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UNIQUENESS OF UNCONDITIONAL AND SYMMETRIC
STRUCTURES IN FINITE DIMENSIONAL SPACES

BY

P.G. CASAZZA, N.J. KALTOY aD L. TZAFRIRI

1. Introduction

The main target of the present paper is to study some questions concerning
the uniqueness of symmetric and unconditional bases in the framework of the
local theory of Banach spaces. Since the spaces under consideration are finite
dimensional it is quite obvious that one cannot discuss problems of unique-
ness for individual spaces but rather for families of such spaces. As we shall
see in the sequel, the case of unconditional bases can be treated from
different points of view.
The study of the uniqueness of symmetric bases for finite dimensional

spaces was initiated in [8] and continued in [16] and [11] (see also [17]).
Results concerning the uniqueness question in the setting of unconditional
bases for finite dimensional Banach spaces were obtained in Schiitt [16] and
in [1].

In order to discuss our results as well as their connection with previously
proved ones, we introduce the following definitions.

DEFINITION 1.1. (a) Let - be a family of finite dimensional Banach
spaces each of which has a normalized 1-symmetric basis. We shall say that
the members of - have a unique symmetric basis if there exists a function
q: [1, )- [1, ) such that, whenever X - has another normalized K-
symmetric basis (Yi)in=l, then (Yi)in=l is $(K)-equivalent to the given 1-sym-
metric basis.

(b) Let - be a family of finite dimensional Banach spaces each of which
has a normalized 1-unconditional basis. We shall say that the members of r
have an almost (somewhat) unique unconditional basis provided there exists
a function q: [1, ) (0, 1) [1, ) such that, whenever X - with the
given 1-unconditional basis (Xi)in= has also another normalized K-uncondi-
tional basis (Yi)in=l then, for any (some) 0 < a < 1, there exists a subset
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tr c [n] {1, 2,..., n} and a one to one function 7r: tr [n] so that Il an
and (xi)i is (K, a)-equivalent to (yzr(i))io..

Definition 1.1 (a) is similar to that considered in [8]. On the other hand,
Definition 1.1 (b) is in the spirit of the "proportional" theory of finite
dimensional spaces and quite different from that introduced in [1], where
uniqueness, up to a permutation, was considered for the entire basis. The
definition of somewhat unique bases already appears in [16] under the name
of partial uniqueness.
One of the most natural ways of creating a family of finite dimensional

spaces with a 1-symmetric basis is the following. Let X be a rearrangement
invariant (r.i.) Banach function space on [0, 1] and, for n 1, 2,..., let
be the algebra generated by the intervals [(k- 1)/n, k/n); 1 < k < n and
denote by X X(n) the subspace of X consisting of those functions which
are constant on each atom of . The main result of the paper (Theorem
5.6) asserts that, for any r.i. Banach function space X on [0, 1], the members
of the corresponding family = {Xn}= have a unique symmetric basis and
an almost unique unconditional basis. This theorem can be, of course,
applied to many families of Orlicz and Lorentz spaces which are generated as
above.

This result is generalized in Section 6 in the following sense: it is shown
there that if, for a fixed r.i. function space X on [0, 1], containing some La,
where q <, 0<A < 1 and n, the corresponding subspace Xn of X
contains a normalized K-unconditional basic sequence (Yi)im= with rn > An
and [Yi]--1 contains in turn a sequence (zi)__ with > An which is M-equiv-
alent to

(l[(k-1)/n,k/n)/II ltk-,/n,k/n)ll)lk=

then there exists a subset tr c [/] and a one-to-one map 7r: tr [m] so that
Irl >_ 1, where a a(A, K, M, X) > 0 and (zi) , is L(A, K, M, X)-equiv-
alent to (y,)i. This result can be improved in the special case when X

(’)
lies "on one side" of L2[0, 1]; in this case the hypothesis that X contain some
Lq can be eliminated and tr can be chosen of the order of (1 e)l.
As we have already mentioned above, the question of the uniqueness of

symmetric bases for finite dimensional spaces has already been considered in
[8] where it was proved that the members of the family (,t of all finite
dimensional spaces with a 1-symmetric basis which induces a lattice structure
with q-concavity constant < M, for some q > 2, have a unique symmetric
basis. In [2] Theorem 2.6 it was shown that this result is true also for q 2.
We consider in Theorem 5.4 below the family ffq, t of all finite dimensional
spaces with a 1-unconditional basis which induces, as above, a lattice struc-
ture with q-concavity constant < M, for some q < 2, and show that each
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member of q,M has a somewhat unique unconditional basis. A slightly less
general version of this result was proved in [16], Proposition 2.5.

In the symmetric case, the hypothesis of q-concavity for some q < 2 was
replaced in [14] by the weaker assumption of polynomial euclidean distance.
More precisely, it was shown in that paper that, for any value of r > 0, the
members of the family of all finite dimensional spaces X with a 1-sym-
metric basis, whose euclidean distance dx satisfies dx > (dim X)r, have a
unique symmetric basis. In Theorem 5.5 below we show that the members of

rr have also an almost unique unconditional basis.
In fact, the results discussed above can be proved in a more general form.

For instance, if an n-dimensional Banach space X r with a normalized
1-symmetric basis {Xi}in= contains an M-complemented subspace of dimen-
sion rn > An with a normalized K-unconditional basis {yi}n__ then, for each
0 < a < 1, there exists a subset r/ c [m] of cardinality I1 >- am such that
(Yi)i is L(r, A, M, K, a)-equivalent to (xi) (Theorem 5.5 below). Simi-
lar results for complemented subspaces are proved in almost all the cases
considered so far.

In addition to the classes of spaces considered above, some interesting
results have been.proved for families of classical spaces. For example, in [1]
Theorem 1.4 it was shown that the members of the family (11k l
l),m,n=l have a unique unconditional basis, up to permutation. In the

, for 1 <p,q < ,andpresent paper, we study the class p,q (Ip (lq))m,n=l,
prove that the members of p,q have an almost unique unconditional basis
(Theorem 5.7 below). In the case 1 < p < q < 2, this was proved in [16],
Proposition 2.5, although the statement there is slightly less general.
The paper also contains some results on Hilbertian subspaces of a space

with a symmetric or unconditional basis, as well as theorems on such spaces
which contain "large" Hilbertian subspaces. One such result (Theorem 2.2)
asserts that if an n-dimensional Banach space X with a normalized 1-uncon-
ditional basis (Xi)in=l contains an M-complemented Euclidean subspace of
dimension rn > An then, for each 0 < a < 1, there exists a subset tr of [n] of
cardinality Irl >_ an such that {xi}i is well equivalent to the unit vector
basis of lla1. In particular, if (xi)i% is already symmetric then, in the above
circumstances, X is already well isomorphic to l (Theorem 2.5 below). If the
Euclidean subspace of X of proportional dimension is not well comple-
mented then, of course, X need not be well isomorphic to Hilbert space.
However, in this case, we prove in Theorem 2.6 below that X contains, for
each 0 < a < 1, a good copy of a Hilbert space of dimension > an.
Theorems 2.2 and 2.5 are essentially straightforward consequences of a result
of Gordon and Lewis which can be found in [7] and [15]. Our proof of
Lemma 2.1 differs very little from the original argument of Gordon and
Lewis.
A result of a completely different nature is described in Theorem 2.4: if a

direct sum of the form Xn l has an unconditional basis then, for each
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e > 0, the dimension of the Euclidean space can be reduced to < (2 + e)n
so that X 1(22+e)n still has a good unconditional basis.
For almost every case described above, the proofs of the corresponding

uniqueness property are based on the possibility of finding relative large
entries in the n n matrix which maps one n-dimensional space with a
symmetric or unconditional basis onto a space of a similar type. The main
difference between our arguments and those used in the original paper of
Schtitt [16] on this topic is that Schiitt considered only vectors whose entries
are zeros and ones, where we utilize more general shaped vectors. This
situation is formalized in Section 4 where we introduce the so-called property
(P).
A family offinite dimensional Banach lattices is said to have the property

(P) if, for any 0 < h < 1 and M < , there exists v v(h, M) > 0 such that,
wheneverX and Yare n-dimensional lattices and A: X and B: Y ---> X
are linear operators of norm < M with tr(BA) > An, then maxli,jnlaijbjil
>h.
The fact that the above considered classes of finite dimensional spaces

have property (P) is proved in Section 4. In many cases, this is achieved by
the 2-concavification of the above lattices X and Y and by use of doubly
sub-stochastic matrices. The essential part of the arguments is given in
Section 3.

2. Large Hilbertian subspaces of spaces with unconditional bases

For any operator T on a Banach space X, we let v(T) denote the nuclear
norm of T, i.e.,

v(T) inf IlXn Ilxnll
n=l

* inwhere the infimum is taken over all sequences {xn}’= in X and {x }{=1
X* such that

Tx E Xn ( X)Xn"
n--1

Furthermore, we shall denote by dx the Banach-Mazur distance of X to a
Euclidean space. We begin with a reformulation of a result of Gordon and
Lewis which appears in [7] as Lemma 1.3 and as Proposition 2.4 of [15].

