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SOME OPERATOR INEQUALITIES CONCERNING
GENERALIZED INVERSES

BY

P.J. MAHER

In this paper we extend to the von Neumann-Schatten classes some
inequalities concerning generalized inverses originally established by Penrose
[7] for matrices.

It is well known that if T is any matrix then there exists a matrix T- such
that TT-T T. The matrix T- is called a generalized (or, sometimes, a
pseudo or inner) inverse of T. A non-invertible matrix has an infinity of
generalized inverses, but an invertible matrix has a unique generalized
inverse which coincides with its ordinary inverse.
Although the matrix T may have an infinity of generalized inverses, there

exists a canonical generalized inverse, called the Moore-Penrose inverse and
denoted by T/, which is uniquely determined by T. Further, as Penrose
showed in [7], the Moore-Penrose inverse satisfies the following inequalities:
for all X,

IlZS- CII2 IIAA +C C112 (P.1)

with equality occurring in (P.1) if and only if X=A/C + (I-A/A)L
where L is arbitrary; and

IIA+C + (I-A+A)LII2 > IIA+CII2 (P.2)

with equality occurring in (P.2) if and only if (I- A +A)L 0. (The only
restrictions on the matrices occurring in (P.1) and (P.2) is that they
be conformable for multiplication. In (P.1) and (P.2) 112 denotes the
Euclidean norm on matrices.)

This paper contains, in Theorems 2.1 and 2.2, infinite-dimensional exten-
sions of the inequalities (P.1) and (P.2) to the supremum norm on ’(H) and
to the von Neumann-Schatten norms II lip, where 2 < p < . The proofs of
Theorems 2.1 and 2.2 are an extension of Penrose’s original proof of (P.1)
and (P.2) and depend on an inequality, viz. Theorem 1.7, about operators
having orthogonal ranges/co-ranges.
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In addition, we obtain local results, using the Aiken, Erdos and Goldstein
formula for the derivative of the map X IIXIlff, where 1 <p < oo

[1, Theorem 2.1]. The critical points of the map X IIAX-Cliff are
classified for 1 < p < oo in Theorem 2.3. Theorem 2.3 shows that for 2 < p <
oo critical points and global minima coincide. It also extends the global
inequality (P.1) to the 1 < p < 2 case provided the underlying space is
finite-dimensional. Theorem 2.3 would appear to be useful for justifying
numerical methods of finding generalized inverses.
There are, of course, similar results about minimizing IIXB- D]l and

Ilsn D Il (see (2.4) and (2.5)).
Section 3 concerns a different problem, that of minimizing II T-I! (11 T-I1)

where T- ranges over all the generalized inverses (in p) of some fixed
operator T. /Xdmost inevitably, liT-II (liT-I1) attain their minimums when
T- is the Moore-Penrose inverse T/ (see Theorem 3.1). Further, T-= T/ is
the only critical point of the map T- IIZ-IIp, where 1 < p < oo (see
Theorem 3.2). The results of 3 are really finite-dimensional: as is pointed
out in 3, if T has a compact generalized inverse then T and T* must be of
finite rank.

This paper originated as part of my Ph.D. thesis. I should like to thank my
supervisor, Dr. J.A. Erdos, for the help and encouragement he has so freely
and generously given.

After writing this paper I learned of Engl and Nashed’s work [4]. Some of
their results are similar to the ones obtained here. Thus, they prove a special
case (viz. when p 2) of Theorem 3.1 (b) [4, theorem (6.2)]. Their methods
are quite different to the ones used in this paper.

1. Preliminaries

An operator T- is said to be a generalized inverse of the operator T if
TT-T T. An operator T in .(H) has a generalized inverse if and only if
Ran T is closed [9, p. 251, Theorem 12.9]. (In this paper the range of T,
denoted Ran T, is the set {Tf: f H}. The space of all bounded linear
operators on the complex separable Hilbert space H is denoted by .W(H).)

Generalized inverses have applications to operator equations. Penrose
showed [6, Theorem 2] that if the operator equation AXB C has a
particular solution, say X1, and if A and /3 have generalized inverses, A-
and /3-, then every solution of this equation is given by

X X + L A-ALBB-, L arbitarary in _za(H). (1.1)

For an operator T in .’(H)with closed range the Moore-Penrose inverse
is constructed as follows. Let TO be the restriction of T to (Ker T)’. Then
TO is a bijection from (Ker T) +/- onto Ran T. Since Ran T is closed, TO has a
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bounded inverse T-1o Let Q be the projection onto Ran T. The operator T+,
defined by

T+-- TIQ, (1.2)

is called the Moore-Penrose inverse of T. Clearly, T/ is a generalized inverse
of T. Indeed, T/ satisfies

TT+T T (i)
T+TT+= T+ (ii)

( TT+)* TT+ (iii)

(T+T) *= T+T (iv)

(1.3)

and, further, the operator T+ is uniquely determined by the properties (i),
(ii), (iii), (iv)[6, Theorem 1].

