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ON COANALYTIC FAMILIES OF SETS IN
HARMONIC ANALYSIS

BY

GILLES GODEFROY

I. Introduction

In the last few years many natural families of sets, or of functions, from
harmonic analysis were shown to be II-hard; the reader will find references
in the recent book of A. Kechris and A. Louveau [7]. The goal of the present
work is to invite another family to join the club.

Let us recall that a subset A of a discrete abelian group F is called a
Rosenthal set [9, Def. 2.1] if L(’) "A("). It was shown by H. P. Rosenthal
([12]) that there are (what we call now) Rosenthal sets which are not Sidon. It
follows from our main result that if F is a countably infinite abelian discrete
group, then the family Ros(F) of Rosenthal subsets of F is a II-hard subset
of 9(F). This result means in particular that there is no hope to obtain
"positive" characterizations of Rosenthal sets, or that any characterization
will be at least as complex as the definition.
Our proofs combine a result of F. Lust-Piquard which enables us to

construct Rosenthal sets [10, Th. 3], together with a technique of V. Tardivel
[13]; actually, our method provides a proof of Tardivel’s result which is
slightly simpler than the original one. Let us mention however that our proof
uses a delicate result on spectral synthesis due to Loomis [8], which depends
on a theorem of Bohr about almost-periodic functions.

Notation. Throughout this paper, F denotes an abelian discrete group
and G " its compact dual group. 9(F) is the power>set of F; if A 9(F),
LA(G) denotes the space of bounded measurable functions on G, with
respect to the Haar measure dm of G, whose Fourier transforms vanish
outside A. The spaces ’A(G), LIA(G) and CA(G) are defined similarly. A
subset A of F is called a Rosenthal set if CA(G)= L(G); Ros(F) denotes
the family of Rosenthal sets. A is called a Riesz set if /A(G) LIA(G), and
the family of Riesz sets is (F). A subset A of a Polish space P is E (i.e.
analytic) if it is a continuous image of the Polish space Nr; a subset C of P
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such that P \ C is El is said to be II (i.e., coanalytic); it is II-hard if it is

HI but not Borelmequivalently, II but not 11"
The other notations are classical or will be defined before use. Our

references about Rosenthal sets are [9] and [10], while we refer to [5], [7], [13]
about connections between harmonic analysis and descriptive set theory. The
results on the Radon-Nikodym property in Banach spaces which we use can
be found in [3].

II. The Results

Our proof will crucially use a result of F. Lust-Piquard [10, Th. 3] which we
recall now. We outline a proof for completeness.

THEOREM 1. [10]. Let F be a discrete countable abelian group, and A be a
subset of F. We denote by A a countable dense subgroup of .G F. Let i* be
the canonical map of restriction to A, from F into the compact dual group A of
A equipped with its discrete topology. If the closure of i*(A) in is countable,
then CA(G) E(G); i.e., A is a Rosenthal set.

Proof If the Banach space CA(G) has a Radon-Nikodym property then
CA(G) LA(G) [10, Th. 2.1]. Indeed for every f LA(G) we consider the
operator Tf(g)= f. g from LI(G) to CA(G). If CA(G) has the R.N.P. this
operator is representable; that is, there exists h L(G, C(G)) such that for
every g LI(G),

Tf( g) fGh(u) g(u) din(u)

but since Tf commutes with the translations, h can be written h(u) fo(.- u)
for some function f0 C(G); and this implies f0 f and f CA(G).
We denote by E the countable closure of i*(A) in A. Since E is

countable, E is a set of spectral synthesis; that is, every pseudo-measure ,
carried by E belongs to I(E) - where

I(E) {u /l(A)ltlE 0}.

Moreover, by Loomis [8], every such v is almost periodic; that is, every
, I(E) - is in the closure of the linear span of {elx E} for the norm of
the pseudo-measuresthat is, for the norm of/(A); in particular I(E) +/- is a
separable dual and therefore it has the Radon-Nikodym property.

It remains now to observe that the canonical map i* of restriction to A
induces an isometry from ((G) into l(A), and that i*((A(G)) I(E) +/-
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Since the Radon-Nikodym property is hereditary, this implies that (A(G)
shares this property, and concludes the proof.

Before stating our main result, let us define some notation: if {nili > 1} is a
sequence in an abelian discrete group F, we denote by W({ni}) the subset of
F consisting of the "words" that can be written with the sequence {ni}; that
is,

W({ni}) n tin ,eini}

where e {-1, 0, 1} and all the ei’s are zero but a finite number. It is
classical that if {nili > 1} is an infinite sequence, there is a singular measure
/x on G (a "Riesz product")whose Fourier transform is supported by
W({ni})--see e.g. [13, Th. 7]. In particular, W({ni}) is not a Riesz set and
a fortiori not a Rosenthal set (See Appendix).
We denote by 7/the set of subsets A of F which are such that there exists

an infinite sequence {ni} with W({ni}) A; that is, A contains all the words
written with the sequence {ni}. Finally, Ros(F) is the set of Rosenthal subsets
of F. Our result now reads:

THEOREM 2. Let F be a countable infinite abelian discrete group. Let s"
be a , subset of (F) which contains Ros(F). Then N ;’ (R).