LEMMA 2.1. LetX be an n-dimensional Banach space and let H be a Hilbert
space. Suppose X has a normalized 1-unconditional basis (ui)in= and that
S: X ---> H, T" H ---> X are linear operators.
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For any 0 < y < 1, let r {i [n]: IISu]] IlT*u?ll > Tn-lv(ST)}.
Then

n II s II Tll(1) d[",l,.. Tv( ST)

and (Ui)
Moreover,

is (nllSll IlTll/3/v(ST))e-equivalent to the canonical basis of l,.

(2) I%1
(1 -y)v(ST)

Proof There exists an orthogonal transformation U on H so that tr(UST)
v(ST). Thus

n

v(ST) tr(TUS) (Uaui, T*u’) < Ilau,II II T*u II,
i=1 i=1

where (U)in=l denotes the sequence in X* biorthogonal to {ui}/’= 1.

Now Su,ll T*uW II -< S II II TII so that it follows immediately that

(1 -y)v(ST)

For %, let s IlSuill, IlZuill. Then for any {ai}i,,

E lai[2s2i E [ail2]lSuil] 2

f E 8iaiSui de

1/2

Similarly,

)1/2
_

lail2t
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Hence

aiui --< IITII , lail2t 2

nlITl’ ( 2S/2)
1/2

< E lailTv(ST)

n S TII
Tv(ST)

which completes the proof.

THEOREM 2.2. Let X be an n-dimensional Banach space with a normalized
K-unconditional basis (Ui)in= 1" Let Y be an M-complemented subspace ofX with
dimY= m.

Then, for any e > O, there exists a subset r c_ [n] so that [r[ > (1 e)m,
and

MK2dy m
dtui]ir ei where A -.

Further (ui) is M2K4dEg/e2h2-equivalent to the canonical basis of lift I.
We also have the further estimate (when h is close to one) that

I1 n (n m)(1 + MK)(1 E/,) -1.

Proof. There exists an n-dimensional Banach space X with a normalized
1-unconditional basis (vi)in= 1, so that (vi) is K-equivalent to (ui). Further
there exists a Hilbert space H of dimension m and operators S: X - H,
T: H X1, with IISII IITII _< MKdy and ST idle. Thus v(ST) m.
As in Lemma 2.1, let tr {i [n]: IISvill [IT*vi*[I > eh}. Then

so that

MKdy
d[vi]i < eh

d[ui]i <- eA
MK2dy

Also, {ui}itr is M2K4d,/e2h2-equivalent to the unit vector basis of lift I. It
remains to estimate the size of tr.

Let R" X - X be the map Rr(=laiui) "-.iaiui Then, as we
noticed in the proof of Lemma 2.1,

v(S(idx1- R)T) <_ E IlSvill IIT*v,*ll <_ eAIcrl < em.
_tr
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However SR,T has rank Io-[ at most. Thus there is an orthogonal projec-
tion P on H with rank P m- I,rl and PSRo.T 0. Thus P PST
PS(idxl R)T. Hence v(P) < em and so m Irl _< era, i.e., Irl >_
(1 e)m.

Let us now give an alternative estimate for ]tr]. If tr then vi*(TSvi) <
eh and so

n

E i*((idx
i=1

TS)i)l (1 e,)(n Irl).

Clearly

i=1

Now, idxl TS is a projection of rank n m so that

o(idxa- TS) <_ (n- m)llid- TSII <_ (n- m)(1 + MK).

Thus

so that

(1 eh)(n Irl) (n m)(1 + MK)

Irl > n (n m)( I + MK )1-eA

THEOREM 2.3. Let X be an n-dimensional space with a normalized K-
unconditional basis (Ui)in= 1" Let Y be an m-dimensional Banach space such that
d(X, Y 2 l-m) dl. Suppose tr c [n] is such that dtud, dE. Then there
is a subset - c In] with tr c z and m < Il _< m / Irl so that d([ui]i,
Y 2112l-m) < 100K4d31d2.3

Proof. The space X can be decomposed as a direct sum X Y0 Z0 so
that d(Yo, Y)< dl, d(Zo, l’ -m) < d and the natural projections Pyo, Pzo
satisfy IIeYoll, Ilezoll _< d. Let

Z Z0 [ui]itrc.

Then there is a projection Pz of [ui]i,c onto Z with Ilezll -< d2. Let R
be the restriction operator R(Ein=laiui) Ei,caiui. Then IIRII _< K and

IIPzR II <- Kd2. Hence

Ilidx- ezRII <_ 2Kd2.
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Let V (idx- Pz,R)(X). Then Rlv is a projection on V. In fact R(V) is a
subspace of [ui]i,c and hence is dz-Hilbertian. Further (idx -R)(V)=
[ui]i,. If we fix p to be any subset of rc with lol dimR(V) then
d(R(V), [ui] p) < d2. Hence if r r U p, then

d(V, [uili) < 4K2d2
Now consider the projection (idx PzlR)Pzo on V. This projects V onto a

subspace Z2 of Z0 which is thus dl-Hilbertian. The complementary projec-
tion on V maps V onto

Y1 (idx- Pz,R)(Yo)

Clearly, if y Yo, then Pro(Y Pz1RY) y so that we have Ily
dlly- PzlRylI, Hence Yo is 2Kdd-isomorphic to Y and so d(Y1, Y)<
2Kd21d2

If y Y1, z Z2, then

(llyll + Ilzl12) = _< 2 max(llyll, Ilzll)

<_ 6Kdldz[ly + z[[

while Ily + zll Ilyll + Ilzll 2(llyllZ + Ilzl12)1/2.
Thus d(Y 2 Z2, V) < 12Kdld2. Hence

3d(Y 2 llfI-m, [ui]i.) < lOOK4d31d2
It remains to estimate I1. In fact,

dim V dim X dim Z dim X dim(Zo N [ui]io.C)
dim X- dim Zo Ircl / dim(Zo +
2n (n m) Ircl m + Irl.

THEOREM 2.4. Let X be an n-dimensional Banach space and suppose
W X 2 l has a K-unconditional basis ,ui)i=it"m+n. Then, given e > O, there is
a subset r of [m + n] with n < [r[ < (2 + e)n such that

< 217104K 24(1) dtui]i,,
(2) d([ui]ir X 2 liftI-n) <- 2661022K13

103In particular, X z ln(1 +)1 has a 266102K -unconditional basis.
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Proof First we assume that m > 2(1 + K)n and show that we can reduce
the dimension of the required Hilbert space to at most 2(1 + K)n. Applying
the last part of Theorem 2.2 with e 7 we find a subset p of [m + n] so that

d[ui]i <_ 2K2m-l(m + n) < 4K 2 and Ipl > (m + n) 2(1 + K)n.

Let 0.0 pC, so that Ir01 m + n- I1 2(1 + K)n. Then, by Theorem
2.3 there exists 0.1, 0.o c 0.1, n < I0.11 < I0.01 + n so that d([ui]i ,1,
liftll-n) < 6400K1. If I0.11 < (2 + e)n, we are done.

If not we estimate I0.11 < I0.01 + n < (3 + 2K)n. Thus [ui]i, has a
6400Ka-complemented subspace Y with dy< 6400K 1, and dim Y=
I0.11-n AI0.11 where A > 7. Apply Theorem 2.2 with e replaced by

163(1 + K)- There exist a subset r c 0" with

mlIt] > (1 3(1 + K) )(lral n) and dtu,l, < 216104K 23

Let 0"2 o"1 \ "/" and apply Theorem 2.3. There exists 0-3, 0-2 c 0-3 0"1 with
n < I0"31 < I0"21 / n so that

d([ui]ir3, X 2 llff31-n) < lOOK4(6400K1O)3(216104K23)3
_< 2661022K 103.

Next we estimate I0"3[. We have

Ir31 I0"21 / n I0"11- I1 + n

< Io’11 +n- 1- 2(1+K) (I’ll-n)
E+ +

< (2 + e)n.

Finally we note that

d[ui]i [m+nl\r dtuilit,r
max( dtu,l ,,, d[ui] )

217104K 24.

Let us note the following easy corollary of Theorem 2.2.

THEOREM 2.5. Let X be an n-dimensional Banach space with a normalized
symmetric basis (Ui)in= 1" Suppose X has an M-complemented subspace E with
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dimension rn An. Then dx < 4MA-3/2de and (Ui)in=l is 16M2A-3dZe-equiv-
alent to the canonical basis of l.

Proof By Theorem 2.2, there is a subset r of [n] with Irl m so that

d[ui]ir 2MA-lde.

