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UNIQUENESS OF UNCONDITIONAL AND SYMMETRIC
STRUCTURES IN FINITE DIMENSIONAL SPACES

BY

P.G. Casazza, N.J. KALTON AND L. TZAFRIRI'

1. Introduction

The main target of the present paper is to study some questions concerning
the uniqueness of symmetric and unconditional bases in the framework of the
local theory of Banach spaces. Since the spaces under consideration are finite
dimensional it is quite obvious that one cannot discuss problems of unique-
ness for individual spaces but rather for families of such spaces. As we shall
see in the sequel, the case of unconditional bases can be treated from
different points of view.

The study of the uniqueness of symmetric bases for finite dimensional
spaces was initiated in [8] and continued in [16] and [11] (see also [17]).
Results concerning the uniqueness question in the setting of unconditional
bases for finite dimensional Banach spaces were obtained in Schiitt [16] and
in [1].

In order to discuss our results as well as their connection with previously
proved ones, we introduce the following definitions.

DeriNniTioN 1.1, (a) Let & be a family of finite dimensional Banach
spaces each of which has a normalized 1-symmetric basis. We shall say that
the members of & have a unique symmetric basis if there exists a function
Y: [1,0) = [1,) such that, whenever X € % has another normalized K-
symmetric basis (y,)"_;, then (y,)/_; is ¢(K)-equivalent to the given 1-sym-
metric basis.

(b) Let & be a family of finite dimensional Banach spaces each of which
has a normalized 1-unconditional basis. We shall say that the members of %
have an almost (somewhat) unique unconditional basis provided there exists
a function ¢: [1,0) X (0,1) — [1,) such that, whenever X € & with the
given 1-unconditional basis (x,)?_, has also another normalized K-uncondi-
tional basis (y;)7_; then, for any (some) 0 < a < 1, there exists a subset
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o c[n]l=1{1,2,...,n}and a one to one function 7: o — [n]so that |o| > an
and (x,), <, is @(K, a)-equivalent to (y,.);c,-

Definition 1.1 (a) is similar to that considered in [8]. On the other hand,
Definition 1.1 (b) is in the spirit of the “proportional” theory of finite
dimensional spaces and quite different from that introduced in [1], where
uniqueness, up to a permutation, was considered for the entire basis. The
definition of somewhat unique bases already appears in [16] under the name
of partial uniqueness.

One of the most natural ways of creating a family of finite dimensional
spaces with a 1-symmetric basis is the following. Let X be a rearrangement
invariant (r.i.) Banach function space on [0, 1] and, for n = 1,2,..., let &,
be the algebra generated by the intervals [(k — 1)/n,k/n); 1 <k < n and
denote by X, = X(&,) the subspace of X consisting of those functions which
are constant on each atom of &,. The main result of the paper (Theorem
5.6) asserts that, for any r.i. Banach function space X on [0, 1], the members
of the corresponding family & = {X,},°_, have a unique symmetric basis and
an almost unique unconditional basis. This theorem can be, of course,
applied to many families of Orlicz and Lorentz spaces which are generated as
above.

This result is generalized in Section 6 in the following sense: it is shown
there that if, for a fixed r.i. function space X on [0, 1], containing some L,
where g < », 0 <A <1 and n, the corresponding subspace X, of X
contains a normalized K-unconditional basic sequence (y;)’.; with m > An
and [y;]" | contains in turn a sequence (z;)!_; with [ > An which is M-equiv-
alent to

4
(ll(k—l)/n,k/n)/” 1[(k—1)/"’k/'l)||"")k=1

then there exists a subset o C [/] and a one-to-one map m: o — [m] so that
lo| > al, where a = a(A, K, M, X) > 0 and (z,);, is L(A, K, M, X)-equiv-
alent to ( y,,(i)),.e(,. This result can be improved in the special case when X
lies “on one side” of L,[0, 1]; in this case the hypothesis that X contain some
L, can be eliminated and o can be chosen of the order of (1 — &)l

As we have already mentioned above, the question of the uniqueness of
symmetric bases for finite dimensional spaces has already been considered in
[8] where it was proved that the members of the family €, » of all finite
dimensional spaces with a 1-symmetric basis which induces a lattice structure
with g-concavity constant < M, for some g > 2, have a unique symmetric
basis. In [2] Theorem 2.6 it was shown that this result is true also for g = 2.
We consider in Theorem 5.4 below the family %, ,, of all finite dimensional
spaces with a 1-unconditional basis which induces, as above, a lattice struc-
ture with g-concavity constant < M, for some g < 2, and show that each
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member of %, ,, has a somewhat unique unconditional basis. A slightly less
general version of this result was proved in [16], Proposition 2.5.

In the symmetric case, the hypothesis of g-concavity for some g < 2 was
replaced in [14] by the weaker assumption of polynomial euclidean distance.
More precisely, it was shown in that paper that, for any value of r > 0, the
members of the family & of all finite dimensional spaces X with a 1-sym-
metric basis, whose euclidean distance d, satisfies dy > (dim X)’, have a
unique symmetric basis. In Theorem 5.5 below we show that the members of
&. have also an almost unique unconditional basis.

In fact, the results discussed above can be proved in a more general form.
For instance, if an n-dimensional Banach space X € % with a normalized
1-symmetric basis {x;]/., contains an M-complemented subspace of dimen-
sion m > An with a normalized K-unconditional basis {y;}/2; then, for each
0 < @ < 1, there exists a subset n C [m] of cardinality |n| > am such that
(¥)ien is L(r, A, M, K, a)-equivalent to (x,);,, (Theorem 5.5 below). Simi-
lar results for complemented subspaces are proved in almost all the cases
considered so far.

In addition to the classes of spaces considered above, some interesting
results have been proved for families of classical spaces. For example, in [1]
Theorem 1.4 it was shown that the members of the family & = (I¥ @ I ®
I2)% m.n=1 have a unique unconditional basis, up to permutation. In the
present paper, we study the class &, , = ([;'(I}));, ,_, for 1 < p,q < », and
prove that the members of &%, , have an almost unique unconditional basis
(Theorem 5.7 below). In the case 1 <p < g < 2, this was proved in [16],
Proposition 2.5, although the statement there is slightly less general.

The paper also contains some results on Hilbertian subspaces of a space
with a symmetric or unconditional basis, as well as theorems on such spaces
which contain “large” Hilbertian subspaces. One such result (Theorem 2.2)
asserts that if an n-dimensional Banach space X with a normalized 1-uncon-
ditional basis (x,)?_; contains an M-complemented Euclidean subspace of
dimension m > An then, for each 0 < a < 1, there exists a subset o of [n] of
cardinality |o| > an such that {x};., is well equivalent to the unit vector
basis of /[’l. In particular, if (x,)_, is already symmetric then, in the above
circumstances, X is already well isomorphic to /5 (Theorem 2.5 below). If the
Euclidean subspace of X of proportional dimension is not well comple-
mented then, of course, X need not be well isomorphic to Hilbert space.
However, in this case, we prove in Theorem 2.6 below that X contains, for
each 0 <a <1, a good copy of a Hilbert space of dimension = an.
Theorems 2.2 and 2.5 are essentially straightforward consequences of a result
of Gordon and Lewis which can be found in [7] and [15]. Our proof of
Lemma 2.1 differs very little from the original argument of Gordon and
Lewis.

A result of a completely different nature is described in Theorem 2.4: if a
direct sum of the form X, ® /7' has an unconditional basis then, for each
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€ > 0, the dimension of the Euclidean space can be reduced to < (2 + &)n
so that X, ® I$*)" still has a good unconditional basis.

For almost every case described above, the proofs of the corresponding
uniqueness property are based on the possibility of finding relative large
entries in the n X n matrix which maps one n-dimensional space with a
symmetric or unconditional basis onto a space of a similar type. The main
difference between our arguments and those used in the original paper of
Schiitt [16] on this topic is that Schiitt considered only vectors whose entries
are zeros and ones, where we utilize more general shaped vectors. This
situation is formalized in Section 4 where we introduce the so-called property
(P).

A family & of finite dimensional Banach lattices is said to have the property
(P) if, forany 0 < A < 1 and M < , there exists v = v(A, M) > 0 such that,
whenever X € & and Y are n-dimensional lattices and A: X —» Yand B: Y —» X
are linear operators of norm < M with tr(BA) > An, then max, _; ;_,la;;b;l
= A

The fact that the above considered classes of finite dimensional spaces
have property (P) is proved in Section 4. In many cases, this is achieved by
the 2-concavification of the above lattices X and Y and by use of doubly
sub-stochastic matrices. The essential part of the arguments is given in
Section 3.

ij

2. Large Hilbertian subspaces of spaces with unconditional bases

For any operator T on a Banach space X, we let »(T) denote the nuclear
norm of T, i.e.,

o

W(T) = inf{ Il ||x,,||}

n=

where the infimum is taken over all sequences {x,);_, in X and {x*};_, in
X* such that

Tx = Y x*(x)x,.

n=1

Furthermore, we shall denote by d, the Banach-Mazur distance of X to a
Euclidean space. We begin with a reformulation of a result of Gordon and
Lewis which appears in [7] as Lemma 1.3 and as Proposition 2.4 of [15].