Often we shall refer to generalized inverses that satisfy some of the
properties (i),..., (iv) of (1.3). If an operator T- satisfies properties (i) and
(ii) of (1.3) we shall say that T- is a (i), (ii) inverse of T; if T- satisfies (i)
and (iii)we shall say that T- is a (i), (iii) inverse of T, etc.
Lemma 1.4 (required in {}3) relates an arbitrary generalized inverse T- of

an operator T, having closed range, to its Moore-Penrose inverse T/.
Although Lemma 1.4 is an easy enough consequence of (1.2), a proof of it is
given as it does not seem to figure in the literature. It says that T+ is the
same as T- acting on Ran T and then projected onto (Ker T)+/-.

LEMMA 1.4. Let T in (H) have closed range, let T- be a generalized
inverse of T and T/ be its Moore-Penrose inverse and let P be the projection
onto Ker T and Q be the projection onto Ran T. Then:

(a) T+= (I- P)T-Q;
(b) T-= T+ if and only if T-(I Q) 0 and PT-= 0;
(c) {T-: TT-T T} {T++ S: S .a(H) and (I P)SQ 0};
(d) If T- and ’- are any two generalized inverses of T then T-- ’-= S

where (I- P)SQ O.

Proof (a) For arbitrary g in H, let g= Tf+h where f(KerT) +/-

and h (Ran T) +/- so that Qg Tf. By (1.2), T+g f. On the other hand,

( I P)T-Qg ( I P)T-Tf ( I P)( v + w) v

where T-Tf=v +w, v(KerT) +/- and wKerT; and v=f as de-
sired since v-f(KerT) +/- and v-fKerT (for Tv=T(v+w)=
T(T-Tf) Tf).
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(b) This follows immediately from (a).
(c) If T- is a generalized inverse of T, let S T-- T+; then by (a),

(I- P)SQ 0. Conversely, if S satisfies (I- P)SQ 0 then T/+ S is a
generalized inverse of T since T(T/+ S)T TT/T T (for, since T
T(I- P) QT, we have TST T(I P)SQT 0).

(d) This follows immediately from (c). m

For details of the von Neumann-Schatten classes and the norms II lip
see [8, Chapter 2], [3, Chapter XI], or [5, 2].
The local results of this paper hinge on the Aiken, Erdos and Goldstein

differentiation result which we now state. (The real part of a complex number
z will be denoted by z.)

THEOREM 1.5 [1, Theorem 2.1]. /f 1 < p < , the map X IlXll (from- to R+) is differentiable with derivative Dx at X given by

where [ denotes trace and where X UIXI is the polar decomposition ofX.
If the underlying Hilbert space is finite-dimensional, the same result holds for
0 < p < 1 at every invertible element X.

Next, we come to the inequality about operators in .’(H)with orthogonal
ranges/co-ranges. Observe that if Ran A _t. Ran B and Ran A* +/- Ran B*
then the space H can be decomposed so that either

A +B= B
or A +B= A 0

TttEOREM 1.7 (a) ff Ran A +/- Ran B (or, if Ran A* +/- Ran B*) then

IIZ + B II >- max{llA II, liB II} (1)

(b) and if both Ran A +/- Ran B and Ran A* +/- Ran B* then equality
holds in (1).

(c) IrA + B -p and Ran A _1_ Ran B (or, if Ran A* +/- Ran B*) then
A p andB-p whereO<p <,and

IIZ + Blipp IIZ lift + IIBllft (2)

for 2 <= p < , with equality in the p 2 case;
(d) and if both Ran A +/- Ran B and Ran A* +/- Ran B* then equality

holds in (2) for 0 < p < .
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Proof. (a) This is obvious.
(b) and (d) The equalities here follow from considering the matricial

representation (1.6) of A + B.
(c) If A + B for 0 <p < and E is the projection onto Ran A

then A E(A + B) . Hence B .
To prove the inequality (2) we require the following result from [2, Lemma