Then

dx< (1+ 2n) x/2

"- d[uili < 4A-3/2MdE

THEOREM 2.6. Let X be an n-dimensional Banach space with a normalized
symmetric basis (Ui)in= 1" Suppose E is a subspace ofX with dim E rn > An,
where 0 < A < 1. Then"

(1) There is a constant K K(A, de) so that for a1,..., an R,

n )
1/2

1
[ail 2"" i=1

(2) For any a, 0 < a < 1, there is a constant D D(a, A, de) so that X
contains a subspace E, with de <_ D and dim E >_ an.

Proof Consider the quotient map Q" X* E*. Since de, de we have,
for any {a/}/’= 1,

f
n

eiaiQu
i=1

n

> d2 _, lail211Qull 2.
i=1

Hence

n

lail211Qu II 2
i=1

n

By averaging over all permutations, if 3’ (1/n)E’]=lllQu’ll 2,

y lail z < de aiu
i=1 i-1
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Now if v/* u’/(]] 27=lU I]),

i=1 i=1

2

>_. d2 u" E e,iQui*
i=1 i=1

-2

n2c2/,

2

where c > 0 is an absolute constant, by Theorem 1.1 of [2]. Hence

Now, by duality, we have, for all {ai}in= 1,

This proves (1).
For (2), notice that

n )1/2<dET-x _, lail2
i=1

I1(C-1/Ad u -i= lail2)

1/2

i=1

n

> E alum’
i=1

-1 n

Ui -i=1 i=1

Now, by results of [5] or [10], given any a, 0 < a < 1, there is a constant
depending only on a and a subspace E of X with dim E, > an, such that if
X Y’.in=laiUi - E,,

1 lail2 < Bo,_.ff lail"’i=1 i=1

Then de < B,c-1/’Xd2E.
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COROLLARY 2.7. For 0 < A < 1 and 1 <_ L < there is a constant K
K(A, L) so that ifX is an n-dimensional Banach space with a symmetric basis
(Ui)in= SO that X and X* both contain L-Hilbertian subspaces of dimension at
least An then dx <_ K.

Proof In fact, for some C C(A, L) < 0%

, au <_ c
i=1

u - lail
i=1 i=1

1/2

i=1 i=1

1/2

from which it follows that

C- (7[ai[2) 1/2
<

[[2a,u,[[
_< C_[ai[2) 1/2

n IlY.u/l[ n

We remark that this corollary can also be obtained by using Theorem 1.2
of [2] and Theorems 2.5 and 2.6 above.

3. Doubly substochastic matrices on R

Let el,... en be the canonical basis in R and let e e d- +en. Let

Ilxll" -i=1
1/p

If x R and 7r is a permutation of [n] (i.e., 7r 1-I n) we let x= S=x
(Xrr(i))in= 1"

Suppose A (aij)ij__ is a nonnegative n n-matrix. Let a
max1 i,j <_n aij.

LEMMA 3.1. Suppose x Rn. Then, for 1 < p < 2,

(fn Axr -(x’e)Aell%dTr)
x/p

_< 21/Pa(A1-1/,)11A II/Pllxllp.

Proof Let

bij aij
1

aik-ff
k=l
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Then lib I1 < 2[IA II 1, and thus the lemma is obvious for p 1. For p 2 we
apply Lemma 4.2 of [9] and deduce that

(n )2fI-[ bijx(J) dTr < - b. x
j=l j=l

for alll <i<n.
Now, 27= lb. < 2’= a. < 6AET= ao.. Thus

fri,iiBxl 1 E E aij ff Xy122 drr _< 26A -i=1 j=l j=l

_< 2 IIA I[lllxll.

The general case follows by the Riesz-Thorin interpolation theorem.

Now suppose II lie is a lattice quasinorm on Rn which satisfies

1/2IIx / Yllle/2 < Ilxll/2 + Ilyll

(and hence also Ilx + ylle (211xll + Ilylle)) and

Ilxll72 Ilxll Ilxlloo.

Let II" ]IF be a similar lattice quasinorm on Rn and set IIAlle-+F-
maxllx lie llAx IIF.

LEMMA 3.2. Suppose A is doubly substochastic. Then forx > O, with ]lX l]l
1, and 1 < p < 2 we have

n n
1/2 fl-I /2 1/2pt(A1 1/p)/2[IAe Ill 1 i=E1 j=E1 aij <- [[A [,e-, F nllX[[ drr + 2 [[xllp1/2.

Proof By Lemma 3.1,

IAx= Ae 1111//22 drr < IlAx, Ae II, drr

<_ 21/PS) 1/Pllxllp.
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Thus, since A is doubly substochastic,

IIAe II1 < IIAe Illl//
11/2 fnJlx F2 21/2p(A1 1/p)/2_< ilA [IE-- F 11 dr "b [[X[[p1/2.

LEMMA 3.3. For any /3 > 0, 0 > 0, and M < , we can find 60
o(, O, M) > 0 so that wheneverA is a doubly substochastic n n-matrix with

lnIlAe II1 - aij 0
i=1 j=l

and lie is a symmetric 1/2-norrn on Rn such that
_< Ilxll _< Ilxll,(1) Ilxll

(2) there exists X Rn, Ilxlll 1, and Ilxlle <_ n-, and
(3) IIZ lie -< M

then 6A > 0.

Proof We may assume that 0 _< 3. If we fix /3, 0 and M it suffices to
provide an estimate for large enough dimensions n. Hence we may assume
n >_ (2000- 7M)E/fl.

If IIAe [11 >- 0, let tr be the set of [n] so that 27= laij >- 02. Then,
clearly,

Icrl >n(0- 02 ) > 1/2nO,
nSimilarly if - is the set of j [n] for which Ei=laij >_ 02, then Izl -nO.

Let rn be the integer part of 20 -1 + 1. Then we may find permutations
01,--., Om and 0’,..., O so that

(St, + +Stm)Ae > 02e,

(Sol + +So,re)Ate > 02e.

where SR is the permutation matrix (Sp)ij 6i, p(i).
Let V be the diagonal matrix such that V(Sol + + Sm)Ae e. Clearly,

IIVIle _< 0 -2 and Ve > m-le > 1/20e. Let

W=V(m )E S. ASt. 
./=1

l_normable) and 6w < 30-3tA. Further-Then IIwIle 90-4M (since E is
more, We e.
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Let Ux Wx (x, e)e. Then Ue 0 and for any permutation zr, USUx
US=Wx. For any x Rn, by Lemma 3.1 we have

2USxlI dr 2all WIlllxll22 60-3wllxl12

and so there exists 7r 7r(x)with

IIUSxll2 (60-3w)1/211xl12.
Fix k to be the largest integer such that (2000-7M)k < n. Then k > 2

and nt < (2000-7M)2k. Fix any x > 0 with Ilxlll 1 and Ilxlle -< n-. Iterat-
ing (,) k times we obtain the existence of 7rl,..., zr with

II USUS_ uaxll2 (60-3w)/211xl12
and hence if y USWS_I... WSfrlx

IIYIIE < IlYlloo < n/21lYll2 < nl/2(60-3w)/21lxl12 < n(60-36w)/2.

On the other hand y WS... WSx (SW... WSx, e)e. Now

Wte E eSpA Spy V
j=l

1
_> -0 _, S,AtSoj

e
j=l

1
>_ 03e.

Hence StlWt... WtSte > (1/203)k-le SO that

103 k-1

2(IIYlIE + IIWS... wazrlXllE )

< 2(n(60_36 )/2w + IIWIln
< 4max(n(60-36w):/z, [[Wllken-).

Thus

1 max(n [[WIIEn-#/:).-03 <__ 1/k(60-3tW) 1/2,
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We now recall the choice of k. We have n-/k< (200)-lM-107 and
IlWlle _< 90-4M. Thus

Hence

9 03 1 03W en 3/ <- Z <- -1 -1/(60-3$W)1/2 > 03n
1 ( 07 )

2/t3

> 03 200M

3which implies an estimate on iA > 70 w- m

4. Property (P)

We shall say that a lattice norm [Ix on Rn satisfies the (p, q)-condition
(where p > q) if Ilxll _< Ilxllx-< Ilxllp for x Rn. If " is a subset of
{1, 2,..., n} we define R by (R.x) x if - and (R,rx) 0 otherwise.
The following proposition is a slight extension of Propositions 3.4 and 4.3 of
[4] or Proposition 3.3 of [3]

PROPOSITION 4.1. Let X and Y be n-dimensional Banach lattices satisfying
the (0% D-condition. Let A: X Y be an n n-matrix. Then, given e > O,
there exists subsets tr, c [n] such that [tr[, [z[ >_ (1 e)n and [[RAR[[2 <_

Ke- IIA IIx-.r.

Proofi Let IIA II IIA IIx- Y. Consider A: L - L1; clearly IIA Iloo- --<
IIA II. By the Grothendieck-Pietsch factorization theorem (cf. [12], pp. 64-70),
there exist (]./)in= with/z > 0, E?=I/Zi 1 and

n )1/2IIAxll _< gllZll
i=1

for x X. Let tr {i: ].1 "< 1/en}. Then Icl en. If x X, then

)
1/2

IIAg,xlll <_ KIIAII [d, iX2i KGIIAIle-1/211xll:z.