LemMmA 2.1. Let X be an n-dimensional Banach space and let H be a Hilbert
space. Suppose X has a normalized 1-unconditional basis (u,)!_, and that
S: X - H, T: H — X are linear operators.
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Forany 0 <y <1, let o, = {i € [n]: ISulIT*ufll = yn~Ww(ST)).

Then

(1)

[ui]iEa'.y -

nlISINTI|
yv(ST)

and (u);c, is (nlSINTI /yv(ST))*-equivalent to the canonical basis of 1.

Moreover,

(2

lo,| =

(1 = y)v(ST)
nsinrn -

Proof. There exists an orthogonal transformation U on H so that tr(UST)

= p(ST). Thus

V(ST) = te(TUS) = 3

i=1

n
(USu;, T*u¥) < Y NSu, I T*uxll,

i=1

where (u}*)"_, denotes the sequence in X * biorthogonal to {u} ;.
Now [ISu,lllIT*uk|l < ISIITI so that it follows immediately that

(1 = y)»(8T)
> ———— e
R T T4
For i € g,, let s; = |ISu;ll, t; = | Tu,|l. Then for any {a};, ,

)1/2

by |ai|2si2

lGO’.y

|

Similarly,

Y |ai|2ti2

€0,

|

1/2
2 2
- ( Y la 21w )
iEo‘,’
) 1/2
= f Y ea,8u,| de
iEu’y
< IS ¥ a,u;].
iea-7
12
) <ITH| ¥ aur|.
iéay



798 P.G. CASAZZA, N.J. KALTON AND L. TZAFRIRI

Hence

E a;u;

1/2
< IITII( ) Iailzti‘z)

i€a, i€o,
1/2
< nl T (Z| )
YV(ST) tEa
< AT 5 ),

yv(ST)

lEa,y

which completes the proof. m

THeOREM 2.2. Let X be an n-dimensional Banach space with a normalized

K-unconditional basis (u,;)"_,. Let Y be an M-complemented subspace of X with
dimY = m.

Then, for any € > 0, there exists a subset o C [n] so that |o| = (1 — e)m,
and
MK?d,
<
[Uilico eA

m
where A = —.
n

Further (u,); ., is M2K*d%/e?\>-equivalent to the canonical basis of I}
We also have the further estimate (when A is close to one) that

lol >n - (n—-m)(1 + MK)(1 —er) ",

Proof. There exists an n-dimensional Banach space X; with a normalized
1-unconditional basis (v,)!_;, so that (v,) is K-equivalent to (u;). Further
there exists a Hilbert space H of dimension m and operators S: X, — H,
T: H - X,, with [IS|||IT|| < MKd, and ST = id,. Thus v(ST) = m

As in Lemma 2.1, let o = {i € [n]: ISy,IIIT*v*Il > eA}. Then

MKd,
[vilies = EA

so that

MK?2dy,
[#ilieo = eA

Also, {u;);c, is M?K*d%/e*A\*-equivalent to the unit vector basis of Iil. It
remains to estimate the size of o.

Let R,: X; » X; be the map R (L] ja;0,) = ¥;c,a;0;. Then, as we
noticed in the proof of Lemma 2.1,

v(S(idy, — R,)T) < L ISolIT*v*|l < erlo®| < em.

ieo®
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However SR, T has rank |o| at most. Thus there is an orthogonal projec-
tion P on H with rank P=m — |o| and PSR, T = 0. Thus P = PST =
PS(idy, — R,)T. Hence v(P) <em and so m — |o| <em, ie., lo| 2
1 -em.

Let us now give an alternative estimate for |o|. If i € o¢ then v*(TSv;) <
€A and so
n
r

i=1

v ((idx, - TS)Ui)l 2 (1-&A)(n— lol).
Clearly
i |Ui*((idxl - TS)Ui)I < V(iXm - TS).
i=1

Now, idy, — TS is a projection of rank n — m so that
v(id,, = TS) < (n = m)llid, — TS|l < (n — m)(1 + MK).
Thus
(1—er)(n—lol) < (n—m)(1+ MK)

so that

o] 2n—(n——m)(1+MK).

1—¢A

TueoreMm 2.3. Let X be an n-dimensional space with a normalized K-
unconditional basis (u;)"_,. Let Y be an m-dimensional Banach space such that
d(X,Y &, I37™) = d,. Suppose o C [n] is such that d,, _ .= d,. Then there
is a subset rC[n] with oC7 and m < |7l <m + Ia-T so that d(u;);<,,
Y ®, IlI™™) < 100K*d3d3.

Proof. The space X can be decomposed as a direct sum X =Y, & Z, so
that d(Y,,Y) <d,, d(Z,,l57™) < d, and the natural projections Py, P,
satisfy [Py, |l, 1P, |l < d,. Let

ZI = ZO N [ui]iEac.
Then there is a projection P, of [u;];c, onto Z; with ||P, || <d,. Let R
be the restriction operator R(XI?_ja;u;) = ¥, cau;. Then ||R|l < K and
P, RIl < Kd,. Hence

lidy — P, RIl < 2Kd,.
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Let V = (idx — P; RXX). Then R|y is a projection on V. In fact R(V) is a
subspace of [u; ],eac and hence is dz-Hllbertlan Further (idy — RX(V) =
[u;);c,. If we fix p to be any subset of o¢ with |p| = dim R(V) then
d(R(V),[ui]iep) < d,. Hence if 7 = o U p, then

d(V,[u;),c,) < 4K?4d,.

ier

Now consider the projection (idy — P, R)P, on V. This projects V' onto a
subspace Z, of Z, which is thus d,-Hilbertian. The complementary projec-
tion on IV maps 1/ onto

= (idX - PZ,R)(Y0)~

Clearly, if y €Y,, then Py(y— P, Ry)=y so that we have [yl <
d\lly — Pz Ryll. Hence Y, is 2 Kd,d »-isomorphic to Y, and so d(Y;,Y) <
2Kd2d2
IfyeY, z€Z,, then
(112 + 11z11*)* < 2max(llyll, llzll)
< 2(l(idx = Py,) Pzl + 1)lly + zII
< 6Kd,d,lly + zl|

while lly + zIl < llyll + llzIl < 20yl + llzI»)2
Thus d(Y, &, Z,,V) < 12Kd,d,. Hence

d(Y &, 15" [u;),c.) < 100K*d3d3.
It remains to estimate |7|. In fact,

I7| = dim ¥ = dim X — dim Z, = dim X — dim(Z, N [1;];c,¢)
= dim X — dim Z, — |o°| + dim(Z, + [u,];c0e)

<2n—-(n—-m) —lo°| =m+ |al.

THeOREM 2.4. Let X be an n-dimensional Banach space and suppose
W = X &, I has a K-unconditional basis (u,)[". Then, given ¢ > 0, there is
a subset o of [m + nlwithn < |o| < 2 + €)n such that

(1) diy... < 2710°K %,
() d([u);e,, X & IF17") < 266102K'%,

In particular, X ®, I§"*®)1 has a 25610°K 'B-ynconditional basis.
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Proof.  First we assume that m > 2(1 + K)n and show that we can reduce
the dimension of the required Hilbert space to at most 2(1 + K)n. Applying
the last part of Theorem 2.2 with ¢ = 3 we find a subset p of [m + n]so that

duge, < 2K*m~Y(m +n) <4K? and |Ip| = (m+n) —2(1 + K)n.
Let o, = p¢, so that |oyl =m + n — |p| <2(1 + K)n. Then, by Theorem
2.3, there exists oy,09 C 0y, n < |oy| < logl +n so that d(u,];c,, X &,
I71=m) < 6400K1°. If |oy| < (2 + &)n, we are done.

If not we estimate |oy| < |0yl +n <3+ 2K)n. Thus [u];c,, has a
6400K '°-complemented subspace Y with dy < 6400K'°, and dimY =
loy| —n = Alo,l where A > 1. Apply Theorem 2.2 with & replaced by
3(1 + K)7'e. There exist a subset 7 C o; with

l7l = (1 - (1 + K) " 'e)(loy] —n) and dp,,_ <2'°10°K*.

Let 0, = o, \ 7 and apply Theorem 2.3. There exists o3, 0, € 03 C oy With
n < |osl < loy,| + £ so that

d([4,)icor X ® I597") < 100K*(6400K °)*(21°10°K #)
< 2661022K103.

Next we estimate |o,|. We have

losl < loyl +n=loyl — 7]l +n
< |0'1| +n— (1 — ﬁﬂ)(lall —n)
E
=2n + m‘K—)GOﬂ - n)

<(2+¢)n.
Finally we note that
ik epmenos = Hitlicpon
< 2K max(dy,, _,du,,..)
< 217104K %, ]
Let us note the following easy corollary of Theorem 2.2.

THEOREM 2.5. Let X be an n-dimensional Banach space with a normalized
symmetric basis (u;)!_,. Suppose X has an M-complemented subspace E with
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dimension m = An. Then dy < 4MA~3/%dy and (u))?_, is 16 M *A ~3d}-equiv-
alent to the canonical basis of 175.

