= of finite dimen-
sional subspaces of X is called a finite dimensional decomposition (f.d.d., in
short) of X if each x X has a unique representation x E=lTnx with

TnX Yn" A basis of X is a f.d.d, where each Yn is of dimension 1. It is well
known and easy to prove that X has a f.d.d, if and only if there is a sequence
{Pn}= of commuting projections on X such that each Pn is of finite rank,
SUpnllPnl < 0% p1X c P2s c and U nPnX is dense in X. The existence
of Banach spaces without the approximation property makes it reasonable to
investigate how "close" a given separable space is to spaces with a f.d.d. In
this direction are the following three problems (the first two of which were
previously solved (see [2] and [5])).

PROBLEM 1. Given a separable Banach space X does there exist a subspace
E ofX such that both E and X/E have f.d.d.’s?

PROBLEM 2. Given a separable Banach space E does there exist a separable
space X and a subspace Y ofX, both with an f.d.d., such that E X/Y?

PROBLEM 3. Given a separable space E does there exist a space X containing
E such that both X and X/E have f.d.d.’s?

The first problem is positively solved by W. B. Johnson and H. P.
Rosenthal in [2]. The second one is answered by J. Lindenstrauss in [5] in the
following strong sense: every separable space E is isomorphic to a quotient
X**/X where both X and X** have bases. The purpose of this paper is to
give a positive solution of Problem 3. Since every complemented subspace of
a space with an f.d.d, has the bounded approximation property one does not
expect a given separable space to be complemented in a space with an f.d.d.
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EMBEDDING BANACH SPACES 587

For a subspace E of X, being complemented in X is a very strong
condition. It means that there is a number A > 1 such that for every Banach
space Z and every operator T" E Z there is an extension 2?: X Z with

TII -< A TII. We find the following weaker property of a subspace E of X
easier to handle yet interesting enough.

DEFINITION 1. A subspace E of X is said to be almost complemented in
X if there is a number A > 0 such that for every compact Hausdorff space K
and every operator T: E C(K) there is an extension f" X - C(K) with

711 -< A II TII.

We will prove the following result:

THEOREM. Let E be a separable Banach space. Then there exists a Banach
space X with an f.d.d, which contains E such that

(1.1) E is almost complemented in X
and

(1.2) X/E has an f.d.d.

The proof of the theorem consists of three parts. The first part (Section 3)
is mainly an algebraic construction of a normed space with an f.d.d, contain-
ing E. This construction is the foundation for some topological consequences
given in Section 4. The last part is a variant of E. Michael’s selection theorem
[6] which leads to the operator extension property. Before starting the proof
of the theorem we need some information about almost complemented
subspaces.

Notation. Let X be a normed space and A c X. [A] denotes the closed
linear span of A; span A is the algebraic span. ConvA is the closed convex
hull of A and A / is the annihilator of A in X*.

2. Extension of operators into C(K) spaces

J. Lindenstrauss investigated in [4] the extension of compact operators into
C(K) spaces. A special case of Theorem 6.1 in [4] is the following: for every
Banach space X, every subspace E c X, any e > 0 and every compact
operator T: E C(K) there is a compact extension

’" X--> C(K) with I111 < (1 + )IITII.

One should therefore expect the class of almost complemented subspaces of
a Banach space to be rather large. Restricting the range space of an operator
to be a C(K) space is a considerable convenience. Indeed (see [1, p. 490]) if
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Z is a Banach space then every operator

T:Z --, C(K)

determines the function

o(T): g - II TII B(Z*)

(where B(Z*) denotes the closed unit ball of Z*) defined by (q(T)(k)z
(Tz)(k) which is to* continuous. Conversely, every to* continuous function
q: K --, hB(Z*) determines an operator

r(): z -, C(K)

defined by

(T()(z))(k) (k)(z).

Clearly IIT(0))ll sup{llo(k)ll: k K} < h. In the sequel a Banach space Z
is regarded as a subspace of C(B(Z*))via the natural embedding (Jz)(z*)
z*(z). The topology on B(Z*) is the to* topology which is metric when Z is
separable. Let E be a subspace of X and T: E--, X the corresponding
isometric embedding and, for h > 1 let

K(A) {x* AB(X*): IIx*lll < 1}.

We regard C(B(E*)) as a subspace of C(K(A))via the natural embedding S
defined by

(Sf)(x*) f(T*x*) for every x* B(X*).