Now consider R,At" Loo L2; we have IIRo.Ztlloo__,: < KGe-1/211AI[.
Again by the Grothendieck-Pietsch theorem there exists -c [n], I1 >-
(1 e)n, and

IIR,AtR.II2 g2e-lllZll

and the proposition follows.
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PROPOSITION 4.2. Let X and Y be n-dimensional Banach lattices satisfying
the (, D-condition. Let A" X - Y and B" Y X be n n-matrices, with
tr(BA) >_ An, for some A > O. Let M max([IA[lx-,y, IIBl[y-,x). Then there
are subsets 0., 7- c [n], with I0.1, Il > (1 1/4AM-E)n and

(1)

(2)

1
tr(R,BR)(RAR,) > -An[IR,BR.II2, I[R,AR,I[2 < 8KA-1M3.

-2Proof Let us apply Proposition 4.1 with e gAM We can find 7-1, 0.1
[n] with 17" 11, Irll > (1 hM-2)n and

IIR,AR,II2 <_ 8KG2A-1M3.

Similarly we can find 7’2, 0"2 with 17-21, 10"21 (1 AM-2)n and

IIR.BR,II2 <_ 8KA-1M3.

Let r 7-1 (’ 7-2 and 0" 0"1 N 0"2" Then Irl, Irl >_ (1 1/4AM-2) and obvi-
ously, (2) holds. Furthermore

tr(R,BAR,) tr(BAR,)
tr(BA) tr(BAR,c)

>_ An [[BA Ilxl(rcl

>An-M2( 1 )AM-2 n

3
>_ ,n.

Similarly,

tr(R,BRAR,) tr(R,AR,,B)
> tr(AR,B) tr(RARB)

3 1 1
> ,n- -,n hn.

We now consider, under the hypotheses of 4.2, the problem of estimating
the size of maxi, jlaijbji]. To this end we establish the following technical
lemma.

LEMMA 4.3. Let X and Y be n-dimensional Banach lattices satisfying the
(, 1)-condition. Let A" X Y and B" Y - X be n n-matrices and suppose
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tr(BA) > An and M max(llAllxy, IIBIIY-X). Suppose further that v

maxl<i,j<,,laijbji[. Then there is a doubly substochastic n n-matrix W such
that, if E denotes the 2-concavification X(2 ofX, we have

(1) IIWIIE < 1,

(2)

(3)

max Iwij[ 2-3KZAM-3v,
l<i,j<n

1 n n

II We II1 wi 2-26K312AlM- 18

i=1 j=l

Proof First, select or, z by Proposition 4.2. We then define a matrix
V= (vi),= by

r, j

otherwise.

For r,

n

E Uij E [ao[ 2 nl[RAtReill <- 8KA-1M3.
i=l jo"

Similarly for j tr, .,i=lUijn _< 8KG2h 1M3. Thus the matrix (I_gKG-2AM- 3)V is
doubly substochastic.

Let E=X(2 and F:.Y(2). If xE with x>_0 then x wi where
w X and [[xl[e [[o1[ Hence,

n

E xiVei
i=1 F

Now Ve Ej= 1ujiej and so

n )
1/2

}2
i=1

j=l i=1 y

E wilAeil
i=1
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by Theorem 1.f.4 of [13]. Hence [[VIIE-F K2GM2 and similarly [[VtIIF--,E
< KM2.
Now if we let W= (2-6KaA2M-6)VtV, it follows from the above that

II WII _< 1. Next we estimate We II . Clearly

IIWell (We, e) 2-6K,4A2M-6[[Ve[[.

Let R,AR,BR, D. Then for

so that

dii E aijbji
j ,r

Idiil E Iuijl/ZOaijl + [bjil)
j ’r

Uij nl/Z(llR,AReill2 + IlR,BtReille)

Hence

2

Uij >__. 2-16K8A4M 12]dii] 4.
j=l

However

-hn < Idiil < n3/4 E Idiil 4

Hence E. Idu] 4
,=1 > 2-4Aan. Thus

IlVell2z vii > 2-2K8A8M-12.
i=l j=l

Thus

II We II1 2-26K312AIM- 18.
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Finally we estimate 6w"

Wij

n

2-6K4A2M-6 E UkiUkj
k=l

< 2-3KZAM-3 max Vki
l<_k<n

< 2-3KZAM-3v.
We now introduce a property of a family of finite-dimensional Banach

lattices. Let d be a collection of finite-dimensional Banach lattices. We say
that d has property (P) if given 0<A < 1 and 0<M< there exists
u u(A, M)> 0 so that whenever X d with dim X n, Y is any n-
dimensional Banach lattice and A, B are n n-matrices with IIA IIx-, Y -< M,
IIBIIY- x -< M and tr(BA) > An, then maxi, jlaijbji] > v. Notice that if d has
property (P) and d* {X*: X d} then du d* also has property (P).
We make use of a further remark. If X and are n-dimensional Banach

lattices, then by Lozanovskii’s theorem [14] there exist invertible positive
diagonal matrices Dx, Dr so that the lattice norms I1 on S and I1
on Y defined by Ilxll IIDxxllx and Ilyll IlDyyl[y verify the (, 1)-con-
dition. Then if A" X Y and B" Y - X are bounded linear maps, set

D.IADx, J D: 1BDy.

It follows that I111- IIA[Ix-y and II/11- [IBI[y--,x and

tr(M) tr(D1BAD 1) tr(BA).

Furthermore for fixed i, j, ijji aijbji. Hence, in all our arguments, we will
be free to renorm both X and Y by a diagonal transformation to satisfy the
(, 1)-condition.

Further, if X is p-convex, we can renorm X to satisfy the (, p)-condition;
if X is q-concave, we can renorm, using duality, so that X satisfies the
(q, 1)-condition.

PROPOSITION 4.4. Suppose fl > O. Let be the collection offinite-dimen-
sional 1-symmetric spaces Xfor which dx >_ n t, where n dim X. Then d has
property (P).

Proof In view of the above remarks, it suffices to consider the case when
X is a 1-symmetric space satisfying the (0% 1)-condition and such that for
some 0 x X,

Ilxllx n-llxll2.
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Let Y be any n-dimensional Banach lattice satisfying the (0% 1)-condition.
Suppose A, B are n n-matrices with tr(BA) > An, and IIA IIx Y -< M and
liB II Y- X M.
By Lemma 4.3, if E X2), there is a substochastic matrix W with

IlWlle _< 1, and

n n1
wij > 2-26K12,lM- 18

n
i=1 j=l

max wij < 2-3K2AM-3 max laiybyil.
l<i,j<n l<i,j<n

Further, in E there is a vector u with Ilull n -2t3 and Ilulll 1. It follows
immediately from Lemma 3.3 that maxli,inlaiibiil > v where v
v(A,M)>0.

Now let d be a collection of finite-dimensional Banach lattices satisfying
the (0% 1)-condition. We shall say that d has property (Q) if there exists p,
2 < p < , such that, given any e > 0, there exist K(e), N(e) > 0 so that if
X d, with dim X n > N(e) then there exists x X with Ilxl12 l,

fri llxllx dr e

and Ilxllp K(e).

PROPOSITION 4.5. If d has properly (Q) then d has property (P).

Proof. We may assume p < 4. If A > 0 and M > 1 are given, select

e 2-27K12/1M- 18.

Suppose X d with dim X n > N(e). Let Y be any n-dimensional
Banach lattice satisfying the (0% 1)-condition. Suppose A, B are n n-
matrices with IlAllx-. Y, IlnllY- x -< M and tr(BA) > An.

Let E X(2). By Lemma 4.3, there is a doubly substochastic matrix W with
IIWIIE _< 1,

II We ll 2-26K12AlM- 18

and

6w _< 2-3K2AM-3 maxl<_i,jnlaiibij[.



814 P.G; CASAZZA, N.J. KALTON AND L. TZAFRIRI

There exists x E with x > 0, Ilxll 1 and such that

fri.IIx2llx dr <_ e

and

1/2Ilxll/2 IIx211p _< g(e).

Hence, by Lemma 3.2,

2-26K12h1M-18 < 6 + 21/2p’1/2-1"w /2pK(e)

By choice of e this implies 6w > f(A, M) > 0 and hence maxl<_i,jnlaijbji]
> v(A,M)> 0. Of course if n < N(e)we obtain a trivial bound on
maxl<_i,jnlaijbji[ so that the proposition follows, m

PROPOSITION 4.6. Suppose 1 < q < 2.
(a) Let d be the collection of finite-dimensional Banach lattices satisfying

the condition (q, 1). Then d has property (P).
(b) Suppose d is the collection of finite-dimensional Banach lattices, with

q-concavity constant one (or, by duality, with p-convexity constant one
where 1/p + 1/q 1). Then d has property (P).

