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THE SCHWARZ-PICK LEMMA FOR CIRCLE PACKINGS

BY

ALaN F. BEARDON AND KENNETH STEPHENSON !

Connections between circle packings and analytic functions were suggested
by William Thurston at the International Symposium in Celebration of the
Proof of the Bieberbach Conjecture, Purdue University, March 1985. He
conjectured that the conformal mapping of a simply connected plane domain
) to the unit disc A could be approximated by manipulating hexagonal circle
configurations lying in (). His idea is illustrated in Figure 1: First, approxi-
mate ) with a uniform hexagonal circle packing P as in 1(a). Now, repack P
to obtain a certain combinatorially equivalent extremal circle packing P,
lying in A, as shown in 1(b). Finally, define a piecewise affine mapping from
P, to P by identifying centers of corresponding circles in the two configura-
tions. He conjectured that as the sizes of the circles in P go to zero (and
assuming certain natural normalizations), the mappings so defined would
converge uniformly on compact subsets of A to the conformal (analytic)
mapping of A onto ). This conjecture was subsequently proven by Burt
Rodin and Dennis Sullivan [6].

Thurston termed the conjectured result a “Finite Riemann Mapping
Theorem”, the intuition being, at least in part, that since the conformal map
carries infinitesimal circles to infinitesimal circles, one might approximate it
by mapping real circles to real circles. Our interest is in developing this
analogy—rather than consider increasingly fine packings and the approxima-
tion question, we will study individual circle packings P and how they
compare to their extremal repackings P,. Our main result is a natural
analogue for the classical Schwarz Lemma, in the invariant form due to Pick,
which we term the “Discrete Schwarz-Pick Lemma” or DSPL. In the defini-
tions and results along the way, further parallels with classical complex
analysis emerge. There are several intriguing results on circle packings in
Chapter 13 of Thurston’s notes [10], and certain of the key ideas here (e.g.,
parameterized hyperbolic structures and some monotonicity results) occur
there, though without our complex function theory slant.

We want to state our main result somewhat informally here at the
beginning before introducing more technical definitions and notation. To that
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Fic. 1 Approximate conformal mapping.

end, suppose we have a configuration P of circles in the hyperbolic plane as
shown in Figure 2(a). We will later describe the combinatorics underlying P
using an abstract complex; however, at this point simply note that the circles
of P have disjoint interiors, that the interstices between circles are triangu-
lar, and that the union of the circles and interstices is simply connected.
(Note also that we place no hexagonal restriction on the combinatorics.) By
results of Andreev [2, Theorem 2], interpreted for circles by Thurston [10,
Ch. 13], there is a combinatorially isomorphic circle packing in A having all
its boundary circles internally tangent to the unit circle. This will be termed
the Andreev packing P,, and in this instance is illustrated in 2(b). There are
some minor additional hypotheses needed on P, but those are best left for
later.

F1G. 2 A packing and its Andreev packing.
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THE DiscRETE SCHWARZ-Pick LEMMA. Let P be a circle packing in the
hyperbolic plane, P, its Andreev packing. Then:

(a) Each circle of P has a hyperbolic radius which is less than or equal to
that of the corresponding circle in P,.

(b) The hyperbolic distance between (centers of ) circles in P is less than or
equal to the hyperbolic distance between the corresponding circles in P,.
Moreover, a single instance of (finite) equality in either (a) or (b) implies
equality in every instance, i.e., P and P, are hyperbolically congruent.

If the mapping from P, to P is interpreted, as we believe it may be, as a
discrete analytic self-map of the hyperbolic plane, then the DSPL states that
it is either a strict contraction or an isometry—precisely the classical state-
ment.