Proof. By Theorem 2.2, there is a subset o of [n] with || > 3m so that
-1

Then

2n\"? -3/2
dXs(1+—m—) diy. < 4A"Y2Md,. =

i]iEo'

THEOREM 2.6. Let X be an n-dimensional Banach space with a normalized
symmetric basis (u,;)?_,. Suppose E is a subspace of X with dim E = m > An,
where 0 < A < 1. Then:

(1) There is a constant K = K(A, dg) so that for a,,...,a, €R,

12 1/2
i=1

<K

n
> a;u;
i=1

n
E”i
i=1

(2) For any a, 0 < a < 1, there is a constant D = D(a, A, dy) so that X
contains a subspace E, with dg_< D and dim E, > an.

Proof. Consider the quotient map Q: X* — E*. Since dg. = dy we have,
for any {a,} ,,

2

n
- 2 2
= dg? Y la|*lQurll®.
i=1

/

n
Z g;a;Qu}
i=1

Hence

2

n
Z auf

i=1

n

2 2
Y la, 2 1QuFl? < d2
i=1

By averaging over all permutations, if y = (1/r)Z7_,[IQu¥|1%,

" 1,2
y( Zla,ﬁ) <d;
i=1

n
Z auf
i=1
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Now if v* = uk /(17 u*l),
2

n n
2 -
Y NQur? = dz?[|| X e:0u
i=1 i=1
n 2 n 2
> dg?| Lup| [| L eQux| de
i=1 i=1
-2
2,2/4

n
—2 Zu
i=1

where ¢ > 0 is an absolute constant, by Theorem 1.1 of [2]. Hence

-1
y = V/Anl/2d 5

n
Y u
i=1

Now, by duality, we have, for all {a,}" ,,

This proves (1).
For (2), notice that

it
)

(2)

Now, by results of [5] or [10], given any «, 0 < & < 1, there is a constant B,
depending only on « and a subspace E, of X with dim E, > an, such that if

x=X!,aq,u,€E,

1 n 1/2 1 n
2
(F Zjar) <5 Lad

Then dy_< B,c™'/*d;. ®
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CoRrOLLARY 2.7. For 0 <A <1 and 1 <L < x there is a constant K =
K(A, L) so that if X is an n-dimensional Banach space with a symmetric basis
(u))!_, so that X and X* both contain L-Hilbertian subspaces of dimension at
least An then dy < K.

Proof. 1In fact, for some C = C(A, L) < o,

n n 1 n 2 1/2

Yaull <Cl Xy ﬁZ"h") )

i=1 i=1 i=1

n n 1 1/2
2

Laur| <) Sur|(5 Lle)

i=1 i=1 i=1

from which it follows that

12
Yla.|? " 12y1/2
o1 (Elal’) IZaull _  Zlaf)'"” .

<
n 2wl n

We remark that this corollary can also be obtained by using Theorem 1.2
of [2] and Theorems 2.5 and 2.6 above.

3. Doubly substochastic matrices on R”

Let ey,..., e, be the canonical basis in R” and let e =e; + --* +e,. Let

1 n 1/p
||x||,,=(; le,-l") .
i=1

If x € R” and 7 is a permutation of [n] (e, m € II,) we let x, =S x =
(xv(i));l=1' ) )

Suppose A = (a;))!;_; is a nonnegative n X n-matrix. Let &8, =
max; <i j<n Gij-

Lemma 3.1. Suppose x € R". Then, for 1 <p < 2,

1/p
(fn | Ax, — (x,e) el dm| <2764 VP|AIL 7|,

Proof. Let
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Then ||B]l; < 2||4]l1, and thus the lemma is obvious for p = 1. For p = 2 we
apply Lemma 4.2 of [9] and deduce that

B =34 )

foralll <i <n.
Now, X7_,b? < X7_a} < 8,57 ,a,;. Thus

2 1 n n 1
1B ) d < 26,,(; P> aij)(;
< 28,41 .

The general case follows by the Riesz-Thorin interpolation theorem. B
Now suppose || - || is a lattice quasinorm on R" which satisfies

1/2 172 172
e + yIE? < el + Nyl

(and hence also |lx + yllg < Clixllg + llyllg)) and
xlli,2 < lxlle < l1xllo.

Let || - llr be a similar lattice quasinorm on R” and set ||[Allg-r=
max|jx| z <1lAx|| .

LemMA 3.2.  Suppose A is doubly substochastic. Then forx = 0, with |ix|l; =
1,and 1 <p <2 we have
1 n n
el = - 'z zlaij < 412 F jn x| &% dr + 2172284 =1/P/2| x| 12,
i=1j= n
Proof. By Lemma 3.1,
1/p

2
( J Vax, — delizz d ) s( [ Vax, = dell; dm

< 2V/P§L1/P|ix]|,.
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Thus, since A4 is doubly substochastic,
1/2
I4ell, < ll4elli/3

1/2 2 - 1/2
< A2 [ g5 dr + 2172085~/ P72 a2, m

Lemma 33. For any B>0, 6 >0, and M < o, we can find 8,=
84(B, 0, M) > 0 so that whenever A is a doubly substochastic n X n-matrix with

1 n n
li4ell; = }72 Zla,zo
and || - ||g is a symmetric 3-norm on R™ such that

@ lxlly< lixlle < llxlle,
(2) there exists x € R”, ||x|l; = 1, and x|z < n™8, and
3 Al <M

then 6, = 8.

Proof. We may assume that 0 < 1. If we fix 8, # and M it suffices to
provide an estimate for large enough dimensions n. Hence we may assume
n > (20007 'M)*/#,

If |l 4ell; > 6, let o be the set of i € [n] so that ¥7_,a,; > 6% Then,
clearly,

lo| = n(6 — 62) > ino,

Similarly if 7 is the set of j € [n] for which £?_,a;; > 6% then |7| > 3né.
Let m be the integer part of 260~ ! + 1. Then we may find permutations
P1s---> Py and pi, ..., pl, so that

(S, + " +S, )Ae = 0%,
(Sy + =+ +8,, )A'e > 6%.
where S, is the permutation matrix (S,);; = 8; ,;

Let V' be the diagonal matrix such that V(S + ©+ +S, )Ae = e. Clearly,
IVlle <072 and Ve > m~le > 16e. Let

W= V( ) Sijs;,;).
ji=1

Then ||Wllg < 96~ *M (since E is 3-normable) and &, < 30735 ,. Further-
more, We = e.
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Let Ux = Wx — (x, e)e. Then Ue = 0 and for any permutation =, US, Ux
= US,Wx. For any x € R”, by Lemma 3.1 we have

[ 1US %113 dr < 23, W1 x5 < 6055 13

and so there exists = = m(x) with

(%) NUS,xll2 < (60738, ) lIxll,.
Fix k to be the largest integer such that (2000~’M)* < nP. Then k > 2

and n? < (2000~ "M)**. Fix any x > 0 with |lx|; = 1 and ||lx||z < nP. Iterat-
ing (*) k times we obtain the existence of ,..., T, with

IUS, US,, ,...US, x|l < (60728,) " lxll,

WS_ x

Ty * " Ty

and hence if y = US, WS

k 2
Iylle < lylle < n'2lyll, < n172(60738,,) " llxll, < n(66~38,)"

On the other hand y = WS - (S, W... WS, X, €)e. Now

1 m
> § g tst
> %03&

Hence S, W'... WS, e = (36°)*" e so that

1 k—1
(369 < 20ls + WS, ... WS, xIe)

< 2(n(66728,,)"” + IWllkn~#)

k/2

< 4max(n(60 38w) IWllEn~ )

Thus

%03 < max(nl/"(60‘36W)1/2, ||W||En"’/").
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We now recall the choice of k. We have n #/* < (200)"'M~'7 and
Wz < 90~ *M. Thus

9 1
-B/k 7 _p3 < =p3
IWllon=6/k < o556° < 36

Hence
2/B
_ 12 1 5 1 6’
(60 36W) = 3‘03}1 17k > §03(—-)
which implies an estimate on &, > 16%5,,. ®

4. Property (P)

We shall say that a lattice norm || - ||x on R” satisfies the (p, g)-condition
(where p > gq) if |lxll; < llxllx < lxll, for x €R"”. If 7 is a subset of
{1,2,...,n} we define R, by (R, x);, = x; if i € 7 and (R, x); = 0 otherwise.
The following proposition is a slight extension of Propositions 3.4 and 4.3 of
[4] or Proposition 3.3 of [3]

Prorosition 4.1. Let X and Y be n-dimensional Banach lattices satisfying
the (,1)-condition. Let A: X > Y be an n X n-matrix. Then, given € > 0,
there exists subsets o, 7 C [n] such that |o|,|r| = (1 — &e)n and ||R_ AR, <
KZe MAllx-y-

Proof. Let ||All = llAllx-y. Consider A: L, — L;; clearly ||Allem; <
l4]l. By the Grothendieck-Pietsch factorization theorem (cf. [12], pp. 64-70),
there exist (u;)_; with u; > 0, X7 ,u, = 1 and

n 1/2
lAxlly < KglA u( Y M,.x,?)
i=1
for x € X. Let 0 = {i: u; < 1/en}. Then |o¢| < en. If x € X, then
1/2
4R, x|l < K4 u( y u,.x,?) < KllAlle2lxll,.
i€o

Now consider R, A" L, — L,; we have ||R, A'lleer < Kge™ V2|IAll.
Again by the Grothendieck-Pietsch theorem there exists 7 C[n], || >
(1 — &)n, and

IR, AR |l < KZe |4l

and the proposition follows. ®
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ProrosiTioN 4.2. Let X and Y be n-dimensional Banach lattices satisfying
the (o, 1)-condition. Let A: X > Y and B: Y - X be n X n-matrices, with
tr(BA) > An, for some A > 0. Let M = max(||4llx >y, IBlly x). Then there
are subsets o, C [n], with |ol, || = (1 — }AM~?)n and

(1) tr(R, BR,)(R, AR,) > gAn,

(2) IR, BRIz, IR, AR I, < 8KZA~'M?3.