Proof (a). We verify (Q). For e > 0, let N(e)= 2e -2q/(2-q). For n >
N(e), pick k so that 2q/(Z-q) (k/n < 62q/(Z-q) If X d with dim X n,
let x nl/Zk 1/21[k]. Then

IIxllx dr _< Ilxll
1/q-1/2

by choice of k. However,

1/4
<_ 21/46, -q/(4-2q) K(e).

(b). This follows from (a) immediately by the remarks preceding Proposi-
tion 4.4. m

PROPOSITION 4.7. Let X[0, 1] be an r.i. Banach function space and let
X X(n) where is the algebra generated by the sets [(k 1)/n, k/n] for
1 <_ k <_ n. Then ifX 4 L2, the collection d= (Xn)n= has property (P).
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Proof Note that X,* X*(n). We show that either e or 6* has
property (Q). In fact we may assume by replacing d by eo* if necessary that

infllll2= lllfl[x 0. Then for given e > 0 there exists a simple function f X
such that IIf I[x < e but I[f[I2 > 1. Let K(e) [[fl14, and notice that for large
enough n the conditional expectation f, of f on . satisfies ]]f,l]x < e,

Ilfnll2 > 1, and IILII4 -< K(e). This means that d has property (Q) and hence
also (P).

Our final example concerns the matrix spaces l’(l). We need first a
preparatory lemma (which is due to Gluskin [6]).

LEMMA 4.8. For each p > O, them is a constant Cp so that irA c n], and if
i(r) 1 if 7r(i) A and i(Tr) 0 otherwise then

II(T/’) + +r(77")1
p

where/3 min(1/2p, 1/2).

Remark. 1 + +r has a hypergeometric distribution.

Proof Let 1,...,’172r be independent {0,1}-valued random variables
defined on some probability space (I,P)with P(li 1)= IAl/n,
P(qi O) 1 IAI /n. Then for p >_ 2,

i=1 p i=1 p

i=1 p

CO (i- i+r)2

i=1 p

C0 ll7i- aTi+rllp2
i=1

< Crl/2(lA] )
1/p

--h-
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where Co and C depend only on p. Thus

i=1 p

To prove the lemma, first suppose p > 2 is an integer. Clearly for any
1 < il,..., ik < r,

il i dzr

k

fil... i dP.

Hence, since i and Tli are {0, 1}-valued it follows that:

II:l +""" +rllp I1 + +Trllp.

The lemma thus follows easily for p > 2 an integer. For the general case pick
q to be an integer so that 19 < q < 1/[3 and use the estimate II:x /

d-rllp I]l-I- q-rl]q"

PROPOSITION 4.9. (a) Suppose 2 {p, q}. Then the collection
{lp (lq)}m,n= has property (P).

k nk has(b) If q 2 and nk
o then any sequence of spaces {12 (lq )}k=l

property (P).

Proof (a). By duality we may assume that q < 2. It then suffices to show
that any sequence of spaces in the collection has a subsequence with property

mk nk(P). Clearly if SUPk nk < then the spaces Ip (lq) are uniformly isomorphic
to l*n and so has (P). Therefore suppose nk -- . The spaces _plmk(lnk)._q can
be renormed to obey the (, 1)-condition by

Ilxll0 m1/pn- 1/qllxll.

Let N Nk nkmk. Now let A be any subset of [mk] x [nk] of cardinality
IA ON. Consider IIN acting on [mk] nk in the obvious way. If we let
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X 0-1/21A then Ilxl12 1, Ilxl14 0 -1/4 and

O-1/2nl/q( f]_iN(l -+" "l- nk)p/q dqT)
1/p

where :1,..., n are given as in Lemma 4.8. Thus

fnllxll0 dTr < O-1/2n-l/q(nk0 q- Cnlk/2013) 1/q.

where C C(p) and/3 min(1/2, q/2p).
Now, given e > 0, it is clear that for large enough k we may choose IAI so

that

fn IIxll0 d’n" < e
N

and Ilxll4 < 2eq/(4-2q) Thus the collection lmk(lnk) has property (P).
-/9 --q

(b) Same proof as (a).

5. Applications of property (P)

LEMMA 5.1. Let d be a collection offinite-dimensional Banach lattices with
property (P). Then, given any 1 < M < , 0 < A < 1 and y > 1, there exist
a a(M, A, y) > 0 and 6 6(M, A, y) > 0 so that ifX d with dim X n
and Y is any m-dimensional Banach lattice, where m < yn, and A: X Y,
B: Y X are linear maps with IIAIIx-. y, [[BIIY- x <- M, and tr(BA) >
then there exists a subset r c [n] with Irl >_ n, and a one-one map
o" [m] so that [ar(i),ibi,(i)[ > , for r.

Proof The lattice Y is spanned by a set (Yi)im= of normalized atoms; for
[m] we shall denote by R, the natural projection from Y onto [y]i,.

First we note that if m > n,

n tr(AB) > nAve tr(RAB) -where the average is computed over all subsets - with I1 n. We thus can
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fix r so that

tr(R.AB) >_ by- in,

and consider the maps RA: X - Y(= RY), B: Y - X, where dim Y n.
If m < n we may simply expand Y to have dimension n, and let z [m]. Let
8 v(1/2hy- 1, M) be given by (P) and let tr be a maximal subset of [n] so that
there is a one-one map zr: tr - " with [a(i),ibi.(i)[ >_ .

Consider the maps ROAR/: X - Y and B" Y X, where p - \ 7r(tr).
Clearly,

[aiybyi[ <8 ifjtr,ip.

Thus

1tr(RoARcB) <_ -h),-ln.
However,

’}/-In _< tr(RAB) tr(RoAB) tr(R(,)AB)
tr(RoAR,B) + tr(RoAR,B) tr(R(,)AB)
1< Ay-ln + 2lrlM2,

as in Proposition 4.2. Thus 21triM2>_ 1/2h3,-ln which yields that I1
(4yM2)-ln so that we may take a (4TM2)-1 and 8 v(1/2AT -1, M).

PROPOSITION 5.2. Let d be a collection of finite-dimensional Banach
lattices having property (P). Then

(1) Given 1<_M<o% l <_K < oo and O < h <_ 1, there exists fl
fl(A, M, K) > O and L L(A, M, K) < oo so that if X d with
dim X n is spanned by normalized atoms (ei)= and if (Ui)im=l is an
M-complemented normalized K-unconditional basic sequence in X with
m >_ An, then there is a subset tr c [n] and a one-one map 7r: tr - [m]
with Irl >_ 13n so that (ei) is L-equivalent to (u(i))i.

(2) Given 1<_M<o% l <_K < oo and 1<y<o% there exists fl
fl(T, M, K) > O and L L(y, M, K) < oo so that if X d with
dim X n is K-isomorphic to an M-complemented subspace of a space
Y with dim Y= rn <_ yn, having a normalized 1-unconditional basis
(Ui)im=l then there is a subset tr c [n] with Il >- 13n and a one-one map
zr: tr [m] for which (ei)i is L-equivalent to (ui)i(,).

Proof These follow immediately from Lemma 5.1. We prove only (1).
First note that (ui)gm__l is K-equivalent to a normalized 1-unconditional basis
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(Ui)im=l of some Banach lattice Y. Hence there exists A: X Y with
IIA IIx-. Y MK and B" Y --. X with liB ]l Y-. x -< 1 such that BA P, the
projection of X onto [ui]= 1. It follows that tr(BA)= m >_ An, and by
I_emma 5.1, we can find tr c [n] with Itrl >_ a(MK, A, 1) and a map
tr [m] with la=(i),ibi,=(i)l >_ , where 6(MK, A, 1).

Since the bases are normalized, [aij[ <_ MK and [bij[ _< 1. Hence 6 <

la(i),il <_ MK and 6/MK <_ Ibi,(i)l _< 1, for all
Now, if

then [[zllx_ Y _( [[Allx+Y by a standard "diagonal" argument [12, p. 20].
Hence

i(r y

for all (ii tr" In exactly the same manner, one can show that also

X (r y

again for every {i}io.. It follows that (ei)i in X is MK/62-equivalent to

(v=(i))i in Y and thus is also MKE/6E-equivalent to (u=i))i. m

In the case when W is a family of spaces with a symmetric basis, the set
whose existence is asserted by Proposition 5.2, can be chosen to have almost
maximal cardinality.