We have tried to keep the proofs as elementary and geometric as possible,
though we have felt obliged, in anticipation of future developments, to put
the technical details on a rigorous foundation. A key feature of our work is
the use of hyperbolic rather than euclidean geometry; and it has been a
constant source of pleasure to see how faithfully the “discrete” situations in
this setting appear to mimic their classical models. The astute reader will
recognize analytic continuation, harmonic and subharmonic functions, the
Perron method, the monodromy theorem, and more. In the concluding
section of the paper, we summarize some of the parallels; in our opinion,
they are more than shallow analogies, but rather suggest a fundamental
geometric rigidity in the discrete situations which underlies the rigidity of
analytic functions.

Here, briefly, is how the paper proceeds: In Section 1, we introduce
appropriate simplicial complexes to represent the combinatoric information
in circle configurations. In Section 2 we impose hyperbolic structures on the
complexes, and thereafter work in the setting of “hyperbolic complexes”
rather than with actual circle configurations. The technical meaning of
“packing” is defined, and we prove that hyperbolic complexes which are
packings may be immersed in the hyperbolic plane. Section 3 contains our
statement of Andreev’s result, followed by several examples of packings (with
illustrations) which we feel will be helpful to the reader’s intuition. Mono-
tonicity results (and the only real computations) are gathered in Section 4. In
Section 5 we solve a boundary value problem for hyperbolic complexes using
“subpackings” and the Perron method, famous for its use in solving the
classical Dirichlet problem. The DSPL is formally stated and proved in
Section 6. Not until the concluding section are we in position to suggest
further connections between our discrete considerations and the classical
continuous case—we commend this section particularly to the reader’s
attention. Since the original draft of this work, several individuals have
suggested that an independent proof of what we are calling Andreev’s
Theorem might follow via induction. This is indeed the case, and an appendix
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is provided for that purpose, the separate treatment arising from the need for
slightly more general complexes than those treated in the body of the paper.

A number of papers on circle packing have been written since [6], largely
in the euclidean setting and with hexagonal combinatorics. In [7] and [8],
Rodin introduces a version of Schwarz’s Lemma in which he compares
packings to N-generational regular hexagonal packings. This is not directly
related to our work here. Though the DSPL does show that the constant @ in
[7, Theorem 5.1] is strictly greater than one, Rodin’s interest is in an upper
bound on a independent of N. The reader should be aware that the discrete
potential theory in [7] is quite different in character from that which occurs
here: the euclidean radii in a hexagonal setting satisfy a submean value
property, permitting use of classical discrete potential theory. This fails for
more general combinatorics, so our references to subharmonic functions, the
Perron method, and so forth, are by way of analogy. More substantial
connections exist, but lie much deeper in the geometry—they are developed
and exploited in [9]. Also to be noted is the solution of boundary value
problems in the euclidean setting by Carter and Rodin [5]; they use a
somewhat different analogue of the Perron method, formalizing a computa-
tional algorithm suggested by Thurston.

1. Simplicial complexes

The abstract representation of packing combinatorics has typically been a
graph; but it seems best to rely instead on an abstract 2-dimensional simpli-
cial complex, K. Its vertices correspond to circles, with an edge between
vertices if and only if their circles are intended to be tangent. The faces are
triangular, corresponding to triangular interstices between triples of circles.
We have at our disposal not only the topology of K, but all the terminology
associated with the elementary theory of simplicial complexes; (cf. [4]).

Throughout the paper, then, K will denote a fixed simplicial 2-complex; we
make the requirements explicit in this definition.

DeriniTioN. K will be a simplicial 2-complex which is isomorphic (.e.,
simplicially equivalent) to a finite triangulation of the closed unit disc and
which has these additional properties: every boundary vertex shares an edge
with at least one interior vertex; every pair of interior vertices may be
connected by an edge path whose edges have only interior vertices as
endpoints.

Among the consequences of this definition: K is an oriented manifold; its
boundary is a simple closed curve with at least three vertices; and each
interior vertex is the vertex for at least three faces. The additional properties
placed on K are helpful in avoiding situations inconsistent with circle
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packings or in sidestepping minor pathologies. The final condition, for
example, is the discrete analogue of “connected interior”, and will be needed
in proving the case of equality in our main result. (Only in the appendix will
we consider more general complexes.)