Proof. Let us apply Proposition 4.1 with ¢ = $AM~2 We can find 7, 0,
c [n] with |7l loy| = (1 = 3AM~Hn and

IR, AR, |l, < 8KZA~'M?,
Similarly we can find 7,, o, with |7,|, |o,] > (1 — 3AM~?)n and
IR,,BR, |l2 < 8KZA~'M>.

Let r=17,N71, and ¢ = o, N 7,. Then |ol, |r| = (1 — AM~?) and obvi-
ously, (2) holds. Furthermore
tr(R,BAR,) = tr( BAR,)
= tr(BA) — tr( BAR,.)
> An — ||BAllxlo€|

> An — MZ(%AM“Z)n
> %An.

Similarly,

tr(R,BR_AR,) = tr(R,AR_B)
> tr(AR,B) — tr(R,.AR_B)
> %—An - %)m = %-/\n. [ ]

We now consider, under the hypotheses of 4.2, the problem of estimating
the size of max; ;|la;;b;|. To this end we establish the following technical
lemma.

LemMma 4.3. Let X and Y be n-dimensional Banach lattices satisfying the
(e, 1)-condition. Let A: X - Y and B: Y — X be n X n-matrices and suppose
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tr(BA) > An and M = max(||Allx -y, IBlly- x). Suppose further that v =
max, _; ;_,la;;b;|. Then there is a doubly substochastic n X n-matrix W such
that, if E denotes the 2-concavification X ,, of X, we have

(1) Wl <1,
(2) dw= max |w;l <273Kg2AM 3y,
1<i,j<n
1 n n
(3) IWell, = - X X wy; = 27K "A'M 1,
i=1j=1

Proof. First, select o, 7 by Proposition 4.2. We then define a matrix
V= (UU)ZJ':I by

. 2 2 . .
S {mm(laijl , bl ), ier,jEo,
ij .
0, otherwise.

For i e 7,

n
Y v; < Y Ia,-jl2 = nIIR(,A‘RTeiH% < 8KZA"M3.
i=1

JjE€o

Similarly for j € o, £7_v;; < 8KZA~'M?>. Thus the matrix (5K5*AM )V is
doubly substochastic.

Let E=X, and F=Y,. If x€E with x >0 then x;, =w/ where
w € X and IIxIIE = llwl%. Hence,

2
IVxllF =

" 1/2
< ( Y wiZIVe,.I)

i=1

n
Y xVe
i=1

F Y

Now Ve, = L7_yv;e; and so

2

n /o 12
Wxlle < X ( Y ;W ) e
j=1\i=1 v
n I on 12 |2
2
<X (Zlaﬁl w,z) e

j=1 y

2

n 1/2
g

Y

214N - vlwllk
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by Theorem 1.f.4 of [13]. Hence [Vllz- r < KZM? and similarly [|V'|lr g
<KZM>

Now if we let W= Q7 SKz*A>°M~6)V'V, it follows from the above that
[IWllg < 1. Next we estimate ||We||,. Clearly

I Well, = (We, e) = 2-SKZ*A2M~||Vel|2.
G

Let R,AR BR, = D. Then for i € o,

d; = Z aijbji

JET
so that
il < X 1ol (la;| + 1)
jeT
1/2 s 1/2 . 12
< ( > Uij) ( h la;| ) + ( h b, )
jer jer jer
1/2
~(Zu) #20R AR el + IR BR €12)
JET
1/2
< 24KéA‘1M3( 3 u,.,.) .
JET
Hence
n 2
j=1
However

. 1/4
ZAn < Y ld,l < n3/4( > |dii|4) .

i€eo i€o
Hence £7_,|d;|* = 27*A*n. Thus
1 n n 2
IVell; = > ( Y vij) > 270K M 12,
i=1\j=1
Thus

||We||1 > 2_26K612A10M_18.
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Finally we estimate &,:
n
_ A—6p—4)\2rf—6
wi; = 27°KG*NM™C Y vy
k=1

<273KGPAM™3 max vy
l<k<n

< 273KGAAM . ]

We now introduce a property of a family of finite-dimensional Banach
lattices. Let & be a collection of finite-dimensional Banach lattices. We say
that & has property (P) if given 0 <A <1 and 0 <M < x there exists
v =v(A, M) > 0 so that whenever X € & with dim X =n, Y is any n-
dimensional Banach lattice and A, B are n X n-matrices with |[4llx .y < M,
IBlly - x < M and tr(BA) > An, then max; ;la;;b;| > v. Notice that if & has
property (P) and £* = {X*: X € &} then £U &* also has property (P).

We make use of a further remark. If X and Y are n-dimensional Banach
lattices, then by Lozanovskii’s theorem [14] there exist invertible positive
diagonal matrices Dy, Dy so that the lattice norms || - [l on X and | - ||y
on Y defined by |lx|lz = [[Dyxllx and llylly = |IDyylly verify the (s, 1)-con-
dition. Then if 4: X —» Y and B: Y — X are bounded linear maps, set

A =D;4D,, B=Dx'BD,.
It follows that |4|lx >y = ll4llx->y and ||1Blly % = |IBlly - x and
tr(BA) = tr(D3'BAD") = tr( BA).

Furthermore for fixed i, j, 4, jBﬁ = a;;b;;. Hence, in all our arguments, we will
be free to renorm both X and Y by a diagonal transformation to satisfy the
(0, 1)-condition.

Further, if X is p-convex, we can renorm X to satisfy the (e, p)-condition;
if X is g-concave, we can renorm, using duality, so that X satisfies the
(g, 1)-condition.

ProrosiTiON 4.4. Suppose B > 0. Let & be the collection of finite-dimen-
sional 1-symmetric spaces X for which dy > n?, where n = dim X. Then & has
property (P).

Proof. 1In view of the above remarks, it suffices to consider the case when

X is a 1-symmetric space satisfying the («, 1)-condition and such that for
some 0 # x € X,

lxllx < n=2lixll,.
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Let Y be any n-dimensional Banach lattice satisfying the (e, 1)-condition.
Suppose A4, B are n X n-matrices with tr(BA) > An, and ||[Allx-y < M and
IBlly - x < M.

By Lemma 43, if E =X, there is a substochastlc matrix W with
|Wllg <1, and

:Ih—t

i 2’1: > 2~ 26K-12/\10M—18
t] =

max w; <27°KgPAM™ max |a;b;l.
1<i,j<n 1<i,j<n

Further, in E there is a vector u with |lullg < n~2?# and ||ull; = 1. It follows
immediately from Lemma 3.3 that max,_;;_,la;;b;l = v where v =
v(A,M)>0. =

Now let & be a collection of finite-dimensional Banach lattices satisfying
the (w0, 1)-condition. We shall say that & has property (Q) if there exists p,

2 < p < =, such that, given any & > 0, there exist K(¢), N(¢) > 0 so that if
X € &, with dim X = n > N(¢) then there exists x € X with ||x|l, =

J Mellx dm < e
I,

and |lx]l, < K(e).
ProposiTION 4.5. If & has property (Q) then & has property (P).

Proof. We may assume p < 4. If A > 0 and M > 1 are given, select
£ = 2_27K(_;12/\10M_18.

Suppose X € & with dim X =n > N(¢). Let Y be any n-dimensional
Banach lattice satisfying the (e, 1)-condition. Suppose A, B are n X n-
matrices with ||4llxy, IBlly- x < M and tr(BA) > An.

Let E = X,,. By Lemma 4.3, there is a doubly substochastic matrix W with
IWle < 1,

I|Wel|1 > 2—26K812/\10M——18

and

8y < 27KGPAM P max, _; ;_,la;b;l.
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There exists x € E with x > 0, |lx][; = 1 and such that

J el dm = [ Ix2lixdr<e
H” nn

and
lIxll;/3 = llx2ll, < K(e).
Hence, by Lemma 3.2,
2_26K(_;12/\10M_18 <e+ 21/2176;14{2_1/21)1((8).

By choice of ¢ this implies &, > f(A, M) > 0 and hence max, _; ;_,la;b;l
> v(A, M) > 0. Of course if n < N(e) we obtain a trivial bound on
max, _; ;. ,la;;b;| so that the proposition follows. ®
ProprosITION 4.6. Suppose 1 < q < 2.
(@) Let & be the collection of finite-dimensional Banach lattices satisfying
the condition (q,1). Then & has property (P).
(b) Suppose & is the collection of finite-dimensional Banach lattices, with
g-concavity constant one (or, by duality, with p-convexity constant one
where 1/p + 1/q = 1). Then & has property (P).