We say that a function tp: B(E*) X* extends functionals if for every
e* B(E*) and e E, q(e*)(e) e*(e).

Example 1. Every Banach space Z is almost complemented in C(B(Z*)).
Indeed, the function

q:’o: B(Z*) B( C(B(Z*)) *)

defined by

q0(z*)(f) f(z*)

for every f C(B(Z*)) and z* B(Z*) is clearly to* continuous and ex-
tends functionals. If T: Z--, C(K) is a given operator, then, using the
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notation above,

(T):KB(Z*)

is to* continuous hence, the composition

q:,o q:,(T): K B(C(B(Z*))*)

is to* continuous. Consider the operator

T(qoO q(r))" C(B(Z*)) --* C(K).

It is easy to check that 7 is a norm preserving extension of T.

Example 2. If H is a compact Hausdorff space then C(H) is comple-
mented in a space X if it is almost complemented in X because the identity
I: C(H) - C(H)can be extended to a projection of X onto C(H).
The following is a list of simple, well known facts brought here for the sake

of completeness.

PROPOSITION 1. Let E be a subspace of a Banach space X. Then the
following properties are equivalent"

(2.1) E is almost complemented in X.
(2.2) The natural embedding J: E - C(B(E*)) has an extension f: X-

C(B(E*)).
(2.3) There is an to* continuous function q: B(E*)--, X* which extends

functionals.
(2.4) There is a > 0 such that if

K(h) {x* e AB(X*): IIx*lll < 1}

and
S: C(B(E*)) --. C(K(A)) is the embedding defined by Sg(x*) g(x* Itr) then

there is a projection P of C(K(A)) onto S(C(B(E*))) with IIPII < A.

Proof (2.1) (2.2). Formal.

(2.2) (2.3) Let qo: B(E*) - B(C(B(E*))*) be defined by p0(e*)(f)
f(e*) as above. Let ql be the restriction of f* to B(C(B(E*))*). Then 0
and 1 are to* continuous; hence, if h Ilfll, the function q (1 0"
B(E*) - AB(X*) is to* continuous and for every e* B(E*) and e E we
have

q(e*)(e) f*(qoe*)(e) o(e*)(fe) q0(e*)(e) e*(e).
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It follows that q extends functionals.

(2.3) (2.1) Let

x sup{ll(e*)ll" e* B(E*)}

and let T: E C(K) be any operator. With the above notations,

q q( T)" K AB( X*)

is to* continuous. Let

= T(cpo p(T))" X C(K);

then Tll AII TII and for every e E and k K,

(e)(k) ((qo q(r))(k))(e) (q(T)(k))(e) (Te)(k)

because q extends functionals. It follows that 7 extends T. This proves (2.1).

(2.4) (2.1)
and let

Suppose that S(C(B(E*))) is complemented in C(K(A))

P" C(K(A) S(C(B(E*)))

be a projection with IIPII x. Let

q0" B(E*) --* B( C( B( E*) ) *)

be the function defined by

q0(e*) (f) f(e*)

and let

(1 B(C(B(E*))*) IIPIIB(C(K(A))*)

be the restriction of P*. Then q 1 (0 is to* continuous and extends
functionals, and therefore, since (2.3) (2.1), very operator T" E C(K)
can be extended to an operator

T1" C(K(A)) - C(K) with IITll IIPII.

Regarding X as a subspace of C(K(A)) (via the natural embedd.ing U:
X C(K(A)) defined by (Ux)(x*) x*(x)) we put T TllX; then T is the
desired extension of T.
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(2.3) (2.4) Define V: C(K(,)) C(B(E*)) by (Vf)(e*) f(q(e*))and
put P SV. Then P is a projection of C(K(,)) onto S(C(B(E*))). This
proves Proposition 1.

Proposition 1 suggests a general method of proving that a subspace E of X
is almost complemented. All that has to be done is to construct a o*
continuous function

p" B( E*) X*

which extends functionals.

Example 3. Let 1 < p < oo and let E be a subspace of lp. Then qffe*), the
Hahn Banach extension of e*, is a suitable function from B(E*) to B(l)
because, as is easily checked, q is o9" continuous. It follows that E is almost
complemented in lp.