We will be imposing a hyperbolic structure on K by specifying hyperbolic
radii for its vertices. The hyperbolic plane will be represented as the unit disc
A equipped with the Poincaré metric, p(-, -). (See [1] and [3].) Circles in this
metric happen to be euclidean circles in A; however, in referring to centers
and radii, we always intend the hyperbolic quantities. Horocycles, which are
euclidean circles internally tangent to the unit circle, may be regarded as
hyperbolic circles, each having the point of tangency as its center and infinite
hyperbolic radius. Hyperbolic geodesics lie along arcs of euclidean circles
which are orthogonal to the unit circle. The geodesic between the centers of
tangent circles will pass through their point of tangency, even if one or both
has center at infinity. The isometries (or rigid motions) of A consist of
Mobius transformations and their complex conjugates. Hyperbolic quantities
are invariant under isometries, so most of the statements we make should be
taken in the invariant sense. For example, we have the important, though
elementary result:

LemMA 1. Given a triple of hyperbolic radii {a, b, c}, 0 < a, b, ¢ < , there
exists a unique triple of circles with these radii which have disjoint interiors and
are mutually tangent, and a unique hyperbolic triangle formed by the circle
centers.

Here, the configuration of circles and the triangle itself are unique only up
to isometries. Note however that the hyperbolic structure of the triangle—its
angles, edge lengths, area—is uniquely determined by the three radii. These
triples of radii will arise as the radii assigned to vertices of faces of K. We
illustrate in Figure 3, using a labeling to which we refer frequently in the
sequel. Note that since K has an orientation, we will treat these as ordered
triples, the corresponding circles being placed in A in a counterclockwise

Fic. 3 A typical triangle.
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manner. The resulting configuration of circles and the hyperbolic triangle are
then determined up to Mobius transformations.

2. Hyperbolic structures on K

In this section we move away from the collections of circles themselves,
focusing instead on the hyperbolic structures which they impose on the faces
of K. Let R = {ry,ry,...,rr_,} denote a collection of hyperbolic radii, one
for each of the k vertices of K. The three vertices of each face f; of K
determine (along with the orientation of the face) an ordered triple of radii,
and hence, via Lemma 1, a hyperbolic triangle T,. By identifying f; and T;
pointwise so that corresponding vertices match, the hyperbolic structure of 7;
induces a hyperbolic structure on f;. If two faces, say f; and f,, are
contiguous, then they share two of their three radii and the corresponding
configurations of circles may be arranged to share two of their three circles.
The resulting triangles T, T, will be contiguous in A, and the identifications
with f; and f, may be adjusted near their common edge to be
consistent—that is, so the hyperbolic structures induced on f; and f, are
compatible across their shared edge. In this way, the collection R induces a
hyperbolic structure on K, with the possible exception of its vertices. Put
another way, the collection R determines a hyperbolic metric of constant
curvature —1 on K with singularities at the vertices.

DeriNiTION. The complex K with the hyperbolic structure determined by
R is termed a hyperbolic complex and is denoted K(R). If v is a vertex of K,
then v(R) denotes the radius in R associated with v. We make the standing
assumption that v(R) < « for interior vertices v, while the radius may be
finite or infinite for boundary vertices. The collections R form a directed set,
where we write R; < R, if v(R,) < v(R,) for every vertex v € K.

We are interested in the extent to which K(R) looks, locally and globally,
like the hyperbolic plane. More precisely, we will discuss locally isometric
immersions of K(R) in A—continuous maps which are local isometries.

First, consider the local situation: Each face f of K(R) has the hyperbolic
structure of a triangle (including orientation); since local isometries preserve
geodesic curves, its image in A under a local isometry must be an actual
hyperbolic triangle T. Moreover, as we have observed before, faces sharing
an edge will give triangles sharing an edge. Thus, as far as the local situation
goes, only the geometry near interior vertices remains at issue. Were there a
locally isometric immersion of K(R) in A, the singularities at interior vertices
would necessarily be removable; that is the hyperbolic metric would extend
across each singularity with curvature —1. At an interior vertex v, this
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condition has to do with the way in which the star of faces at v fits together.
We need to study these, as well as the stars at boundary vertices, so let us
establish some uniform notation.