Proof. (a). We verify (Q). For ¢ > 0, let N(¢) = 2¢724/C~9, For n >
N(e), pick k so that 1629/@~D < k/n < £24/@~D,If X € & withdim X = n,
let x = n'/?k~'/?1,,. Then

<eE,

k )l/q—1/2

[ el dm < el < (5
I,

by choice of k. However,

k -1/4
llxlly = (;l') < 2V4gm1/6-20) = K(¢).

(b). This follows from (a) immediately by the remarks preceding Proposi-
tion44. m

ProrosiTion 4.7. Let X[0,1] be an r.i. Banach function space and let
X, = X(#,) where B, is the algebra generated by the sets [(k — 1)/n, k/n] for
1 <k < n. Then if X #+ L,, the collection & = (X,);_, has property (P).
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Proof. Note that X = X*(%,). We show that either & or &* has
property (Q). In fact we may assume by replacing & by &* if necessary that
inf, s, _1llfllx = 0. Then for given & > 0 there exists a simple function f, € X
such that lIf.llx < e but |Ifll. > 1. Let K(¢) = ||flls, and notice that for large
enough n the conditional expectation f, of f, on %, satisfies |If,llx <&,

If,,l2 > 1, and |If,Il4 < K(&). This means that & has property (Q) and hence
also(P). m

Our final example concerns the matrix spaces [;'(I7). We need first a
preparatory lemma (which is due to Gluskin [6]).

Lemma 4.8.  For each p > 0, there is a constant C, so that if A C [n), and if
&(m) = 1if w(i) € A and £(7) = 0 otherwise then

1/p B
4] 4]
(fn|§1(77') + - +§,(‘rr)|pd1'r SI‘T +Cpr1/2(—ﬁ—) .
where B = min(1/2p,1/2).
Remark. ¢, + --- +¢§, has a hypergeometric distribution.

Proof. Let my,...,m,, be independent {0,1}-valued random variables
defined on some probability space (Q, P) with P(n; = 1) = |A|/n,
P(n; =0) =1 — |A|/n. Then for p > 2,

IR I PR

-J

P \p

Z 8[(’)7[ - ni+r) de

i=1

\p

p
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where C; and C depend only on p. Thus

n

,
Z n;
i=1

1/p
< 4] +Cr1/2(IA%) .
j4

To prove the lemma, first suppose p > 2 is an integer. Clearly for any
1<if,...,ipy<r,

fnnfil---g,.kdw - (Lil)/('i)

= fnml...nik dP.
Hence, since ¢; and n; are {0, 1}-valued it follows that:

“gl 4 .. +§r”p < ”n1 4+ e +77r||p~

The lemma thus follows easily for p > 2 an integer. For the general case pick
g to be an integer so that p < g < 1/B and use the estimate ||&, +
T +§r”p$ |I§1+ +§r“q~ |

ProrosiTioNn 4.9. (a) Suppose 2 & {p, q}. Then the collection
{I Ay, =1 has property (P).

(b) If g #2 and n;, > « then any sequence of spaces {I5(I7)f;_, has
property (P).

Proof. (a). By duality we may assume that g < 2. It then suffices to show
that any sequence of spaces in the collection has a subsequence with property
(P). Clearly if sup, n, < « then the spaces /,'*(I7*) are uniformly isomorphic
to [7""« and so has (P). Therefore suppose n, — «. The spaces /;'«(I7*) can
be renormed to obey the (e, 1)-condition by

llxllo = mg Y Png 1/ 9|x|l.

Let N = N, = n,m,. Now let A be any subset of [m,] X [n,] of cardinality
|A| = ON. Consider I1, acting on [m,] X [n,] in the obvious way. If we let
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x=0"%1,then x|, =1, llxlls = 6~'/* and

1/p
J ||x,,”0d7TS( / nx,,ns)
Iy My

1/p
= 0-1/2n;1/q(f (&, + - +§nk)p/q dr
Iy

where £;,..., §,, are given as in Lemma 4.8. Thus
1
fn llx, llo dr < 8~2n7Y/(n, 0 + Cnl/268)"".
N

where C = C(p) and B = min(1/2, q/2p).
Now, given & > 0, it is clear that for large enough k we may choose |A4| so
that

[ xllodm <6

My

and |lx|ls < 269/¢729, Thus the collection I7'«(I7¥) has property (P).
(b) Same proof as (a). W

5. Applications of property (P)

LemMma 5.1.  Let & be a collection of finite-dimensional Banach lattices with
property (P). Then, given any 1 <M < o, 0 <A <1 and y = 1, there exist
a=a(M,A,y)>0and 6 =8(M,A,y) > 0sothatif X € & withdim X =n
and Y is any m-dimensional Banach lattice, where m < yn, and A: X - Y,
B: Y = X are linear maps with ||Allx >y, IBlly-x <M, and tr(BA) = An,
then there exists a subset o C[n] with |o| = an, and a one-one map .
o — [m] so that la . b; ;)] =8, fori € 0.

Proof. 'The lattice Y is spanned by a set (y,)/2, of normalized atoms; for

7 C [m] we shall denote by R_ the natural projection from Y onto [y,]; .
First we note that if m > n,

Ave, tr(R, AB) = —tr(AB) >

L[>

n

where the average is computed over all subsets = with |7| = n. We thus can
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fix 7 so that
tr(R,AB) > Ay~ !n,

and consider the maps R, A: X —» Y(= R.Y), B:Y, » X, where dim Y, = n.
If m < n we may simply expand Y to have dimension n, and let 7 = [m]. Let
8 = v(2Ay~1, M) be given by (P) and let o be a maximal subset of [n] so that
there is a one-one map m: o — 7 with la_; ;b; )| = 8.

Consider the maps R, AR,.: X - Y, and B: Y, - X, where p = 7\ m(0).
Clearly,

labyl <& ifjeac,icp.

Thus
tr(R,AR,B) < %—)w“ln.
However,
Ay~'n < tr(R,AB) = tr(R,A4B) — tr(R,,,,4B)
= tr(R,AR,.B) + tr(R,AR,B) — tr(R ,,AB)

< %—A'y”ln + 2|o|M?,

as in Proposition 4.2. Thus 2|o|M? > i1y~ 'n which yields that |o| >
(4yM?)~!n so that we may take a@ = (4yM?)~! and § = v(GFAy", M). m

ProrosiTioN 5.2. Let & be a collection of finite-dimensional Banach
lattices having property (P). Then

(1) Given 1<M<wo, 1<K<w and 0<A <1, there exists B =
BA,M,K)>0 and L =LA, M,K) <o so that if X € & with
dim X = n is spanned by normalized atoms (e))!_, and if (u))[%, is an
M-complemented normalized K-unconditional basic sequence in X with
m = An, then there is a subset o C [n] and a one-one map m: o — [m]
with |o| = Bn so that (e,);c,, is L-equivalent to (u,;); <,

2) Given 1<M<o, 1<K<® and 1<y <x, there exists B =
By, M,K)>0 and L =L(y,M,K) < so that if X € & with
dim X = n is K-isomorphic to an M-complemented subspace of a space
Y with dimY = m < yn, having a normalized 1-unconditional basis
(u) | then there is a subset o C [n] with |o| > Bn and a one-one map
m: o — [m] for which (e,);c, is L-equivalent to (u,); c (o

Proof. These follow immediately from Lemma 5.1. We prove only (1).
First note that (u;)/*, is K-equivalent to a normalized 1-unconditional basis
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(v)IL, of some Banach lattice Y. Hence there exists A: X — Y with
IAllx>y < MK and B: Y —» X with ||Blly- x <1 such that BA = P, the
projection of X onto [u;]”,. It follows that trt(BA) = m > An, and by
Lemma 5.1, we can find o c[n] with |o| > (MK, A,1) and a map m:
o - [m] with la_;, ;b; .| = 8, where & = 8(MK, A, 1).

Since the bases are normalized, |a;;| < MK and |b;| < 1. Hence & <
@@, <MK and 6 /MK < |b; ;| <1, forallie€o.

Now, if

i, (i

n
A( E fiei) = Z €0y, iVniiy
i=1

i€o

then || 4llxy < ll4llxy by a standard “diagonal” argument [12, p. 20].
Hence

for all {£;};,. In exactly the same manner, one can show that also

E §t 1-r(t)

i€o

Z&e

i€o

Y &e,

i€o

S

Z fl 1r(t)

i€o

b

again for every {¢}); <. It follows that (¢,);o, in X is MK/8%*equivalent to
(V,@)ico in Y and thus is also MK?/8%equivalent to (u,;);c,. W

In the case when & is a family of spaces with a symmetric basis, the set o,
whose existence is asserted by Proposition 5.2, can be chosen to have almost
maximal cardinality.

ProrosiTioN 5.3. Let & be a collection of finite-dimensional symmetric

spaces having property (P). Then:

(1) Given1<M<o, 1<K<wo 0<A<1and 0<e <1 there exists
L' =L\ M, K,¢) so that if X € & with dim x = n has a symmetric
basis (e)?_, and (u) . is an M-complemented normalized K-uncondi-
tional basic sequence in X with m > An then there is a subset o C [m] 50
that (u,); <, is L'-equivalent to (e)\”!, and |o| = (1 — &)m.