3. The Algebraic construction

Let E be a separable Banach space and regard E as a subspace of a space
Y’ with a monotone basis (for example, we may let Y’= C[0, 1]). Consider
the space Y Y’ + co where the norm is defined by II(x, z)ll max{llxll, Ilzil}
for any x Y’ and z c0. The space Y has a normalized monotone basis
{Yn}=l with biorthogonal functionals {Yn*}=l such that {Y2n-1}=l and
{Y2n}= are monotone bases of Y’ and Co respectively. We may assume that
E0 E C Span{Y2n_l}= is norm dense in E. Let {Pn}]’=l denote the natural
basis projections so that Ilenll 1 for all n. Put E E0 c1 en(Y).
Now select a subsequence of even integers {a(n)}’= satisfying the follow-

ing conditions.
(3.1) a(1) is so large that Eel(1 #: b.
(3.2) a(n + 1) is an even integer so large that Ec(n+l is strictly larger

than E,(n and if e E0 and P,(,oe 0 then there is an e0 E,(n+ 1) such
that P(ne P,(neo. For every n let Jn {e Eo" P,(ne 0} and Gn ’n
(’1 Eo(n + 1).
Now we divide the construction to five steps.

Step 1. We find a subspace Wn

conditions are satisfied.
of Ea(n+ 1) such that the following two

(3.3) E() + W q- G Ec(n+l is a direct sum (and hence e(n)lwn and
I- e(n)lwn, are isomorphic mappings);
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(3.4) Pot(,-1)to 0 for every to Wn.

Indeed, start with any subspace Un of Eot(.+ 1) such that Eot(,,) + Un + G.
Eot(n+ 1) is a direct sum. Let {ui}i be a basis of Un. If Pot(n-1)ui 0 then,

by condition (3.2), there is a v Eot(n with Pot(._ x)Vi Pot(n-x)Ug. Put tog ug
if Pot(n_l)Ui 0 and toi ui- vi if Pot(n_l)ui O. Let W. span{to/}l then
Wn is the desired subspace.
So far we have an algebraic separation between Eot(n and Wn in the sense

that

Eot(n f 1 {0}.

For future arguments we need the stronger separation property:

(I- Pot(n_l))got(n) N Pot(n)Wn {0},

which need not hold in general. In order to achieve this kind of separation
we will have to perturb E0 slightly. The only reason for starting with
Y Y’ + co (instead of Y’) at the beginning of this section is to ensure that
this perturbation process is possible. To achieve this perturbation, we will
construct a certain linear mapping S: E0 Y. Before doing this, let us
consider the motivation for this construction. Since E0 is supported on
{Y2n-1}=l and a(n)= 2N for some N we have by (3.4) that eot(n)Wn is a
subspace of

(Pot(n) Pot(n-1))Y

supported only on the odd basis elements

{Y2i-1}i=l with a(n 1) < 2i 1 < a(n).

(I Pot(n-1))Eot(n) is also a subspace of

(Pot(n)- Pot(n-I))Y

supported on the same

and

Y2i- 1} a(n- 1) <2i- l<a(n),

1)).dim(/- eot,n_l))Eot(n) < a(n

If we can achieve a perturbation so that W, is still supported on the odd
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basis vectors while for each x (I P,(n-1))Ea(n), x 4: O, we could have

Ye(X) 4:0 for some1/2a(n- 1) <i< a(n)

then it would follow that

(I ea(n_l))Ea(n) 0 ea(n)Wn {0}.

Step 2. Given e > 0, we construct a linear mapping S" E0
the following conditions:

satisfying

(3.5)

(3.6)

(3.7)

(3.8)

IlSe e e lie for all e E0,

S(E(n) S( Eo) P(nY, n > 1,

S(Gn) (I-P(n))Y, n > 1,

S( E,(n) + S( Wn) + S( Gn) S(E(n / 1) is a direct sum

and

(3.9)

Pa(n-1)SW 0 for all w W,

(I Pa(n-1))S(Ea(n)) 0 Pa(n)S(Wn) {0}.

The construction of S is a simple but tedious process. The reader is referred
to the appendix for details.

Step 3. Clearly the space E S(Eo) is isomorphic to E0 with

IISII IIS-111 _< (1 + e)(1- e)-’

and if we put E’a(n) S(E,(n)), Wn’ S(Wn) and G, S(Gn) then these new
subspaces satisfy conditions (3.2), (3.3) and (3.4) in addition to the following
condition:

(I Pa(n_l))Eta(n) 0 Pa(n)Wn’ {0}.