DeriNiTiOoN.  Let K(R) be a hyperbolic complex, v a vertex of K. Each
face f of K in the star of v has the hyperbolic structure of a triangle and
hence forms an angle (v, R, f) at v. The angle sum at v, denoted 6,(R), is
defined by

6,(R) = i:le(v,R,fj),

where f,, f,, ..., f, comprise the faces in the star of v.

Note that 6,(R) > 0, with equality if and only if v is a boundary vertex
having infinite radius.

Consider, now, an interior vertex v. Because K is a manifold, the faces in
the star of v form a linearly ordered chain f;, f,,..., f,, each contiguous to
the next and f, contiguous to f,. (Note also that n > 3.) If one fixes a
location in A for v and successively lays down the hyperbolic triangles
associated with these faces, each sharing an edge with its predecessor, then
one of three things occurs: (a) If 6,(R) = 27, then the (interiors of the)
triangles do not overlap, and the final triangle shares an edge with the initial
one. (b) If 6,(R) < 27, then the triangles again do not overlap, but the final
triangle does not reach the initial one. Lastly, (c) if ,(R) > 2, then the
triangles overlap. We illustrate these in Figure 4.

It is clear from considerations of the circumference of infinitesimal circles
about v in the metric of K(R) that the singularity at v is removable with
curvature —1 if and only if the first situation pertains, i.e., if and only if
6,(R) = 2. This therefore gives necessary and sufficient conditions for an
isometric immersion in the neighborhood of an interior vertex.

(a) (b) ©)

FiG. 4 The star at v.
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DeriniTioN.  The hyperbolic complex K(R) is said to be a local packing
at a vertex v if 6,(R) = 2. It is termed a packing if it is a local packing at
every interior vertex.

Now for the global situation: the process of laying down the pieces of a
local isometry one after the other is roughly analogous to the process of
analytic continuation or to a “developing” map in Thurston’s terminology
[10]. The local-to-global step is contained in the following result.

TueoreM 1.  Let K(R) be a hyperbolic complex. A necessary and sufficient
condition for the existence of a locally isometric immersion ¢: K(R) — A is

that K(R) be a packing. In this case the immersion is unique up to isometries
of A.

Note that if v(R) = « for a boundary vertex v, then the immersion will
map v to a point of the ideal boundary of A rather than A itself; this
technicality should cause no confusion. Also note that we will write ¢ = ¢y,
even though ¢ is determined only up to isometries.

Proof. We have already proved necessity. For sufficiency, we assume
K(R) is a packing and show how to define ¢5: K(R) — A.

It has been observed that each face f of K(R) is identified with an actual
triangle T in A, but that the location of T is determined only up to
isometries. To define ¢, therefore, it is enough to describe the placement of
the faces. There is one simple idea underlying our approach: Suppose
C ={fi,..., f,} is a chain of (not necessarily distinct) faces of K—meaning a
sequence in which each face shares an edge of K with its predecessor.
Choose a location for the triangle 7 associated with f,. There is then a
unique location for the triangle T, associated with f,, since it shares a
certain edge and an orientation with T,. Proceeding inductively, we place
triangles T, T,,... associated with faces of the chain until we have placed
the triangle 7, associated with f,. We will say that the location of 7, was
obtained from that of T, by a “development” along C.

We use this notion to define the locations of all triangles as follows:
Designate one face as f;, and place its triangle T}, at a specific location in A.
Given any other face f, choose a chain

C={f0,f1,~'~afn} Wlthfn=f

and obtain the location of 7, by a development along C. Since K is
connected, it is clear that this defines the desired immersion if we can show
that the location determined for 7,, is independent of the chain from f, to f.