4]" if T where 2 < p < and if {bk} is an arbitrary orthonormal basis
of H then

IlZllpp llZkll (3)
k

with equality in the p 2 case.
Suppose Ran A* (= (Ker A) +/-) _k Ran B* (= (KerB)+/-). It follows from

the Schmidt expansion that there exist orthonormal bases {xi}, {yj} of
(Ker A) +/- and (Ker B) +/- respectively such that

IlZllpp llAx/llp and IIBIlff- llnyllp.
j

Since {Xil I,.) {yj} is orthonormal, (2) follows from (3) (let {bk}
___

{xi} u {y}).
If, instead, Ran A _k Ran B take adjoints, m

The next example shows that if only Ran A _k Ran B and Ran A*

_
Ran B*

then the inequality (2) of Theorem (1.7) (c) may not hold if p < 2. Let
H C2,

where a 4:0 and b 4: 0. For p < 2, from Jensen’s inequality [9, p. 3] we get
IIZ + nllff -< IlZll + 113BII" for an instance when this inequality is strict take
a =3, b=4andp .

2. On minimizing IAX Clip

We now extend Penrose’s inequalities (P.1) and (P.2) to the supremum
norm and to the norm.

THEOREM 2.1. Let A have closed range and have a (i), (iii) inverse A-.
Then for all X in (H),

IIAX c IIAA-C c II
with equality occurring in (1) ifX A-C + (I- A-A)L where L is arbitrary;
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and on taking A- as A +,

I[A+C + (I-A+A)LII >_ IIA+CII. (2)

Proof. Consider the identity

AX C (AX AA-C) + (AA-C C).

Here, Ran(AX- AA-C) _t_ Ran(AA-C C)because, since A has A- as a
(i), (iii) inverse,

( AA-C C) *( AX AA-C) C*(AA-- I) A(X A-C) O.

The inequality (1)now follows from Theorem 1.7 (a). If X is given by
X A-C + (I- A-A)L then, since A- is a (i) inverse, AX AA-C;
hence, equality occurs in (1).

If A-= A / then Ran A/C _L Ran(/- A/A)L (since A / is, in particular,
a (iii), (iv) inverse of A). The inequality (2) now comes from Theorem 1.7 (a).

TIzOrn 2.2. Let A have closed range and have a (i), (iii) inverse A- and
let X be such that AX- C p. Then AA-C C p where 0 < p < oo;
and

lIlLY- cll > IIAA-c cll

for 2 < p < 0% with equality occurring in (1) if and only if

X=A-C + (I-A-A)L

where L is arbitrary. If A- is taken as A + and ifA +C + (I- A+A)L p
then A/C where 0 < p < oo; and

IIA+C + (I-A+A)LIIp >_ IIA+CII, (2)

for 2 < p < 0% with equality occurring in (2) if and only if (I- A +A)L O.

Proof If AX- C p then, as Ran(AX-AA-C) _J_ Ran(AA-C C)
in the identity AX- C (AX- AA-C) + (AA-C C), it follows from
Theorem 1.7 (c) that AX- AA-C p, AA-C C p where 0 < p <
o; and

IlZS C I! IIAX AA-C I1% + IIAA-C C I1% IIAA-C C I1% (3)

for 2 < p < oo. This gives (1). If equality occurs in (1) then equality occurs
throughout (3). So, AX AA-C; so, by (1.1), X A-C + (I- A-A)L.
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The proof of (2), and the uniqueness statement there, is similar.

Theorems 2.1 and 2.2 both have a simple geometric interpretation. Denote
the supremum norm II II on .(n) by II I1. Then Theorems 2.1 and 2.2
say that the quantity IIAX CIl, where 2 < p < 0% is minimized when (and,
for 2 < p < 0% only when)

X=A-C+M

where M(= (I- A-A)L) is any operator such that Ran M c_ Ker A.
Next we give the local result corresponding to Theorem 2.2.

THEOREM 2.3. Let A have closed range and have a (i), (iii) inverse A- Let
X vary such that AX- C p, where 1 < p < 0% and let

F’X IlZS- Clipp.

Then:
(a) for 1 < p < 0% V is a critical point of Fp if and only if

V=A-C + (I-A-A)L

where L is arbitrary in .(H);
(b) for 2 < p < oo, V is a global minimum ofFp if and only if V is a critical

point o F.;
(c) for 1 < p < 2, the same result as in (b) holds provided the underlying

space is finite-dimensional.