In order to avoid complicated notation we will assume that E0 E6, E(n)
E(n) W Wn’ and a G, for every n > 1. Now let Y0 span{yi}il,
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and 3(i) > 0 so small that

I-I I-I (1 + 6(i)) < 1 + q.
k=l i=k

Let {n(k)}= be an increasing sequence of integers such that n(1)= 1 and
n(k + 1) is so large that the following condition is satisfied:

(3.11) Let e E0 and P(,,(,))e 4:0 and put

v(e) inf{llell e E0, ea(n(k))el ea(n(k))e}.

Then there is an e0 E,(nk+ 1)) such that

Pa(n(k))eo Pk))e and Ileoll < (1 + 6(k + 1))vk(e).

Step 4. Let.Fo Eo, F Ea(n(k)), Q ea(n(k)), Ik Fo [’) (I- Qk)Yo,
H F/ H and U Wn(). We claim that the following conditions
hold:

(3.12)
(3.13)
(3.14)

F + U + Hg is a direct sum,

Ok_lit 0 for all u Uk,

(I- Qk_I)F OgUg {0},

Indeed, (3.12) and (3.13) are evident; to prove (3.14) note that

+

Ea(n(k) + Wn(k) -- Gn(k) + Wn(k)+l + Gn(k)+l +
-I- Wn(k+l)_ + Gn(k+l)_

Fk+

By (3.4), if u Uk Wn(k) then ea(n(k)_l)U "-O; hence, clearly,

Q,- u Pa(n(k- 1))u 0.

Finally, if x (I- Qk_l)Fk QkUk then x Pa(n(k))Wn(k) hence, by (3.4),

Pa(n(k)- 1)x O.

It follows that
proves (3.14).

x (I- Pa(n(k)-1))Ea(n(k)) and so, by (3.10) x 0. This
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Step 5. To complete the construction, let

X0 span Fo t2 U Q,Fo
k=l

let

C convex hull of B(F0) t2 [,.J Qk(B(F0)),
k=l

let/x be the gauge functional of C and define Ilxll (x)for every x X0.

The space Xo thus becomes a normed space and F0 is a subspace of X0. If
x S0, Ilxll i and e > 0 is given then there exist elements {ei}/N__l C B(Fo)
positive numbers {Ai}/N__I and integers {j(i)}/N= such that

N N

(3.15) x E liQj(i)ei and E/i -< 1 -+- 6.

i=1 i=1

It follows from (3.15) that, as a projection on X0, [[anll 1. Note that, by
(3.11), if x an(So), at the small cost of allowing

N

i=1

(instead of E/N= 1/i < 1 + e)we may assume that

(3.16) N n, e B(Fn+l) and ](i) for all 1 < < N

We have thus constructed a Banach space X the completion of X0 with an
f.d.d, which contains Eo and hence contains E. In the next section we will
show that X/E has an f.d.d.

4. Topological consequences

Our algebraic construction yields the following two results.

LEMMA 1. Let X QnXo and assume that x* X is a functional which
satisfies the inequality Ix*(x)l -< Ilxll for all x Xn_ t2 Fn. Then

Ix*(x)[ < (1 + 6(n + 1))llxll foralZx - [Xn_ + Fn]
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Proof Assume that x y + e with y Xn_ and e Fn
1. Then, by (3.15) and (3.16),

and that ]lxll

n

y + e AiQie
i=l

where e B(Fn+ 1)’ *i >" 0

and

n

E*i < 1 +(n+ 1).
i=1

Applying On On-1 to both sides of the above equation we get

(I- Qn_l)e (Qn Qn-1)(Y + e) *n(Qn Qn-1)en

Suppose that e z + u + h where z F,,, u Un and h H.. Then

(I- Qn_)e ,nQnu + *n(I- Qn_l)Z

and so

(I- Q,,_)(e *nZ) ,nQnu

where u U and e- *nZ --. Fn, It follows from (3.12) and (3.14) that

*nu 0, e *n z Fn_ 1. Therefore Qne,, Qnz z and Ilzll -< 1. Hence

n

Ix*(x) < E*ix*(Qie,) < (1 +,(n + 1))
i=1

as claimed.
The statement of Lemma 1 means, in fact, that

(4.1) B[X_ + F,,] c (1 + a(n + 1))conv(B(Xn_l) tO B(Fn) ).