Of course, this is simply a version of the monodromy theorem. It clearly
suffices to consider closed chains C = {f,, fi,..., f.}, f. = fo, and to show
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that the triangle 7, obtained by a development along C is identical to T,
Briefly, here’s how one might proceed using homotopies:

We consider the class of closed chains C = {fy, f,,...,f,} at f,. A
subchain f, ..., f, of C is said to be “local at vertex v” if its faces belong to
the star of v. A new closed chain C’ is obtained from C by a “local
modification” if this local subchain at v is replaced by another local subchain
at v having the same first and last faces. We say that closed chains C; and C,
are “homotopic” if one can be obtained from the other by a succession of
local modifications. Among the local modifications are ones which reverse
the direction in which a subchain passes around some vertex, as well as ones
which carry out these pattern simplifications:

ooy = Lo o)
{""f,g,f,---) “’{...,f,...}.

(1)

Now, consider developments along chains: Suppose ¢ = {g, 85,- .5 &} IS
a local chain at v. As we saw earlier, since K(R) is a local packing at v,
placing a single triangle of its star uniquely determines the locations for the
remaining triangles. Therefore, a development along c gives a location for 7,
which depends only on 7 and is independent of the intervening elements
835+ &n—1- This means that if ¢ were a subchain of a closed chain C, local
modification of ¢ would not affect the development along C. We conclude
that developments along homotopic closed chains will place their final
triangles at identical locations. Finally, we need to prove that all closed
chains are homotopic to the “null” chain {f,}. Given a chain C, draw a
closed curve v starting in f;, and passing successively through the faces of the
chain (avoiding vertices). Since K is homeomorphic to a triangulation of the
closed disc, we may count the number N(C) of vertices which y separates
from K. Applying local modifications, one can obtain a homotopic chain C’
with N(C') < N(C). Repeating this a finite number of times, we obtain a
chain which separates no vertices from K. Such a chain is homotopic to {f,}
via a finite number of local modifications of type (1) indicated above. The
details are left to the reader.

Note that our immersion is completely determined by the placement and
orientation of the initial triangle T|,. Since this is unique up to an isometry,
the last statement of the theorem follows. ®

Necessary and sufficient conditions for ¢z to be an embedding will clearly
be quite difficult to formulate, being roughly analogous to conditions for
univalence of locally univalent analytic functions. However, as certain impor-
tant packings are embeddable, we felt that some terminology would be
helpful. ~
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DermniTioN.  The hyperbolic complex K(R) is said to be a planar packing
if it is a packing and if its locally isometric immersion ¢ is an embedding,
i.e., if ¢ is globally one-to-one.

3. Packing examples

It would be comforting to know that circle packings actually exist for a
given complex K. In fact, they are very abundant; but for now we’ll introduce
the important Andreev packings and a few additional circles packings as
illustrations. Among other things, these show how (with the help of Theorem
1) one can move easily between circle configurations and our hyperbolic
complex formulation.

Let us begin with what we have been referring to as Andreev’s Theorem.
This is a special case of more general results, as shown by Thurston [10, Ch.
13]. In our terminology, the statement is this:

THEOREM 2 (ANDREEV’S THEOREM). Given the complex K, there exists a
unique collection of radii, denoted R ,, for which K(R,) is a packing and for
which all boundary vertices have infinite radius. Moreover, K(R,) is a planar
packing.

This theorem has been the main ingredient in the work on circle packing,
yet it makes no direct mention of circles! A rendition more faithful to earlier
usage might be this:

Given K, there exists a configuration of circles in A, one associated with each
vertex of K, so that the circles have mutually disjoint interiors, circles are
tangent if their vertices share an edge in K, and the circles associated with
boundary vertices are horocycles; the configuration is unique up to hyperbolic
isometries.