Throughout the proof, A denotes a fixed countable dense subgroup of G,
and , its dual, equipped with the compact topology of pointwise convergence
on A.

Proof In the notation of theorem 1, the group i*(F) is dense in z, since
i* extends continuously to the Bohr compactification bF of F and F bF.
Therefore there exists a sequence {xili > 1} in F such that for every > 1,

0 < dg(O,i*(xi) ) < 3 -i

where d is a translation invariant distance which defines the topology of A.
We recall that a subset T of Ntrl is called a tree if

(n(1),n(2)...n(k)) T

V i,1 <i < k,(n(1),n(2),...,n(i)) T.

We call - the set of trees, and we define a map from - into (F) in the
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following way: for every T -, we let

(I) ( Z ) E E x(.= in(j))
i=1

where k N, e {- 1, 0, 1} and (n(1), n(2)... n(i)) T for every
{1,..., k}. We will prove:

Claim. If the closure of i*[(T)] in z is not countable, then T is not
well-founded; that is, there is a sequence {n(i)li > 1} in Nr such that

(n(1),n(2),...,n(i)) T

for every _> 1.
We proceed by induction. For every finite sequence tr (k x, k2,... k)

NEN1, we denote by T the subtree of T which "starts with tr", that is

T, {(n(i)) Tin(l) kl,n(2) k2,...,n k,}

Of course T, if tr T. With this notation we have

Observe now that if tr (n(j)) Ttk then ,n(j) > k 1 + Icrl, where
denotes the length of tr. Since da(0, x) < 3 -t, it follows that

da(0, u) < 3 -k 3 -i 3 -k +1/2
i=

for every u i*((T{k})); and thus

lim {i*(*(T{,))} {0}
k

where the is taken in the space of compact subsets of z. But since

(1)

i*(b(T)) U i*(b(Ttk))
k=l

it follows from (1) that

U

i*(b(T)) E i*(b(T{k}))tO {0} U i*(qb(T{k}))
k=l k=l
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If we assume now that * ( 4(T)) is not countable, the above equality shows
that there exists k > 1 such that the closure of i*(4,(Ttk)) is not countable.
Observe now that the same argument shows that

lim {i*((T{,,))} i*(Xk, )
k

and thus

i*(dP(T{t:,,) ) i*((T{kl,,))
k=l

we can therefore find k2 > 1 such that i*(t:Ia(T{/cl, k2})) has an uncountable
closure. Continuing this process, we construct inductively an infinite se-
quence {kili > 1} such that i*((T{ki, k2 kn})) has an uncountable closure
for every n > 1. This implies in particular that (kl, k2,... kn) T for every
n >_ 1. and this proves the claim.

Let us come back now to the proof of the theorem. By the claim, if T is a
well-founded tree, i*(b(T)) has a countable closure, and then Theorem 1
shows that (T) is a Rosenthal set. On the other hand, if T is not a
well-founded tree then it is clear that (T)
The map :-- .(F) is of the first Baire class; indeed we may write

tr NIN]

where 9 .(Ntl) --+ ga(F) is defined in the following way:
If tr (n(1), n(2),..., n(k)), then

q%.(X) E 8iXE}_,n(j)lei 1, O, 1}
i=1

if o" X.

The map q is clearly continuous and since is the limit (for the Frechet
filter) of the sequence {q}, if follows that is of the first Baire class.
We conclude now the proof by observing that if ag’ is a I subset of .a(F)

containing Ros(F), then -l(ag’) is a subset of g- which contains every
well-founded tree. But the set of well-founded trees is a H-complete subset
of Y- (see [2]) and thus - l(ace.) contains a tree TO which is not well-founded;
therefore (T0) ag’N ;/and this concludes the proof, rq

COROLLARY 3. Let F be a countably infinite abelian discrete group. Then
Ros(F) is a II-hard subset of a(F).
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Proof. By definition, A Ros(F) if and only if there exists f L(G) \

(G). The space L(G) equipped with its w*-topology is a countable union
of metrizable compact sets, and its norm-separable subspace (G) is a K
set for the w*-topology; if we now let

we have

((A, f) )If L(G)}

(A,f) dF (n A)or (f(n) O)

and thus is a closed subset of ((F) (L(G),w*)). But we have

\ Ros(r) ,/7.1(o (LW(() \ -(()))

and therefore (F) \ Ros(F) is Z, and Ros(F) is II. On. the other hand it
follows from Theorem 2 that Ros(F) is not E since Ros(F) 3 ;/= (R); hence
Ros(F) is H-hard.

Let us mention that the proof of Theorem 2 actually shows that Ros(F) is
H-complete, since -l(Ros(F)) is exactly the set of well-founded trees.