LEMMA 2. Let q: X- X/E be the quotient map; let x Xn_ and
o Qno where o Un. If IIq(x / O1)11 1 then IIq(x)ll FI=n+l(1 +
6(i)).

Proofi Pick e Fo such that Ilx + (-O1 + e II 1.
Suppose that e Fm with m > n. Then, by (3.15) and (3.16) there exist

{ei}im= C B(gm+ 1) and positive numbers {,i}/m= such that

m

E *i < 1 + a(m + 1)
i=1

and
m

X + (.01 + e *iaiei
i=1
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Let em f + u / g where f Fro, u Um and g Hm; then

(am Q.,-1)( x + to1 + e) (I- am_l)e.

On the other hand,

(Om (mQm-1) AiQiei (Qm Qm-1)Amem
i=1

(am am-1)(Am(f + u + g)

’m( I Qm-1)f + AmamU.
It follows that

(I-am_l)(e-Amf) =Qm(AmU)

and, therefore, by (3.14), e Amf Fro_ and lmU 0. This means that

f= amf Qm(f + g) Qmem and llfll IIf + gll Ilemll 1.

.m-lAiQie + Amf and soThus we have the equality x + (.o q" e i=

x + to + (e ’mf)
m-1

E AiQiei, e Amf Fro_
i=1

and

IIx + 601 q" (e Amf)[ 1 + (m + 1).

We now repeat the procedure m n times to get an eo Fn such that

IIx + tO1 q- eoll < (1 + 3(m + 1))(1 + 3(m)) (1 + 3(n + 2)) =/z

It follows that there exist {ei}i"= c B(Fn+ 1) and non-negative {jli}__ such
that

n n

E/zi </x(1 + 3(n + 1)) and x + eo + to, E la’iaiei
i=1 i=1

Let en f + u + g where f F., u U. and g nn. Then

Q._l)(X + eo + to1) (I- Q._l)eo + QntOl

(I- Qn_l)eo + Qnto.
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On the other hand,

n

EiQiei
i=1

]dn( I Qn-If -I- InQnu.

It follows from (3.14) that e0
element

tZnf - Fn and 60

Yl
n-1

E txiQiei + tXn(f + U + q).
i=1

u. Consider the

Then, clearly, IlYlll /z(1 + 6(n + 1))and

Yl
n-1

E IiQiei-t- InQn_len -k- (I- Qn_l)(eo -+- 60)
i=1

x -+- e0 -+- 60 -k- ng X q- Eo

This proves Lemma 2.

COROLLARY. X/E has an f.d.d, determined by {Xn + E}’=

Proof Let y X then y x + e + 60 where x X 1, e F and
601 Qn60 with 60 Wn. Moreover, if y has another representation y x’ +
e’ + 60] of the same type then x + e x’ + e’, 60 60’ and 60 60]. It
follows from Lemma 2 that the map

Sn_l’Sn+ESn_l +E

defined by Sn_lq(y) q(x) is a projection of norm

[[Sn-lll I-I (1 + (i))
i=n+l

(as above, q" X X/E is the quotient map). It follows that there is a
projection Sn_ of X/E onto X + E (defined for x Xk + E by S x

Sn_l... Sk_2Sk_lX and extended by continuity to all of X/E)with

Ilan-lll E I-I(1+3(i)) <1 +r/.
k =n + i--k

It is easy to see that SkS ---Sm with m min{k,n} and hence these
projections determine an f.d.d, for X/E. This proves Corollary 1. This result
plus Step V of the construction of Section 3 finishes the proof of (1.2) of the
main theorem.



EMBEDDING BANACH SPACES 599

5. The operator extension property

We will proceed to prove (1.1).
Recall that, by Proposition 1, the existence of a number , > 0 such that

every operator

T:E C(K)

has an extension 7: X - C(K) with II 11 A TII is equivalent to the
existence of a to* continuous function q: B(E*) AB(X*)which extends
functionals. If E is a subspace of a separable Banach space X and S: E - Xis the isometric embedding, let

0:B(E*) 2x

be defined by 0(e*) s*-l(e*). We search for a to* continuous selection q:
B(E*) X* of q. Since Michael’s selection theorem [6] does not hold in the
to* topology we need certain modifications. Let us first make three easy
observations.