Proof. (a) Let V be a critical point of F;. Let S be an arbitrary
increment of V, that is, S is arbitrary provided A(V + S) C p, equiva-
lently, AS p. From Theorem 1.5 we get

0 DAV_c(AS) p,z[lAV- Clp-IU*(AS)] (1)

where AV- C UIAV- C is the polar decomposition of AV- C. Take
S A(f (R) g) where A C and f and g are arbitrary vectors. (The operator
x (x, f)g is denoted by f (R) g. Note that -[T(f (R) g)] (Tg, f); cf. [8,
pp. 73, 90].) From (1)we get

0 A(IAV CIp-IU*Ag, f).

Since A, f and g are arbitrary,

IAV- CIp-IU*A O.
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As KerIAV C p- Ker IAV C I, we have IAV C U*A 0, that is,
A*(AV C) 0. This equation is the same as AV AA C (for since A- is
a (i), (iii) inverse of A, (A-)*A*A A). By (1.1), V A-C + (I- A-A)L.

Conversely, if V A-C + (I A-A)L then

0 IAV- CIU*A IAV- CIP-U*A.

Hence (cf. (1)), DAV_c(AS) 0 for all S. Thus, V is a critical point of Fp.
(b) This follows from (a) and from Theorem 2.2.
(c) We show that Fp: X IIAX- CIl attains its infimum. Once this is

proved the assertion in (c) will follow immediately from (a) since a global
minimum is a critical point. Let dim H n < and a infllAX-Clip.
Then there exists a sequence {Xi} such that IIAXi- Clip -’ a. Define the
sequence {Y/} thus: Y/= A-ASi. Then AY/= AS so that IIAY/- CIIv- a.
Further, {Y/} is norm-bounded: for sufficiently large,

Y/II IIZ- IIAXi IIZ- II ( + e + II C II)

(since IIAXiII IIAXi- Clip + IICII; recall that I1"11 lip), The se-
quence {IIYII} is thus bounded where Y/ Cn2 (= ’(H)). Hence {Y/} con-
tains a subsequence {Y/) such that Y/. Y where IIAY- CIl . Thus, Fp
attains its infimum, m

There is no 0 < p < 1 version of Theorem 2.3 since the condition that
AV- C be invertible, where V is a critical point of Fv, leads to the triviality
that A 0 (for if V is a critical point of Fp then, as in Theorem 2.3 (a),
A*(AV- C) 0).

Naturally, there are similar results about XB D with similar proofs. We
now state the global result (2.4). If B has closed range and has a (i), (iv)
inverse B- then

IIXB D lip IIDB-B D lip (2.4)

for 2 < p _< , with equality occurring in (2.4) if

X DB-+ L(I- BB-)

where L is arbitrary; and when B- is taken as B / then DB+ is a least such
global minimizer in II lip. Thus, the quantity IIXB- DIll, 2 < p < , is
minimized when X DB + N where N is any operator such that Ker
N
_
Ran B. (If 2 < p < , we assume XB D Cp. In that case there are

the obvious uniqueness assertions.)
We next state the analogous local result: for 1 < p < ,
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(2.5) V is a critical point of X ,-> IIXB D Ilg if and only if V DB-+
L(I BB-), L arbitrary.

Hence (cf. Theorem 2.3 (c)) the inequality (2.4) also holds for 1 < p < oo in
finite-dimensions.
As for minimizing [[AXB Ollp, Penrose [7, cf. Corollary 1] obtained the

following p 2 result for matrices: if A- is a (i), (iii), inverse of A and B-
is a (i), (iv) inverse of B then for all X,

IIAXB C 2 > IIAA CB-B C 2 (P.3)

with equality occurring in (P.3) if and only if X A-CB-+ L -A-ALBB-
where L is arbitrary; and if A-= A / and B-= B/ then A /CB/ is the least
such global minimizer in 112. Obviously, (P.3) goes through to 2. Thus,
IIAXB D 112 is minimized when and only when X A-CB-+ K where K
is any operator such that Ran(KB) c_ Ker A and Ran B c_C_ Ker (AK). This
result has the following local variant.

THEOREM 2.6. Let A and B have closed ranges and let A- be a (i), (iii)
inverse of A and B- be a (i), (iv) inverse of B. Let X vary such that
AXB C -d’2. Then the map X IIAXB CIl has a critical point at V if
and only if V A-CB-+ L -A-ALBB- where L is arbitrary.