PROPOSITION 5.3. Let be a collection of finite-dimensional symmetric
spaces having property (P). Then:

(1) Given l <_ M < oo, 1<_K<o% O < A < 1 and O < e < 1 there exists
L’ L’(A, M, K, e) so that if X d with dim x n has a symmetric
basis (ei)i= and (ui)im= is an M-complemented normalized K-uncondi-
tional basic sequence in X with m >_ An then there is a subset cr c [m] so
that (ui) , is L’-equivalent to (ei)! and Irl >_ (1 )m,

(2) Given 1<_M<o% 1 <K<o% l < y < oo and O < e < 1 there exists
L’ L’(y, M, K, e) so that ifX d with dim X n has a symmetric
basis (ei)in= and is K-isomorphic to an M-complemented subspace of a
space Y with dim Y rn <_ yn and a 1-unconditional normalized basis
(ui)im=l then there is a subset tr [m] with Il (1- )n so that
(ui)i is L’-equivalent to (ei)! 1.
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Proof Again we prove only (1). Let /3(A, M, K) and L(A, M, K) be
determined as in Proposition 5.2. Thus if tr c [m] and Itr11 > em then tr

contains a subset tr2 with

Ir21 fl(eA, MK, K)n

so that (Ui)i 2
is L(eh, MK, K)-equivalent to (el a1’21,i=1. If we iterate this it is

clear that we can find disjoint subsets zl, ’2,..., Zl where _<

Aft(e, MK, K)-1 so that each [zk[ >_ an, E=llzj[ >_ m(1 e) and (ui)i,j is
L-equivalent to (ei)!ll By the symmetry of (ei)in=l this implies if tr-

1 u z then (ui) is C(l)L-equivalent to (ei)!l and [tr[ >_ m(1 e).

THEOREM 5.4. Suppose p > 2. Then for 0 < h < 1, 1 _< K < 0% and 1 <_
M < oo there exist a a(h, M, K, p) > 0 and L L(A, M, K, p) < oo so that
ifX and Yare finite-dimensional Banach spaces with dim X n, dim Y m >_
An and X has a 1-unconditional normalized basis (Xi)in= 1, Y has a 1-uncondi-
tional normalized basis (Yi)im=l and Y is K-isomorphic to an M-complemented
subspace of X and either (Xi)in=l or (Yi)im=l is p-convex (with p-convexity
constant one) or q-concave (with q-concavity constant one), where 19-1 d- q-I

1, then there is a subset tr c [n] and a one-one map 7r: tr [m] so that
[tr[ >_ an and (Xi)itr is L-equivalent to (Yi)iqr(tr).

Proof By duality only the case of q-concavity need be considered. The
result then follows immediately from Propositions 4.6 and 5.2. m

THEOREM 5.5. Suppose r > O. Then for 0 < h < 1, 1 _< K < o% 1 _< M < o

and 0 < e < 1 there exists L L(A, M, K, e, r) < oo so that wheneverX and Y
are finite-dimensional Banach spaces with dim X n, dim Y m > An, X has
a 1-unconditional normalized basis (xi)in= 1, Y has a 1-unconditional normalized
basis (Yi)im__ 1, Y is K-isomorphic to an M-complemented subspace ofX and either
(Xi)in= is symmetric and dx _> n or (Yi)im= is symmetric and dy >_ mr, then
there is asubset tr c In] with Irl >_ m(1 e) and a one-one map 7r: tr --* [m]
so that (xi)i,, is L-equivalent to (Yi)i(,,.

Proof Use Propositions 4.4 and 5.3.

Remark. As we have pointed out in the introduction, Theorems 5.4 and
5.5 are generalizations of results of Schiitt [16].

In order to state the next theorem we introduce some notation. If X is a
rearrangement-invariant Banach function space on [0, 1] we denote by X the
n-dimensional subspace X(n) where n is the algebra generated by the
sets [j- l/n, j/n) for 1 < j < n. We then let ej-- ltj_l/n,j/n) and Xj
ej/llejll. Thus (xj)jn=l is the canonical normalized symmetric basis of X.
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THEOREM 5.6. Let X= X[0,1] be a rearrangement-invariant Banach
function space on [0, 1]. Then, given 0 < e < 1, 0 < h <_ 1, 1 <_ K < and
1 < M < , there is a constant L L(e, A, K, M, X) so that if (Yi)im= is any
M-complemented K-unconditional normalized basic sequence in Xn with m >_ An,
then there is a subset 00 c [hi with I00[ >- m(1 e) so that (Yi)/r is L-equiv-
alent to (x )! 1.

Proof. If X L2 this is obvious. For X : L2, it is a direct consequence
of Propositions 4.7 and 5.3. m

THEOREM 5.7. Suppose 1 <_ p <_ and 1 < q <_ . Then given e > 0 and
mn1 <_ K < there exists L L(e, K, p, q) < so that if (Yi)i__ is a K-uncondi-

tional normalized basis of l’(l) and (Xi)im=nl is the canonical basis then there is
mna subset 00 c [mn] and a one-one map 7r: 00- [mn] so that (Yi)i=I is

L-equivalent to (y=(i))i and I001 >- (1 e)mn.

Remark. The case 1 < p < q < 2 is due to Schiitt [16]. For the sake of
completeness, we consider all cases in the proof below.

Proof Case (1). 2 {p,q}. In this case the collection d= l’(l) for
m, n N has property (P) by Proposition 4.9. Thus Proposition 5.2 and the
iteration argument of 5.3 show that we can find disjoint subsets 001,..., 00t of
[mn], where l(e, K, p, q) so that

(1)
i=1

mn

and (Yi)itr is Ll-equivalent to a subset of the canonical basis (Xi)im=nl, for
each 1 < j < where L Ll(e K, p, q). Thus (Yi)i is Ll-equivalent to
the canonical basis of

where nj, + ""-Jr-Rim I.1. Hence if 00= o1 U U 001, (Yi)ir is Z2-
equivalent to the canonical basis of (l ... lm)p where ng < in, n
+ +nm Irl _< mn, and L2 L2(e, K, p, q). If we eliminate all basis
members corresponding to an ng< 1/4en we are still left with a set 00’ with
Ir’l >_ (1 e)mn and so we can assume nk >_ 1/4en or n 0 for 1 < k < m.
Thus, by breaking up each non-zero nk, the canonical basis of (11
lq)plnmis L3(e, K, p, q)-equivalent to that of (/qhl lhqN)p where 1/4en <
hj < -en for 1 < j < N and hence by recombining is La(e, K, p, q)-equiv-

)n_<k_<n for l_<j_<alent to that of (l ... lq)p where (1- e
M- 1, andkM<_n.Thus

(M- 1)(1-e/2)_< (1-e)m
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so that M-l<m and M_<m. It follows that the canonical basis of
(/qkl lkqM)p is 1-equivalent to a subset of the basis of l’(l). Hence
(Yi)ir’ is L(e,K,p,q)-equivalent to a subset of the canonical basis as
required.
Case (2). q 4 2, p 2. Here it is enough to consider a sequence lk(lk)

where mknk - oo. As in Proposition 4.9(b) if nk
--)oo the sequence has

property (P) and so the preceding argument for Case (1) applies. If not, we
pass to a subsequence where 4nk is bounded and then the spaces are
uniformly isomorphic to lkn* so that the result is trivial.

Case (3). p q 2. Trivial.
Case (4). q 2, p 4: 2. In this case we must proceed somewhat differ-

ently. We can assume, by duality, that 1 < p < 2. We will need to prove the
following lemma.

LEMMA 5.8. Given 1 < p < 2, 0 < h < 1 and 0 < M < oo, there exist a
a(h, M, p) < oo and 0 O(h, M, p), 0 < 0 <_ 1, such that ifX l’(l) and its
canonical basis is denoted by (xi)/u= 1, N ran, Y is an N-dimensional Banach
lattice spanned by atoms (yi)/N= and A" X - Y, B" Y X are linear operators
satisfying IIAllx- Y, [[B[[g_ x <- M and tr(BA) >_ AN then there are subsets tr

and q of [N] with Itr[ n [xi]i isometric to 2, [r/[ < an and signs (ei)i n
so that if

then ,(RBQ,nAR) >_ On.

Let us first assume Lemma 5.8 and complete the proof of Theorem 5.7. It
suffices to consider an isomorphism A: X- Y where Y has a 1-uncondi-
tional basis (Yi)iN__ and let B A -1 where IIAIIx-,Y, IIBIIY-.X _< K. We will
show that for any 0 < y < 1 there exists/3 =/3(y, K, p) > 0 and a constant
L L(y, K, p) < o so that if z c [N] with I1 >- yN then - contains a
subset r/with I1 >_/3N so that (y)n is L-equivalent to a subset of (xi)/=l
The argument is then completed easily as in Case (1).

Let a a(),, K, p) and 0 0(y, K, p) be given by Lemma 5.8. Let
o-1,... o-m be the partition of [N] into sets of cardinality n so that each
[xi], is isometric to l. We may determine inductively a maximal collec-
tion of dstnct trh:..., trh and corresponding disjoint subsets r/l,...,
so that I1 _< an for j 1,2,...,k, and there are signs
w... w r/k) so that

,(R,hyQ,,o,R.AR,h >_ On
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where

i= i*lj

When this is complete set Px [N] \ (trhl U U trhk) and
td r/k). It follows that if %. c Px and r/ c py with Ir/I _< an then for
every choice of signs e + 1 (i ’r/),

v(R,BQ,,RAR,) < On

and hence for every j and every r/ c [N] with 171 an and every choice of
signs e 4-1 (i rl),

v(R,,R,xBR,,Q,,Rpr,RARpxR) < On.