Observation 1. Let X be a finite dimensional subspace of X. Then
S*(X) (X c E)+ (Z+ denotes the annihilator of Z in X*).

Observation 2. S* is an to* open mapping. Indeed, if/(X*) denotes the
open unit ball of X* then the collection {e/(X*) + X" e > 0 and X c X
a finite dimensional subspace} is a base for the to* neighborhood system of 0
in X*. By Observation 1,

+ x?) + e) +

is a to* neighborhood of 0 in E*.

Observation 3. The carrier 0: B(E*) 2x* defined by q(e*) s*-l(e*)
is an to* lower semicontinuous carrier into the collection of the closed convex
subsets of X* (i.e., for every e* B(E*) and to* open set V c X* for which
q(e*) c V 4: there is an to* open U c E* such that e* U and for each
ed’ U, q(ed’) c V ). Indeed U S*(V) is the desired to* open neigh-
borhood of e* in E*, by Observation 2.

We will first prove"

PROPOSITION 2. Let E be a subspace of a separable Banach space X. Let
{Xn}= be a sequence offinite dimensional subspaces ofX with X X2

=lXn dense in X and (.J=IXnN E dense in E. Let {fl(n)}=l and
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e(n)) be decreasing sequences ofpositive numbers with

I-I (1 + e(n)) < A and E 2nil(n) < 1
n=l n=l

and let V (n + 1)B(X*) + X+ Finally, put A(n) Yl’= x(1 + e(i)), A(0)
1 and make the following assumption"
(5.1) For every n> 1, e B(E*), x X* and v* Vn for which

x + v* O(e) and [[XIXnI[ < A(n 1) there is an oo* V such
that

x + to* A(n)B(X*) (e).

Then there is an o* continuous function q: B(E*)--, AB(X*) which extends
functionals.

Proof Our argument is a modification of the proof of Theorem 2.3 of [6].
We will construct a sequence of o* continuous functions %: B(E*) h(n

1)B(X*) such that the following two conditions are satisfied for every
e* B(E*):

(5.2)
(5.3)

qi(e*) q(e*) + V/ i= 1,2,...,

qi(e*) q_(e*) + 2V/_x i= 2,3,

Once this is proved, the o* compactness of h. B(X*)will yield a uniform
limit function . B(e*) ZB(X*)

which is an o* continuous selection of q. We will construct the I)n by
induction. Our first step is to construct b 1. To do this, for each e’ B(E*)
pick an

x x(e) B(X*) O(e)

and consider the set

Ul(e’) {e* B(E*)" x(e) O(e*) + V}
{e* B(E*)" O(e*) (3 (x(e) + V1) * (R)}.

Since q is to* 1.s.c., UX(e) is an to* open set and the collection {Ul(e’):
e’ B(E*)} covers the to* compact B(E*). Hence there is a finite subcover
Ul(e * ), UI(, e,N(X)) and a partition of the unit consisting of the o9"
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continuous non-negative functions P, PN(1)I such that

N(1)

p(e*) 1
i=1

for all e* B(E*)

and for every 1 < < N(1), p/1 vanishes outside Ul(e*i). Let x*1, 1,
then the function

x*(e* )1,

N(1)

ql(e*) Epli(e*)x*1,
i=l

is to* continuous and if p(e*) 0 then e* Ul(e*i) and hence x*1, 1,
,(e*) + V1. Since V is convex we get ql(e*) O(e*) + V and, clearly
Ilqgl(e*)ll < maxllxl, il[ < 1 This completes the construction of tbl. Suppose
now that the to* continuous functions ql, q2,..., n have been constructed
with

i" B(E*) A(i- 1)B(X*)

so that (5.2) and (5.3) are satisfied for 1 < < n and proceed by induction.
Let ed’ B(E*) and put xd’ qgn(e). Then Ilxd’ll -< ,(n 1) and, by (5.2),
there is a v* v*(e) V such that x’ + v* ,(e*). By (5.1) there is an
to* to*(e) V such that

x + to* e A(n)B(X*) b(e).