2 GivenlsM<oo, 1<K<w 1<y<wand 0<e <1 there exists

L'(y,M, K, &) so that if X € & with dim X = n has a symmetric
baszs (e))!_, and is K-isomorphic to an M-complemented subspace of a
space Y with dim'Y = m < yn and a 1-unconditional normalized basis
(u)™., then there is a subset o C[m] with |o| = (1 — &)n so that
(u); <, is L'-equivalent to (e;)\”!

i=1°
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Proof. Again we prove only (1). Let B(A, M, K) and L(A, M, K) be
determined as in Proposition 5.2. Thus if o C [m] and |oy| > em then o,
contains a subset o, with

lo,| = B(er, MK, K)n

so that (u,);c,, is L(eA, MK, K)-equivalent to (e;)|2,. If we iterate this it is
clear that we can find disjoint subsets 74, 7,,...,7, where [ <
AB(e, MK, K)~' so that each |7,| > an, Ei_,|7;| = m(1 — &) and (»; Dier, 18
L- equlvalent to (e)”,. By the symmetry of (e ), this implies if o =
7, U -+ U7, then (u;),;, is C(])L-equivalent to (e )"’I and |o| > m(1 — &).
|

THEOREM 5.4. Suppose p > 2. Then for 0 <A <1, 1 <K<, and 1 <
M < o there exist a = a(A, M, K, p) > 0 and L = L(A, M, K, p) < « so that
if X and Y are finite-dimensional Banach spaces with dim X = n,dimY =m >
An and X has a 1-unconditional normalized basis (x,)!_,, Y has a 1-uncondi-
tional normalized basis (y)", and Y is K-isomorphic to an M-complemented
subspace of X and either (x)!_, or (y)I, is p-convex (with p-convexity
constant one) or g-concave (with g-concavity constant one), where p~ + g~}
= 1, then there is a subset o C [n] and a one-one map m: o — [m] so that
lo| = an and (x,);c, is L-equivalent to (,); c (-

Proof. By duality only the case of g-concavity need be considered. The
result then follows immediately from Propositions 4.6 and 5.2. =

THEOREM 5.5. Supposer > 0.Thenfor 0 <A < 1,1 <K<o, 1 <M< »
and 0 < & < 1 there exists L = L(A, M, K, e, r) < « so that whenever X and Y
are finite-dimensional Banach spaces with dim X = n, dimY = m > An, X has
a 1-unconditional normalized basis (x;)?_,, Y has a 1-unconditional normalized
basis (y)1.,, Y is K-isomorphic to an M-complemented subspace of X and either
(x)P_, is symmetric and dy > n" or (y)™ , is symmetric and dy > m’, then
there is asubset o < [n] with |o| = m(1 — &) and a one-one map : o — [m]
so that (x;);c , is L-equivalent to (¥)); c (o)

Proof. Use Propositions 4.4 and 5.3. =

Remark. As we have pointed out in the introduction, Theorems 5.4 and
5.5 are generalizations of results of Schiitt [16].

In order to state the next theorem we introduce some notation. If X is a
rearrangement-invariant Banach function space on [0, 1] we denote by X,, the
n-dimensional subspace X(%,) where &%, is the algebra generated by the
sets [j —1/n,j/n) for 1 <j <n. We then let e; = 1;;_ 1/n,i/m and x; =

e;/lle;|l. Thus (x;)_, is the canonical normalized symmetnc basis of X,,.
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THEOREM 5.6. Let X = X[0,1] be a rearrangement-invariant Banach
function space on [0,1]. Then, given 0 <e <1, 0<A <1,1 <K < » and
1 <M < o, there is a constant L = L(g, A, K, M, X) so that if (y)™, is any
M-complemented K-unconditional normalized basic sequence in X, withm > An,
then there is a subset o C [n] with |o| > m(1 — €) so that (y,), ., is L-equiv-
alent to (x)\”!,.

Proof. If X = L, this is obvious. For X # L,, it is a direct consequence
of Propositions 4.7 and 5.3. =

TueoreM 5.7. Suppose 1 <p <wand 1 < q < ». Then given e >0 and
1 < K <  there exists L = L(¢, K, p, q) < ® so that if (y)", is a K-uncondi-
tional normalized basis of 1;'(17) and (x,)/", is the canonical basis then there is
a subset o C[mn] and a one-one map w: o — [mn] so that (y)"" is
L-equivalent to (y,);c, and lo| = (1 — &)mn.

Remark. The case 1 <p < g < 2 is due to Schiitt [16]. For the sake of
completeness, we consider all cases in the proof below.

Proof. Case (1). 2 ¢ {p,q}. In this case the collection &= [;}(I}) for
m,n € N has property (P) by Proposition 4.9. Thus Proposition 5.2 and the
iteration argument of 5.3 show that we can find disjoint subsets o, ..., o; of
[mn], where | = l(e, K, p, q) so that

1
1
i§1|(rj| > (l - js)mn
and ( y,),EU is L;-equivalent to a subset of the canonical basis (x,)!~, for

each 1 <j <[ where L, =L, K, p,q). Thus (y,),E,, is L,-equivalent to
the canonical basis of

(Ipmelpe - olm),

where n; + -+ +n; =|o;l. Hence if o= al U= Uoy, (3)icy is Ly
equlvalent to the canomcal basis of (I;'® -+ & I}m), where n, <in, n,
+ - +n,, = lol <mn,and L, = Lz(s, K, p, q). If we eliminate all basis

members oorresponding to an n, < 3en we are still left with a set o’ with

lo’| = (1 — &)mn and so we can assume n, > jen or n, = 0for 1 <k < m.

Thus, by breaking up each non-zero n,, the canomcal basis of (I7' ® --- &

I2m), 1s Ly(¢, K, p, g)-equivalent to that of (I’1 & --- @ I~) where jen <

h s ten for 1<j<N and hence by recomblmng is L4(e K D, q)-equiv-

alent to that of (I¥1 @ -+ @ I!#), where (1 — je)n <k; <n for 1 <j <
—1,and ky, < n. Thus

M-1)(1-¢/2) <(1—-¢&)m
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so that M —1 <m and M < m. It follows that the canonical basis of
(k1@ --- @ Ikm), is 1-equivalent to a subset of the basis of /7(/7). Hence
(¥)ico is L(e, K, p, g)-equivalent to a subset of the canonical basis as
required.

Case (2). g # 2, p = 2. Here it is enough to consider a sequence [5"(I}*)
where m;n, — . As in Proposition 4.9(b) if n, - « the sequence has
property (P) and so the preceding argument for Case (1) applies. If not, we
pass to a subsequence where 4n, is bounded and then the spaces are
uniformly isomorphic to /5'<"« so that the result is trivial.

Case (3). p = q = 2. Trivial.

Case (4). g =2, p #+ 2. In this case we must proceed somewhat differ-
ently. We can assume, by duality, that 1 < p < 2. We will need to prove the
following lemma.

LemMma 58. Given1 <p <2,0<A <1 and 0 <M < x, there exist a =
a(A, M,p) <wand § = 6(A, M, p),0 < 8 <1, such that if X = I7'(3) and its
canonical basis is denoted by (x,)N.,, N = mn, Y is an N- dlmenszonal Banach
lattice spanned by atoms (y))Y., and A: X —» Y, B: Y — X are linear operators
satisfying |Allx v, IBlly-x < M and tr(BA) = AN then there are subsets o
and m of [N1with |o| = n, [x;]; <, isometric to I3, In| < an and signs (e;)
so that if

ien

Mz

a; )’,) = Z £;4;Y;

ien

Qe,‘n(

then v(R,BQ, ,AR,) = 6n.

1

Let us first assume Lemma 5.8 and complete the proof of Theorem 5.7. It
suffices to consider an isomorphism A: X - Y where Y has a 1-uncondi-
tional basis (y;)¥, and let B = A" where [lAllx-v, IIBlly- x < K. We will
show that for any 0 < y < 1 there exists 8 = B(y, K, p) > 0 and a constant
L =L(y,K, p) < » so that if 7 c[N] with |r| = yN then 7 contains a
subset n with |n| = BN so that (y,),,, is L-equivalent to a subset of (x,)/_;.
The argument is then completed easily as in Case (1).

Let a@ = a(3y,K, p) and 0 = 6(3y, K, p) be given by Lemma 5.8. Let
oy,...,0, be the partition of [N] into sets of cardinality n so that each
[x; ],E,r is isometric to /5. We may determine inductively a maximal collec-
tion of distinct Ohpp« > T, and correspondmg disjoint subsets 7n;,...,m; of 7
so that |n;| <an for j=1,2,...,k, and there are signs ¢ = il(z eEn
U ... U n) so that

v(RUhJ_BQs’mR,AR%) > on
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where
N
Qs,’n;( 2 aiyi) = Z £;4;Y;.
i=1 ien;
When this is complete set py = [N]1\(0;, U --- U gy, ) and py =17\ (1,

U --+ U n). It follows that if 0, Cpy and n C py with In] < an then for
every choice of signs ¢; = +1 (i = ),

v(R,,BQ, ,R.AR,) < 6n

and hence for every j and every n € [N] with |n| < an and every choice of
signs ¢, = +1 (i €n),

v(R,R,,BR, QO R. AR, R, ) < 6n.

e, py pxa

Thus, by Lemma 5.8,
4 1
tr(R, BR, AR, ) < 5YN.
Now tr(BR, A) = tr R, = |pyl. Hence
tr(BR, AR, ) = tr(BR, A) — (N — lpx|)K?
= lpyl + K?lpxl — K*N.
Now |pyl = |7| — kan and |py| = N — kn. Thus
tr(BR,, AR, ) = |7| — kK*n — kan
> yN — k(K? + a)n.