Proof We sketch the argument for arbitrary p, where 1 < p < oo. It
follows, as in Theorem 2.3 (a), that V is a critical point of

if and only if

x IlZSn Clip

BIAVB CIP-IU*A 0

(where AVB C UIAVB CI is the polar decomposition of AVB C).
Hence, if p 2, A*AVBB* A*CB*, that is, AVB AA-CB-B. By (1.1),
V A-CB-+ L A-ALBB- m

Do (P.3) and Theorem 2.6 hold for arbitrary p?

3. On minimizing 11 T- lip

THEOREM 3.1. Let T be fixed in ’(H) with closed range and with
Moore-Penrose inverse T+. Then"

(a) for every generalized inverse T- of T,

T+ II T-II;
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(b) and if T- , where 0 < p < 0% then T+ and

II T+ lip < T- lip (1)

with, for 1 < p < oo, equality occurng in (1) if and only if T-= T+.

Proof (a) Let P be the projection onto Ker T and Q be the projection
onto Ran T. Then by Lemma 1.4 (a), T/= (I- P)T-Q and so

IIT+II < III-ell IIZ-II IIQII < IIZ-II.

(b) If T- p then T/= (I- P)T-Q -6". Now,

IIABCII <_ IIAII IIBII,IICII

for any operator B in where 0 < p < [3, p. 1093]. Hence

T+ lip -< III PII liT-II,llall -< liT-lip.

For 1 < p < oo, there is at most one global minimizer since the set of
generalized inverses of T in is convex (for if 7- and 7- are two such
generalized inverses of T, so is xT-+(1 a)-. m

THEOREM 3.2. Let T be fixed in .(H) with closed range and with
Moore-Penrose inverse T+. Then if T- varies over those generalized inversesflf T
in p, where 1 < p < oo, the map Gp: T- II T-I1 has a critical point at T- if
and only if -= T+.

Proof. By Theorem 3.1 (b), T/ is a global minimizer and hence, for
1 </9 < 0% a critical point of Gp.

Conversely, let 7- be a critical point of G,. Let S be an .arbitrary
increment of T-. Thus, S is arbitrary subject to the condition that T-+ S is
also a generalized inverse of T in p. Hence, S and, by Lemma 1.4 (d),
we have (I P)SQ 0 where P and Q are the projections onto Ker T and
Ran T respectively. Take S f (R) g where f and g are arbitrary vectors such
that

O=(I-P)(f(R)g)Q.

Thus, 0 (Qf) (R) ((I P)g). Hence, f Ran(/- Q) or g Ran P. Now,
with f in Ran(/- Q) then g can be arbitrary; and with g in Ran P then f
can be arbitrary. Thus, we may assume that f Ran(I Q) and g Ran P.
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As 2?- is a critical point of Gp, it follows from Theorem 1.5 that

0 p,.’r [1 7- t’- 1U*( S)] p,_([ -Ip- 1U’g, f) (1)

where 2?-= Ul-I is the polar decomposition of 2?- (hence Ker U
Kerl 7- I). To prove 7-= Tg we shall appeal to Lemma 1.4 (b).

Since f Ran(/- Q) then f (I Q)y for arbitrary y. Substituting this
expression for f into (1) we get

(g, UlT-Ip-I(I- Q)y) O.

As y and g are arbitrary, therefore UI-I-(I- Q) O. So,

Ran 7- ip- 1(i Q) c_ Ker U Kerl 2?-

so that 0 T- IP(I Q) T- I(I Q) and hence

0 UI2-I(I- Q) 27-(I- Q).

Since g Ran P then g Px for arbitrary x. So from (1)we get

0 =,_([-[p-IU*Px,f).

Therefore, 17- ’- 1U,p 0, hence ]?- U*P 0, that is, (27-)*P 0.
Hence, P7-= 0.

Thus, 7-(I Q) 0 P7-. Therefore, Lemma 1.4 (b) implies that 7-=
T+.

There is no version of Theorem 3.2 for 0 < p < 1 since the condition that
the critical point is invertible would mean that T/, and hence T, is invertible,
so II T-I1 would be constant.
We comment on the hypothesis in Theorems 3.1 (b) and 3.2 that there

exists a generalized inverse of T in . In fact, compactness alone of T-
forces that both T and T* are of finite rank. For if T-, and hence T
(= TT-T), is compact then, since Ran T is closed, Ran T must be finite-
dimensional [9, p. 298, Theorem 7.4]; and, as

T* ((TT+)T) * T*(TT+),

Ran T* is finite-dimensional.
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