COROLLARY 4. [13, Cor. 12]. Let F be a countably infinite abelian discrete
group. Then the set (F) of Riesz subsets of F is a II-hard subset of (F).

Proofi By [13, Th. 11], the set (F) is a YI subset of (F). On the other
hand, Ros(F) c (F) c (F) \ ;/and thus (F) is not E. rq

Remarks 5. (1) Our proof of Corollary 4 is very similar to V. Tardivel’s
original proof [13]. The only significative difference is that Loomis’s theorem
allows us to dispense with the localization techniquemfor the Bohr topology
--that was used in [13]. It is actually fortunate that we don’t need to use
localization; indeed the class Ros(F) is not localizable in the sense of [13, Th.
4] since, for instance, the set P of prime numbers is not Rosenthal [11].

(2) By [9], the class

.- (F) {A (F)Id’A(G) does not contain

an isomorphic copy of c0(N)

is such that Ros(F) c .a_ (F) c (F) and thus _’- (F) is not E. It
can be shown by standard techniques that _-(F) is II and thus
.’- 9(F) is II -hard.

(3) Similarly, if we denote by Sch(F) the class

Sch(F) { A e (r)l  A(G) has the Schur property}
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then by [9. Th. 3], with the notation of theorem 2 we have:

T well-founded (T) Sch(F).

Therefore the class Sch(F) is not El. Let us mention at this point that it is
easily seen that the class Sch(F) is but I don’t know whether Sch(F) is
actually IIl; indeed the weak Cauchy sequences form a IIl-hard subset of
((G)r (see [1]) and thus Sch(F) is "at first sight".

(4) In connection with the technique which leads to theorem 1, let us
mention that the subset of (G) consisting of the compacts E which are of
spectral synthesis is II-hard in d/(G) [7].

(5) It is shown in [5] that the Szlenk index is a II-rank on the set (Z) of
Riesz subsets of Z; in particular, for every countable ordinal a, the set

R(Z) {A (Z)ISz(A) _< a}

is a Borel subset of (Z). It follows now from Theorem 2 and its proof that
the Szlenk index is bounded on Ros(Z)n Sch(Z). More "concretely", this
means that one can find sets A Ros(Z) n Sch(Z), which will actually be of
the form A q(T) for some well-founded tree T, and such that the
convergence of the Fejer convolution operators Tn(f) f. crn towards the
identity of L(T) is "arbitrarily slow".
We refer to [7] for much more about Hl-ranks and their connections with

harmonic analysis.
(6) It is easy to deduce from the definition of the Sidon sets that the family

Sid(F) of Sidon subsets of F is a K subset of (F); therefore Sid(F) is a
"very small" subset of Ros(F) for any countably infinite abelian discrete
group F.

Appendix

We mentioned before Theorem 2 that every Rosenthal set is a Riesz set.
More generally, Dressier and Pigno have shown [4] that the union of a Riesz
set and of a Rosenthal set is a Riesz set; the proof relies on a result of Heard
[6]. We will present here an easy and self-contained argument which allows to
extend Dressier and Pigno’s result; this approach was suggested to me by F.
Lust-Piquard and is included here with her kind permission. With the above
notation, we have:

PROPOSITION 5.
Rosenthal set, then

If A G r is such that /fA LIA (s)A and if A0 is a
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Of course, if A is Riesz then (Z/s)A {0} and thus (A t2 A0) is Riesz.

Proof Let be in /’{A u A0" As in [4], we consider the elements

gn kn* lz

of LI(G), where (kn) is an approximation of the identity in LI(G). If we let
f(x) f(-x), we have by Fubini,

fGgnfdm fGn(Id, * ;) am.

If we now let A’ F \ (-A), we have for every f L, that

f) LT, %
since A0 is Rosenthal and thus limn _=(fgnfdm) exists for every f L,.

Since ’A L 9 (/s)A we have

Cv L1/Lk s/("//[’s) A" (2)

Denote by , the class of a measure A in C, and let k be a cluster point to

n in (C3, w*). We write k + & (g La, tr ’). It is easily seen from
(2) that

Ill + 11 Ilfll + I111, v f L1. (3)

Of course, t is a w*-cluster point of (n- )" If t 4 0, it is easy to
deduce from (3) and the w*-lower semi-continuity of the norm that (n )
has a subsequence which is equivalent to the canonical basis of 11.
But on the other hand limn_,(f(g -g)fdm) exists for every f L,.

Since

(L1ILIA)* LA,

this means that the sequence (n- ) is weak-Cauchy in L1/LIA; thus it
cannot contain a subsequence equivalent to and t 0.
We found g L such that

lim f ( kn * tz) fdm fgfdm, V f -g’a,
n

If, in particular, f &(a A), we get

(a) lim n(O) jt.(O) jt(
n
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and thus (g -/z) Z/A and since /z /A u A0 it follows that g Lk u A0"
The result follows by another application of the equation ’A Lk ()A.
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