Hence k(K? + a)n > 3yN so that k > 3v(K? + a) " 'm.
Now define 4;: X »> Y and B;: Y - X by

k
ZQMIAR = LR, BR,,.
j=1 j=1

Then ||4,l, lIB,ll < K by a diagonal argument [12, p. 20].
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If we fix j, A, maps [x; ],e‘, into [y,],e,,i and B, maps [y,.],.e,,j into [x,.]ie,,j
with »(B,A4,) > 6n > 6a~ |"7,| Let

-~ . 0
7y = {i € my: B4y 2 o ).

Then by Lemma 2.1, |7;| = 3K~ *6n and for any scalars (a,);c 5,

1 1/2
Glger) =

i€qq;

zoo]scl o)

ieqq; ieq;

where C, = 2K%a0™ 1.

By a further reduction we may suppose |7;| <n.Let 4 =%, U -+ U 7.
Then

7l > %—kK‘ZOn >c,N wherec, = %K‘Z(K2 +a) 0.

Since Y has type p constant K2 at most

1/p
Z a;y; .r)
ief;

o[£z

iew;

k
)y ai)’i" SKz( )»
j=1

i€n

where C; = C5(0, K, a) = C4(y, K, p).
Conversely,

D k P
[ ZeiaiBlyil de = Z] Z €;a;B,y;|| de
iedq i=1" llies,
& 2 p/2
= Cy4 Z (f Z £;a Blyl 8)
Jj=1 ieq;

where ¢, > 0 depends only on p. Thus

k p/2 1/p
Y aiyiH = Cs( Y ( P |ai|2"B1yi“2) )

ief i=1\ied;
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1K=19a~'. Thus

However [|B,y;ll > 3
k p/2 1/p
el o L la)

j=1\ieq;

Z a;y;

ieqn

where c¢ = cﬁ(y,K p) > 0. Hence (y;);c; is C,(y, K, p)-equivalent to a

subset of (x,)¥; (and recall that || > ¢, N). This will complete the proof.
|

It remains to establish the lemma.

Proof of Lemma 5.8. Here it is necessary to use the methods of Sections 3
and 4. First we renormalize X,Y to be lattices satisfying the (e, 1)-condition.

Thus the norm on X is defined by
1 , b2\ /P
llxllx = PRYIY Z (k§”l§k| ) ,

where {0}/, is a suitable partition of [N], and x = (£)]L,. We regard A and

B as N >< N-matrices. Select subsets p and 7 as in Proposition 4.2 so that
lpl, |7l = 1 — 2}AM~?)N, and

tr(R,BR,)(R, AR,) > AN,

IR,BR,ll, IR, AR, I, < 8KZA~'M?.

Now as in Lemma 4.3 define the matrix V= (v;)Y;_; by v;=
min(|a;; 12, |bj; |*) for ier, jep and v;; = 0 otherwise. Then if W =

Q- 6KG"/\zM SYV'V), W is doubly substochastic,

Well; = 272K 512A10M 18,

and |[[W||g < 1, where E is the 2-concavification of X.
Consider the m X m-matrix T = (¢;,)]";,_, defined by

“=— X X W

kealea

where W = (W, )R -,
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If x=2XY7 a1, EX with a; > 0, for all 1 <j <m, then the vector
Wx = z satisfies

m p/2\*?
lIxllg = llzllg = m_z/”n_l( Y ( Y |Zk|) )

i=1\keo;

where

Hence

m
lxllg = m=2/Pn~ ( Y (n

i=1

m m p/2\ /P
=m—2/p(z (Ztu ]) )
j=1

Q

i=1

= ||Ta||_p/2-

Thus (|Tll,,2 < 1. Since || Tell; = |[Well; = 27%K5"A"YM '8 we can apply
Lemma 3.3 for T as an operator on L7, (notice that any atom normalized in
L7 has norm in L7, equal to m'~%/?) to deduce that max, _; ;. ; = 5,

ij =
for a suitable § = 8(A, M, p) > 0. Hence there exist §, = §,(A, M, p) > 0
and i, j € [m] with

Y Y (V'V)uzné

keo; leo;

or

N
Y X X Uy, = néy
keo;leo;jr=1
This yields

(T u)(Su)=m

leo;
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and hence with o = 0; or o = 0;, we have

i ( Yy vk,)2 > né,.

r=1‘keo
Notice that
N
¥ ( ¥ uk,) < 8K2A~'M*n
r=1‘keo
and put

AS
n = {r: Y v > —1}

Pl 16KZM?3

Then |n| < 2'’KEMSA=25"'n = an where a = a(A, M, p) and

Y ( Y vk,)2 < %n&l.

ren® ‘ke€o
Thus

Y ( Y vk,)z > %—nﬁl.

ren ‘keo

For arbitrary signs ¢; = +1, i €, consider the map R,BQ, ,A4R,:
[x;)icy = [x;);c,, where Q is defined in the statement. This operator has
Hilbert-Schmidt norm equal to

)\ 172
( )y (Eerbkrarl)) .

k,leoc ‘\ren

Hence

JIR,BQ, AR Ifisde = ¥ Y. L Iby,l’la,l’

keogleoren

Y Y Yo,

keoleoren

- T (Ze)

ren ‘keo

v

%n&l.

v
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Thus there is a choice of signs &, = +1, i € n, so that ||R,BQ, , AR ||us
> (3n6,)!/2. But then, since for any operator S on a Hilbert space WISH Hs <
v($)2||S]1? we have

no,

V(RO'BQe,nARa) 2 2M2

= no
where 6 = 6(A,M,p) > 0. B

6. Rearrangement-invariant Banach function spaces

In this section we consider some special results concerning families of
spaces of the form X, = X(&,) where X = X[0,1] is a rearrangement-
invariant Banach function space on [0, 1]. We assume without loss of general-
ity that X satisfies the (e, 1)-condition and hence so does each X,, if we take
for the canonical basis the vectors (atoms) e, = 14 _1)/p &/ for 1 <k < n.
For notational convenience we also need to identify the normalized symmet-
ric basis x, = e,/ lle,ll of X,,.

LemMa 6.1. Let X be a rearrangement-invariant Banach function space on
[0, 1] such that X + L,. Then, given m > 0, there exists a = a(n, X) > 0 so
that if A is an n X n-matrix with |Allx, < 1 and if ):2’=1):‘,;~’=1|a,~jl2 > nn then
there exists 7 € 11, so that ©_,la ., ;| = an.

Proof. By a simple duality argument it suffices to consider the case when
there exists f € X\ L, so that the collection & = (X,,);_, has property (Q).
Thus there exists p > 2 and functions K(g), N(g) so that if » > N(¢) there
exists x € X, with |lx|l, = 1, llxllx < € and |Ixll, < K(¢).

We fix ¢ = 3m and then choose B > 0 so that 21/7B1/2~1/7PK(¢) < e.

If A is an n X n -matrix where n > N(¢) which satisfies the hypotheses of
the lemma, we may pick a maximal subset o C [n] so that there is a one-one
map m: o — [n] with |a_,, ;| = B. Let 7 =m(0) and let E, denote the
2-concavification of X,,. As in Lemma 4.3 the matrix V given by v;; = |a; jlz
for i € 7° and j € o¢ and v; = 0 otherwise, satisfies [Vl <1, [Vll; <1
and [[V|l. < 1. Now pick x € X,, with |lx|lx <, llxll, = 1 and [Ix||, < K(e).
If we put » = |x|” then llullz < &2, llulli = 1, and llull, » < K(e)*

By Lemma 3.2, with e = L7_,e; we have

1/2 -
||V€||1 < “u"E/ + 21/”31/2 l/pK(E),
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since max, _; ; ., U;; < B. Thus [[Vell; < 3n. Now

2
nn < |a,'j|

it
|| [\/]: 1[\13

~

n
2 2
Ia,'jl + Z Z |a,‘j| + ||Ve||1

i=1jer

I/\

i€o
< |0'| + |7] + 2¢n.

Hence as |o| = |7| we have |o| > inn. Then if we extend 7 to an element
of I, we have

X

1
Z A, l gﬂnn.

On the other hand if n < N(e),

max Z Ia'lT(l) 1|
mell, =1 i=1j=1

v
S|
M=
M=
)

v
S|
—
M=
™
)
~.
o
N ————
<
~N

2 21N
> 1n'/2N(&) "**n.
and this completes the proof of the lemma. ®

THEOREM 6.2. Let X be a rearrangement-invariant Banach function space
on [0, 1] containing Lq[O, 1] where g < . Then, given 0 <A <1,1 <K<
and 1 < M < oo, there exist a = a(A, K,M, X) >0 and L = L(A, K, M, X)
< @ so that if m > | > An, and (y)" | is a K-unconditional normalized basic
sequence in X, so that [yl]f”=1 contains a subspace M-isomorphic to [x;]'_,,
where, as usual, (x;)!_, denotes the canonical normalized symmetric basis of X,
then there is a subset o C [m] with |o| > an so that (y,), ., is L-equivalent to

(x),.