Thus, by Lemma 5.8,

1tr(R,xBR,.AR,X) < -TN.Now tr(BRpyA) tr Rpy IpyI. Hence

tr(BRrARx) > tr(BRrA) (N- IPxl)K 2

Ipyl + K2lpxl K2N.

Now IpyI I1 kan and [psi N- kn. Thus

tr(BRvARpx) > I1 kK2n kan

> TN- k(K2 + a)n.

Hence k(K 2 + a)n > 1/2yN so that k > 1/2T(K 2 + a)-lm.
Now define A l: X Y and B1" Y X by

k k

A1 E Q,,,AR,%, B1 E
j=l j=l

Then [[A 111, IIBlll K by a diagonal argument [12, p. 20].
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If we fix j, A maps xi]i into Yi]i j
with v(BIA 1) >_ On > 0-17.1, Let

and B maps [Yi]iny into Xi] o’y

/y" IIBlYiIlJlAYi*II >- ).
Then by Lemma 2.1, Iyl 1/2K-20n and for any scalars (ai)i.6.i,

1 lai[2 < aiYi )
1/2

< C1 E Jail 2
ij

where C 2K2a0-1.
By a further reduction we may suppose [yl < n. Let 1 u u k.

Then

1 1 KZ -10.I1 >- kK-20n >-c2N where c2 --4K-Z( + a)

Since Y has type p constant K 2 at most

where C3 C3(0 K, a) C3(T, K, p).
Conversely,

p k

i j=l
E eiaiBlYi de
ij

dE

p/2

)
where c4 > 0 depends only on p. Thus

lail2llB1Yill 2)
1/p
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However [[BlYil[ _> K 100 Thus

where c6 C6(, K, p) > 0. Hence (Yi)i is C7(’)/, K, p)-equivalent to a
subset of (xi)ff= (and recall that Il >- CEN). This will complete the proof.

It remains to establish the lemma.

ProofofLemma 5.8. Here it is necessary to use the methods of Sections 3
and 4. First we renormalize X, Y to be lattices satisfying the (, 1)-condition.
Thus the norm on X is defined by

ml/pn/2

where {17]}?= is a suitable partition of [N], and x (:i)/N= 1. We regard A and
B as N N-matrices. Select subsets /9 and - as in Proposition 4.2 so that
Ipl, I1 -> (1 1/4AM-2)N, and

1tr(RoBR)(RARp) > AN,
[IRoBR[[, [[RARoII <_ 8KG2A-1M3.

Now as in Lemma 4.3 define the matrix V= (Vii)iN,i=1 by Uij---
min(la/i 12,[bi/[ 2) for iz, jp and vii=O otherwise. Then if W=
(2-6K4A2M-6)(VtV), W is doubly substochastic,

II We II1 2-26K12AlM- 18,

and II Wll 1, where E is the 2-concavification of X.
Consider the m m-matrix T (tij),j= defined by

1
tij -ff E E Wk’,

ktr o

where W (Wkl)kN, 1"
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If x= Ejm=laljX with ay>0, for all 1 <j<m, then the vector
Wx z satisfies

[[xl[E >_ [Izl[E--m-2/pn-l((i=l E IZkl)P/2)
2/p

ko’

where

rn

Zk E aj E Wk, l"
j=l lo).

Hence

IlXllE >_ m-2/pn -1 n ., tija
i=1 j=l

m-2/p ., tiyay
i=l j=l

2/p

Thus IlZllp/2 1. Since IITelll IIWelil 2-26K12AlM-18 we can apply
Lemma 3.3 for T as an operator on L"/2 (notice that any atom normalized in

mL] has norm in Lp/2 equal to m1-2/p) to deduce that maxl<i,y<m tij
for a suitable 15 15(h, M, p) > 0. Hence there exist 151 151(h, M, p) > 0
and i, j rn] with

E E (VtV) kl ntl
k tr 1o

or

N

E E E UkrUlr nl.
k tr 1o r=

This yields

E Ukr Ulr > nl
r=l
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and hence with tr o- or tr o, we have

N )2r__l(ktr Ukr

Notice that

N
_8 GAr= ( ktrUkr ) < K2 -1M3n

and put

Atl }
kr l.o lX.G lVl

Then 171 27KM6A-2t-ln an where a a(h, M, p) and

E Ukr <_ n6
rrl

Thus

E Vkr >-- nal.
rl

For arbitrary signs e +1, 7, consider the map RBQ,nAR:
[Xi]itr [Xi]itr where Q is defined in the statement. This operator has
Hilbert-Schmidt norm equal to

1/2

Hence
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Thus there is a choice of signs e +__ 1, r/, so that IIRBQ,nARIIHs
>- (1/2n61)1/2. But then, since for any operator S on a Hilbert space llSIls _<
v(S)/2 II S II 1/2 we have

nt
,(R,BQ,nAR,) >- 2M2

nO

where 0 0(A, M,p) > 0. m

6. Rearrangement-invariant Banach function spaces

In this section we consider some special results concerning families of
spaces of the form X, X(n) where X X[0, 1] is a rearrangement-
invariant Banach function space on [0, 1]. We assume without loss of general-
ity that X satisfies the (, 1)-condition and hence so does each Xn if we take
for the canonical basis the vectors (atoms) ek l[(k_l)/n,k/n for 1 < k < n.
For notational convenience we also need to identify the normalized symmet-
ric basis xk ek/llektl of Sn.

LEMMA 6.1. Let X be a rearrangement-invariant Banach function space on
[0, 1] such that X 4= L2. Then, given rl > O, there exists a a(, X) > 0 so
that irA is an n n-matrix with IIAlIx < 1 and if ,in=xET=l[aii[ 2 >_ qn then
there exists zr H so that ’---’71 [ar(i),i] an.

Proof. By a simple duality argument it suffices to consider the case when
there exists f X\L2 so that the collection d= (X)__ has property (Q).
Thus there exists p > 2 and functions K(e), N(e) so that if n > N(e) there
exists x X with Ilxl12 1, Ilxllx _< e and Ilxllp _< K(e).
We fix e 1/2r/ and then choose/3 > 0 so that 21/p1/2-1/pK(e) < e.
If A is an n n -matrix where n > N(e)which satisfies the hypotheses of

the lemma, we may pick a maximal subset tr c [n] so that there is a one-one
map 7r: tr [n] with lar(i),il >_ ft. Let - r(r) and let E denote the

22-concavification of X. As in Lemma 4.3 the matrix V given by Uij laij
for - and j tr c and vij= 0 otherwise, satisfies IIVIle _< 1, IIVIl _< 1
and IIVII _< 1. Now pick x X, with Ilxllx -< e, Ilxl12 1 and Ilxll _< K(e).
If we put u Ix] 2 then ilulle _< e 2, llul]l-- 1, and Ilullp/2 _< K(e)2.
By Lemma 3.2, with e Y’.’= e. we have

IIVell Ilull/2 + 21/pfll/2-1/pK(e),



UNCONDITIONAL AND SYMMETRIC STRUCTURES 829

since max <_ i, <_ n Uij "( " Thus Ve II1 < 7. Now

n n

i=1 j=l

n n

--,laijl 2+ E E laijl 2+ IIVelll
io" j= i= j’r

Hence as Il Il we have Il gr/n. Then if we extend r to an element
of I-I n we have

n 1
la.,.,.i),il rln.

i=1

On the other hand if n < N(e),

n 1 n n

max E ]a<i),il > -ff - laiyl
7r Yln i=1 i= j=

>- laijl 2n
i=1 j=l

1 ,q1/2n1/2

>_ -/1/2N(/) -3/2n.

1/2

and this completes the proof of the lemma, m

THEOREM 6.2. Let X be a rearrangement-invariant Banach function space
on [0, 1] containing Lq[O, 1] where q < o. Then, given 0 < h < 1, 1 < K < oo

and 1 < M < , there exist a a(A, K, M, X) > O and L L(A, K, M, X)
< oo so that if m >_ >_ An, and (Yi)im= is a K-unconditional normalized basic
sequence in X so that [yi]n= contains a subspace M-isomorphic to [xi]= 1,

where, as usual, (Xi)in= denotes the canonical normalized symmetric basis ofXn,

then there is a subset tr c [m] with [tr[ >_ an so that (Yi)ir is L-equivalent to
(Xi)[=l 1.