Since (n is to

carrier
* continuous, it follows from Proposition 2.5 of [6] that the

((n(e*) + Vn) n ,(e*)

is to* 1.s.c. and therefore the set

un+l(e) {e* B(E*)" qgn(e) -Jr

(qgn(e*) -k- Vn)O $(e*) + Vn+l}

{e* B(E*)" [(qgn(e* ) q- Vn) O t(e*)]
N(qgn(e) -k-to*(e) + Vn+l) Q}

is to* open. Since the collection {un+l(e): e B(E*)} covers B(E*), there
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is a finite subcover

un+l( * ) Un+l
en+l, (e*n+l,N(n+

and a partition of the unit which consists of the w* continuous non-negative
functions p’+ 1,..., PN(n-n+1+ 1) with "-’iv’N(n+= 1)nn+--i 1(e*) 1 for every e* B(E*)
such that each pin +1 vanishes outside Vn+ l(en+l,, i). Define

N(n+ 1)

qn+l(e*) E P+l(e*) x*n+l,i where Xn+l,i*
i=1

%,( en*+ 1,i) -[- tO*( en+l,i*).

It follows that

IJqn+l(e*)][ _< maxJJx*+,,il[ < h(n) for all e* B(E*).

If p/’+ l(e*) 4:0 then e* Un+ l(en*+ 1, i) and so

, (qgn(e* *Xn+l, ) + Vn)(3 (e ) + Vn+ 1.

Since V and Vn +1 are convex sets we get

qPn+l(e* ) n(e*) q- Vn "b Vn+ c qgn(e* ) q- 2Vn

n+l(e*) O(e*) + Vn+ 1.

and

This completes the induction step and the proof of Proposition 2.
In order to complete the proof of Theorem 1 we only have to show that

condition (5.1) holds for the spaces X and E constructed in Sections 3 and 4.
Let

n

1 +e(n) I-I (1 +6(i)) and A(n) VI(1 +e(i))
i=n+l i=1

,as above; then

1-I (1 + e(n)) <_ 1 + q
n=l

by the definition of 6(i) in Section 3. Suppose that

e B(E*), x’ X*, ]lx’ IXnll A(n 1)

and

x* =x +v* O(ed’).
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This means that Ix*(x)l h(n 1) for all x B(Xn) and Ix*(x) 1 for all
x B(E). It follows from Lemma 3.1 that

Ix*(x) < (1 + 6(n + 2))A(n 1)llxll for all x [X + Fn+l].

Let y’ denote the restriction of x* to[Xn + Fn+ 1]; then by the Hahn-Banach
Theorem, there is a y* X* which extends Yd’ andn+l

[[y*[[ < (1 + 6(n + 2))A(n 1).

Let z* Qn+lx* Y*;
Xn + nt" Eo by putting

then z* X#+ 10 [X q-Fn+l ]+. Extend z* to

z*(h) =0 for allhwithQn+lh =0

and

z*(o) 0 for o Wn+

(this can be done by defining z*(I- Q,,+ 1)(.0 -z*Qn+lo for o Un+l).
* ofz*toallNow use Hahn Banach’s Theorem again to get an extension Un+

of X. Clearly

u*n+l

[[Qn*+l(X* + U*n+l)[[ < (1 + ;(n + 2))h(n 1)

and

x*+u* q(e)n+l

We now have

[[(X* if" U*n+l)lXn+l[ < (1 + 8(n + 2)),(n 1) and x* --Un+l*

so, repeating the above procedure we can find * [Xn+Un+2 + E] +

that
such

II(x* + * +u* )lXn < (1 +8(n +3))(1+8(n +2))/(n- 1)Un+l n+2 +2

Proceeding by induction we can find a sequence {u* }7.. c X* such thatn+i i=1

* [Xn+i_ -b E] +
Un+i
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and

-b Un +
j [Xn +i

<_z(n-
n+2+i

j=n+2
(1 + 6(j))

<X(n- 1).
j=n+2

(1 + 6(j)) < Z(n).

* thenLet u* w* lim E=lUn+i,

u* Xn+ cVn, x* +u* (e’) and [[x* +u*[[ <h(n).

It follows that o* v* + u* is the desired functional. Condition (5.1) is thus
satisfied and so, by Proposition 2 and Proposition 1, (1.1) of the main
theorem is established.

Remark. We can easily strengthen this result to show that every separable
space E is contained in a space X so that both X and X/E have bases. To
see this, let {En}= be a sequence of finite dimensional spaces which is dense
in the family of all finite dimensional spaces in the Banach-Mazur distance
and let C. (E E) for 1 < p < . It is known (see e.g. [3]) that Y Cp
has a basis for any Ba]aach space Y with an f.d.d, so if we replace the X
above with X’ X Cp, both X’ and X’/E X/E Cp have bases.