Proof. 'We may assume X # L,[0, 1], and that X satisfies the (g, 1)-condi-
tion. It suffices then to consider the following situation. Let Y be an
m-dimensional Banach lattice spanned by normalized atoms (,)/2; K-equiv-
alent to (y)*, and suppose 4: X, » Y and B: Y — X, are linear maps
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satisfying ||Allx, v < MK, |IBlly- x, < 1 and:

(1) "x“X < "AXHY, x € [ei]i=1,
(2) lyly < KliByllx, y €Y.
Now, by Proposition 4.1, there exist subsets o, 7 C [n] so that |o°|, |7€|

< $An,and ||[R_BAR I, < 4KZA"'MK. Let 0y = o N [I]so that |oy| = 2An
and consider the vectors {BAe}; . . Notice that for {t};,,,

Y. t;BAe;| < MKmax|t,|
i€o x L€y
and
11
Y t,BAe;| =K - DI
i€0y x i€oy

3 _ _
> 3AK ool 1 ¥ 4.

i€a,

Now R, is a quotient map from X, onto a subspace [¢;]; ., of dimension
|7]. Since

I7] + logl —n > %)«n,

we may apply Theorem 1.1 of [2] to deduce that

Z g;R_BAe;| de = co(A,K,M) > 0.
i€ay X
Thus
Y. &R_BAe,| de = co(A,K,M).
i€oy g
Hence

1/2
( y IR,BAeiIZ) > (A, K, M, q) > 0.

i€oy

q
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Let D =R _BAR, and let (d;),.; ;., be its matrix with respect to the
canonical basis (e;)?_; of X,. Then

=z

jEeT iGO'O

2 CIc
q

However, for fixed j, X;c,,|d; jlz < 2*°K&A~2M?K? so that we also obtain, by
a simple interpolation argument,

>c,(MK,M,q) >0

=(zur)

JE€T \i€oy

2

or

Y X ld,l* = cin.

JET i€,

Now, by applying Lemma 6.1 to D we obtain that for some 7 € II, and
some signs &, = +1, 1 <i <n we have tr(S, . R_BAR,) > Bn where B =
B\, K, M, X) > 0 and

n

Ss,ﬂ'( > giei) =X g:€ienq)-
i=1

i=1

Since & = {X,};_, has property (P) we can appeal to Lemma 5.1 to deduce
the existence of a subset o, C [n], with |o;| > an, where a = a(A, K, M, X)
> 0 and one-one maps m;: o; = [m] and m,: o = [n] so that
1@, i, iy, miy] = 8(A, K, M, X) > 0. Tt then follows easily that (¥,); c o)
is L(A, K, M, X)-equivalent to (x,)"¢{“?' completing the proof of the theo-
rem. W

If we make the assumption that X lies on one side of L, then we can
achieve a rather stronger statement and eliminate the hypothesis that X
contains some L.

THEOREM 6.3. Let X be a rearrangement-invariant Banach function space
on [0,1] so that either L, C X or X C L,. Then, given 0 <A <1,1 <K <,
1<M<xand 0 <e <1 there exists L = L(e,A, K, M, X) so that if m >l
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> An and (y)I., is a normalized K-unconditional basic sequence in X,, such
that [y;]™., contains a subspace M-isomorphic to [x;]._, then there is a subset
o C [m] for which |o| = (1 — &)l and (y;); <, is L-equivalent to (x;)\”!,.

Proof. As in Theorem 6.2, we can assume that X # L,. We may further
assume that X satisfies either the (x,2)-condition or the (2, 1)-condition. It
will suffice, again as before, to consider the situation when Y is an m-dimen-
sional Banach lattice spanned by atoms (u,).; K-equivalent to (y,)", and
A: X,-Y, B: Y—> X, are linear maps such that [A4|x, -y <MK,
IBlly x, < 1 and

(1) lxllx < ll4xlly, xe[eli_y,
(2) Ax =0, x€ [ei]:l-=1+l’
(3) lylly <KlByllx, ye€Y.

To obtain the conclusion it will suffice to prove that there exist a =
ale, \, K,M, X)>0 and L, =L(¢,A,K,M, X) <o so that if o C[m]
with |o| > m — (1 — &)l then there exists o, C o with |oy| > al so that

(4); e, is Li-equivalent to (x,)Z°). The result will then follow by an obvious
induction process.

Case 1. Assume first that X satisfies the (2, 1)-condition. Then by the

results of [5] and [10] there exists ¢, = c,(g,A) > 0 so that X, contains a
subspace Z with dim Z > (1 — }eA)n and

llzll2 = llzllx = llzll1 = ¢olizll2, z € Z.

Suppose o C [m] with |a| > m — (1 — ¢)l. Then, by applying one half of the
argument of Proposition 4.1, we may find a subset 7 C[n] with |7| >
(1 — 3eM)n so that

IR,BR, All, < Cy(e,A, K, M).

Let Z, = Z N A" '(u;);c,) Nle)i_. Then

dim(A*l[ui]iEU N [ei]5=l) >1—(m—lol) 2 el

Thus
. 1 2
dim Z, > (1 - §8)t)n +el-—n>= gsl.

Let h = dim Z,, and let (f,)"_, be an orthonormal basis of (Z;, || |l2). Then
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for any {t,}"_,,

[\/]&

h 1/2
t,BR Af,|| < MK( Y t,?)

)
-
™

Mw

t,BR, Af;

I
—

Thus we can apply Theorem 1.1 of [2] (since |7| + & + n > 1l > eAn) to
deduce that

h
Y. &,R_BR,Af,
i=1

/

where ¢, = c¢((¢, A, K, M) > 0. Thus

de > c,h'/?
X

2

de > cih.
2

h
Y IR, BR, Af I3 = [

h
Z £':ile‘rBRtr‘llfi
i=1 i=1

We conclude that if D = R_BR_ A: L% — L% then D has Hilbert-Schmidt
norm at least ¢;vh . Thus if D has matrix (d;;); ., ;., With respect to the
basis (e;)!_,

n
Y |d,~,~|2 >c?h > 3c18An
j=1

i

i

Now we can use Lemma 6.1 to deduce the existence of an operator S, .
which is an isometry on X, so that tr(S, D) > c,n where c, =
c,(&, A, K, M, X) > 0. As in the proof of Theorem 6.2 this implies by Lemma
5.1 that o has a subset oy with |0yl /I > a(e, A, K, M) > 0 so that [u;];,, is

L(e, A, K, M, X)-equivalent to (x;)\7}.
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Case 2. Assume X satisfies the (o, 2)-condition, so that X* satisfies the
(2, 1)-condition. As before there is a subspace Z of X,* with dim Z >
(1 — 3eM)n and

llzll2 = llzllx= = llzll1 = ¢pllzll2 zelZ
where ¢, = cy(e, A, K, M) > 0. As before, suppose o C[m] with |o| >
m — (1 — ¢)l. We may now find a subset 7 C [n] with |7| > (1 — }eA)n so
that ||R.A'R,B'll, < Cy(e,A, K, M) where B’ and A' are the adjoints

(transposes) of B and A.
Let Z, = Z N (B) Yu;);c,. Then if A = dim Z, we have

h > |o| + dim B* + (1-— %e)&)n—-n

> |o|l + n — rank B — %e)m

>n— (1 - %e)l.

Let (f)%_, be an orthonormal basis of (Z,, || |l,). Let S = R, A’B’; then

rank S >/ — %e)\n > (1 - %a)l.

Suppose x* € X,* and [|Sx*||x+ = 1. Then |lx*|p4r (x| = K~'. It follows
that

dist(x*,ker(S)) = K™*
so that there is a linear operator T: X,*/ker § — X,* with
ITIl < MK and ||Tgll > K~ !ligll for g € X,*/ker S,

and such that § = TQ where Q is the quotient map.
For any {¢,)/_, we have

1 h h
coh?| = Ll | <| X u.f;
h = i=1

< h'? max |t;|.
. 1<i<h

Notice that dim(X*/kerS) > (1 — 3e)/ and so dim(X*/kerS) +h —n
> 1el. Hence by Theorem 1.1 of [2],

/

h

Z &, 0f;

i=1

de > c,h'/?
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where ¢, = ¢,(¢, A, K, M) > 0. Thus

/

de > K~ lc,h'/?
Xlt

h
Z &,
i=1

and so

2

de > K*c?h.
2

h
Y. &,R. AR, B,
i=1

[

Hence if D = R, A'R, B’ we deduce that there exists an §, . with

tr(S, ,D) = c,n where ¢, = c,(¢,A, K, M) >0
and the argument is completed as in Case 1. ®

If X is 2-convex and has some concavity, we may weaken the hypotheses
further. The following theorem is a mild extension of a result proved in [2]

(Theorem 2.3). We omit the proof which employs techniques from [2] and
this paper.

THeEOREM 6.4. Suppose q > 2 and that X is a 2-convex, g-concave rear-
rangement-invariant Banach function space on [0,1). Then, given 0 < A <1,
0<e<1,and 1 <K <  there exists L = L(¢g, A, K, X) so that if m > An
and (y)I., is a K-unconditional normalized basic sequence in X,, then there is a
subset o C [m] with |o| = (1 — €)m so that (y,),c, is L-equivalent to (x,)\”!

=1
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