Proof We may assume X 4 L2[0 1], and that X satisfies the (q, 1)-condi-
tion. It suffices then to consider the following situation. Let Y be an
m-dimensional Banach lattice spanned by normalized atoms (ui)i= K-equiv-
alent to (Yi)i%1 and suppose A" Xn Y and B" Y X are linear maps
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satisfying IIAllx--,Y < MK, tlBllY-, X < 1 and:

(1) IIxllx < IIAxIIy, x [ei]li=l,
(2) 113, II Y < KIIBy IIx, 3, Y.

Now, by Proposition 4.1, there exist subsets tr, r c [n] so that IrCl, IrCl
< xhn, and IIRBARI[ < 4KA-MK. Let tr0 tr [/] so that Ir01 >_ An
and consider the vectors {BAei}io. Notice that for {ti}io,

itr0 X

and

io X i’o

3 -1-AK-11tr0I _, ltil.
itr

Now R is a quotient map from Xn onto a subspace [ei]iz of dimension
I1. Since

1
I1 + I01-n > -An,

we may apply Theorem 1.1 of [2] to deduce that

eiR.BAeil de>_Co(A, K, M)>0.
io. IIx

Thus

io’o q

Hence _
IR,BAeil 2

o.
> Cl(h,K,M,q ) > O.
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Let D R,BAR, and let (dij)l<i,j< n

canonical basis (ei)in=l of Xn. Then
be its matrix with respect to the

However, for fixed j, Eio[dij[ 2 <_ 24KA-2M2K2

a simple interpolation argument,
so that we also obtain, by

y Ido.I 2 ey
tr 2

>_ c2(A,K,M,q) > 0

or

] Idijl 2 cn.
j" itr

Now, by applying Lemma 6.1 to D we obtain that for some 7r I-I n and
some signs e + 1, 1 < < n we have tr(S,RBAR) > fin where /3
/3(h, K, M, X) > 0 and

n

Se,r iei E eiier(i)
i=1 i=1

Since d= {Sn}= has property (P)we can appeal to Lemma 5.1 to deduce
the existence of a subset rx c [n], with Itrll > an, where a a(h, K, M, X)
> 0 and one-one maps 7r1: tr --* [m] and rr2: tr [n] so that

[a.l(i) ib.rr2(i) ,(i)l >- t(A, K, M, X) > O. It then follows easily that (Yi)i.trl(o.1)
]’rr l(trl)]is L()X, K, 2i//, X)-equivalent to (x)=l completing the proof of the theo-

rem. m

If we make the assumption that X lies on one side of L2 then we can
achieve a rather stronger statement and eliminate the hypothesis that X
contains some Lq.

THEOREM 6.3. Let X be a rearrangement-invariant Banach function space
on [0, 1] so that either Le c X or X c L2. Then, given 0 < h <_ 1, 1 <_ K < 0%
l <_ M < and O < e < l there exists L L(e, A, K, M, X) so that if m >_ l



832 P.G. CASAZZA N.J. KALTON AND L. TZAFRIRI

>_ An and (Yi)im= is a normalized K-unconditional basic sequence in Xn such
that [yi]n= contains a subspace M-isomorphic to [xi]l= then there is a subset
tr c [m] for which [tr[ >_ (1 e)l and (y/)/ is L-equivalent to (xi)! 1.

Proof. As in Theorem 6.2, we can assume that X 4: L2. We may further
assume that X satisfies either the (, 2)-condition or the (2, 1)-condition. It
will suffice, again as before, to consider the situation when Y is an m-dimen-
sional Banach lattice spanned by atoms (ug)im=l K-equivalent to (Yi)im=l and
A: Xn Y, B: Y X are linear maps such that [[A [IXn- Y < MK,
[[B[ly_, x, -< 1 and

(1) Ilxllx_< IIAxllv, x [ei]li=l,
(2) Ax 0, X e ]i=l+ 1,

(3) Ily IIY < K][BylIx, Y Y.

To obtain the conclusion it will suffice to prove that there exist a
a(e, A, K, M, X) > 0 and L LI(e, A, K, M, X) < oo so that if r c [m]
with Irl >_ rn (1 e)l then there exists r0 c r with Ir01 >_ al so that
(Ui) is Ll-equivalent to i,it"al01=1. The result will then follow by an obvious
induction process.

Case 1. Assume first that X satisfies the (2, 1)-condition. Then by the
results of [5] and [10] there exists co Co(e, )> 0 so that X contains a
subspace Z with dim Z > (1 eh)n and

Ilzl12 Ilzllg Ilzllx c011zll2, z e Z,

Suppose r c [m] with I1 rn (1 e)l. Then, by applying one half of the
argument of Proposition 4.1, we may find a subset z c [n] with I1 >_
(1 elA)n so that

IIRBR,A 112 Co(, , K, M).

Let Z Z (’A-l([ui]ir) 0 [ei]= 1. Then

dim(A-l[ui]i 0 [ei] 1) > 1--(m -[trl) > el

Thus

1
dimZl> (1- -eh ) 2

n +el-n > wel.

Let h dim Z1, and let (fi)/h__ be an orthonormal basis of (Zl, ll2). Then
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for any {ti}P= 1, _
tiBRAfi <_ MK t

i=l X i=l

< MKh/ max Iti[,
l<i<h_, tiBRgAfi >_ K- tifi

i=1 X i=1 X

> CoK- t.2,
i=1

>_ coK-lh1/2 - [ti[
i=1

Thus we can apply Theorem 1.1 of [2] (since Il + h + n >_ -el > -ehn) to
deduce that

f
_
eiRBRAfi de >__ Clhl/2

i=1 X

where c C1(e, ,, K, M) > O. Thus

h

E []R,BRAf[[ f
i=1

h ILl_, eiR.BR,Afi de > c21h.
i=1

We conclude that if D R.BR,A: Ln -’> Ln2 then D has Hilbert-Schmidt
norm at least ClV-. Thus if D has matrix (dij)l<i,j< n with respect to the
basis (ei)in= 1,

n n

E E [dijl 2 >-- ch >_ c21eAn.
i=1j=1

Now we can use Lemma 6.1 to deduce the existence of an operator S,
which is an isometry on X so that tr(S,D)> c2n where c2
c2(e, A, K, M, X) > 0. As in the proof of Theorem 6.2 this implies by Lemma
5.1 that tr has a subset r0 with Icr0l/l > a(e, A, K, M) > 0 so that [Ui] o. is
Ll(e, A, K, M, X)-equivalent to (xi)!.
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Case 2. Assume X satisfies the (, 2)-condition, so that X* satisfies the
(2, 1)-condition. As before there is a subspace Z of X* with dim Z >_
(1 1/2eh)n and

IIzll2 ]lzllx, [[z[[1 Co[[Z[[2 zeZ

where co Co(e, h, K, M) > 0. As before, suppose tr c [m] with Il
m (1 e)l. We may now find a subset z c [n] with I1 >- (1 1/2eh)n so
that IIRAtR,BtlI2 <_ Co(e,A,K,M) where B and A are the adjoints
(transposes) of B and A.

Let Z Z N (Bt)-l[ui]io.. Then if h dim Z we have

(1)h > Il + dim n

1
Irl + n rank B- -ehn

>n- 1--e I.

n-n

Let (fi)/h=l be an orthonormal basis of (Zl, ll2). Let S R.AtBt; then

1
rank S >_ veAn

Suppose x* Xn* and IlSx* IIx. 1. Then Ilx* IBAR<Xn)II K-1. It follows
that

dist( x*, ker(S)) > g-1

so that there is a linear operator T: X*/ker S Xn* with

IITII MK and IlZgll g-lllgll for g e Xn*/kerS,

and such that S TQ where Q is the quotient map.
For any {ti}/h=l we have

COhl/2 - [til <_ tif <_ h1/2 max [til.
i=1 i=1 X*

<i <h

Notice that dim(X*/ker S) > (1 1/2e)l and so dim(Xn*/ker S) + h n
> 1/2el. Hence by Theorem 1.1 of [2],

f E Eiaf dE > Clhl/2
i=1
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where c Cl(e A, K, M) > 0. Thus

i=1 X*

and so

f -eiR-AtR,Btfi de>K2ch.
i=1

Hence if D R.AtR,B we deduce that there exists an S,= with

tr(S,,rD) > c2n where C2 C2(e, ,, K, M) > 0

and the argument is completed as in Case 1.

If X is 2-convex and has some concavity, we may weaken the hypotheses
further. The following theorem is a mild extension of a result proved in [2]
(Theorem 2.3). We omit the proof which employs techniques from [2] and
this paper.

THEOREM 6.4. Suppose q > 2 and that X is a 2-convex, q-concave rear-
rangement-invariant Banach function space on [0, 1]. Then, given 0 < A < 1,
0 < e < 1, and 1 <_ K < oo there exists L L(e, A, K, X) so that if m >_ An
and (Yi)im=l is a K-unconditional normalized basic sequence in Xn then there is a
subset tr c [m] with Irl >_ (1 )m so that (Yi)i, is L-equivalent to (xi)l 1.
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