Appendix. We construct the operator S: E0 - Y by using a suitable
biorthogonal system. Let m(k)= dim E,(k), p(k)= dim Wk and q(k)=
dim G and suppose that the sequences

{ei} re(k) c and {fi}m()c Y*i=1 ga(k) i=1

have been constructed such that:

(a)
(b)

f/(ei) 8is and [leil[ 1 for all 1 <_ i, j <_ m(k).
For eachl_<j_<k- 1,

re(j) + m(j + 1)-q(/){ei}i=l, {ei} m(ji=m(yl)+ 1)-q(j)+ and {ci!i=m(j+l)-p(j)-q(j)+l

are bases of E(), G and W respectively.
(c) For all 1 _< j _< k 1, if 1 <_ <_ re(j) + p(j) then P)fi fi and if

m(j) + p(j) < <_ m(j + 1) then P)fz O.
(d) For all 1 _<j _< k 1 and 1 <_ <_ m(j) fi(w) 0 for all o W.+I.
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ta m(k+ 1) and em(k+ 1) Pick aWe proceed by induction to construct tiJi=m(k)+1 tJiJi=m(k)+l"
basis {ui}/P=1) of Wk with Ilu, 1 and put vi Pk)Ui. Then, by (3.3), {vi}/P=l
is a basis of Pk)Wk. It follows that there exist functionals {u’}/P=1) in
[Yn*n=k)+l"k+l) such that u;(v)= u(u)= i, for all 1 _< i,j _< p(k). For
each 1 _< < p(k) let

m(k)

em(k)+i----- U and fm(k)+i U E u(ej)fj.
j=l

Then, by (d),

fi(ey) i,j for all 1 < i, j _< re(k) + p(k)

and

,Pfi fi ifl<i<m(k) + p(k) =re(k+ 1)-q(k).

Since Ea(k + 2) E,,g+ 1) + Wk+ -]- Gg + is a direct sum we have

Pa(k+l)Wk+l Gk {0}.

Therefore there exists a basis {g_}q(k)ii=l of ak with Ilgill-- 1 and functionals
{g/*}k1) in [Yi*]a(k+l).i=a(k)+ such that g/*(&)= i,y for 1 _<ij, _<q(k) and
g/*(o) 0 for every o V+ . Put

m(k)+p(k)

em(k)+p(k)+i gi and fm(k)+p(k)+i g’ g/*(ey)fy
j=l

forl <i <q(k).

Then f/(e.)= i,j for all 1 < i,j < m(k + 1) and ea(k+l)fi fi if 1 <i <
m(k + 1). Moreover, if 1 < < m(k + 1) then fi(oo) 0 for all o Wk+ 1.

This completes the induction step in the construction of the biorthogonal
system. Let {e(n)}= be a decreasing sequence of positive numbers such that

m(n + 1)

e(n) E IIf-I! -< 2-ne.
j=l

Recall that each e Eo is supported on {Y2i_1i=1 and

dim(/- Pa(k)Ea(k+l)
_

"(ol(k + 1)) a(k)).
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For each k >_ 1 and m(k) < < m(k + 1) put

e; e + 6.(k)yj(i) where j(i) a(k) + 2(i m(k)).

Then lie[ eill <- e(k). Let Se e[ and extend S to a linear operator from
E0 into Y. Condition (3.5) is clearly satisfied by the definition of e(k). Since

P,(k+l))e/=e; for allm(k) <i<m(k+ 1)

we get (3.6). If m(k) + p(k) < < m(k + 1) (i.e., e Gk) then P(k)e[ 0;
hence

S(G) (I- P,,k))Y (cf. (7)).

If m(k) < < m(k) + p(k) (i.e., e W,) then P,(,)e[ P,(,)e is an ele-
ment supported on {Y2i_li=l; hence

(I ea(k_l))aEa(k) 0 ea(k)Wk {0} (cf. (3.9)),

and P,(k_l)e[ 0 and so (3.8) holds. This concludes the construction of S.

Acknowledgement. We thank the referee for many valuable remarks which
made this paper readable and for making the remark preceding the ap-
pendix.
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