Andreev’s original work concerned triangulations of the sphere; and fol-
lowing Thurston, one removes a vertex and normalizes in order to apply the
results to arbitrary finite triangulations of the closed unit disc. Recall,
however, that our complexes have added regularity properties. Though the
uniqueness of R, comes out of our work, we initially rely on the existence
portion of Andreev’s Theorem. Only in the appendix do we show how to
avoid this, and hence provide an independent proof of Andreev’s Theorem.

Figure 5 illustrates an Andreev packing, (a) being the circle configuration
and (b) the (embedded) hyperbolic complex K(R,). Figure 5(a) clearly leads
to the planar packing in Figure 6 via the euclidean scaling z — 2z /2, though
this scaling effects the hyperbolic structure in a rather complicated way.
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Fic. 5 An Andreev packing.

Three packings based on another complex are illustrated in Figure 7.
Figure 7(a) is clearly a planar packing. Figure 7(b) is intended to illustrate a
minor subtlety regarding complexes and their circle configurations: Namely,
if the faces of the embedded complex were shown in 7(b), they would not
overlap, even though the circles do. Thus, 7(b) is a planar packing, showing
that the hyperbolic structures determined by the circles are important, rather
than the circles themselves. Figure 7(c) is clearly a non-planar packing. Here,
faces fit together locally, but there are global overlaps in the immersed
complex. The overlapping regions are analogous to the separate sheets in the
image Riemann surface of an analytic function which is locally but not
globally univalent.

(a) (b)

FiG. 6 Scaling an Andreev packing.
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()

Fic. 7 Three packing of the same complex.

4. Monotonicity results in hyperbolic geometry

Our study of hyperbolic complexes relies on several ‘“monotonicity” results
—results which show how the structures are affected by changes in the radii.
Our primary tool will be the Cosine Rule; refer to Figure 3 for notation (cf.
[Ch. 7, 3D.

CosINE RULE.  Assume a, b, and c are finite. Then

cosh(a + b)cosh(a + ¢) — cosh(b + ¢)

cosa = sinh(a + b)sinh(a + ¢)

The obvious modifications to this rule are valid when some (or all) of
a, b, ¢ are infinite.
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This, as with many results in the hyperbolic setting, seems a close parallel
with the euclidean case. However, the added rigidity of the hyperbolic plane
can enter in striking fashion. For example, in the hyperbolic setting, the
angles of a triangle add up to less than 7. Similarity implies congruence for
hyperbolic triangles; and the angles alone (or the sides alone) are sufficient
for solving a triangle. The hyperbolic area of the triangle of Figure 3 is
7 — (a + B + y). More generally:

PoLyGoNAL AReA RuLe. If P is a hyperbolic polygon of n > 3 sides, with
interior angles 0,,0,,...,0,, then

Area(P) = (n—2)m — (0, + ... +6,).

We begin with the study of hyperbolic triangles formed by triples of circles.
We are interested in what happens when the radius of one of the circles is
changed. (See [10, Ch. 13].)

LemMma 2. Consider the configuration of Figure 3. Assume that the hyper-
bolic radii b and c are held constant. Then the angles o, B, y and Area(T) are
continuous functions of a. Moreover, we have the following monotonic behav-
ior:

(D). a(a) is strictly decreasing, with lim , ,, a(a) = 0 and lim,,  ; a(a) = 7.

(ii). B(a) (respectively y(a)) is increasing; monotonicity is strict if b < ®
(respectively ¢ < »).

(iii). Area(T) is strictly increasing.

For a point p on the edge of T opposite to v, let | p(a) denote the distance from v
to p. Then:

(iv). 1,(a) is continuously differentiable. Moreover, dl,/da is bounded below
by a positive function 1(a) which is continuous in a but independent of p.

Recall that all the quantities under consideration are invariant, so we may
modify the configuration of Figure 3 with isometries, if desired. Our mono-
tonicity properties are not difficult to see, at least when b < o: simply place
the vertex for B8 at the origin in A, the vertex for y on the positive real axis,
and then apply geometric reasoning.

Proof. Continuity in (i)-(iii) follows from the Cosine Rule, though adjust-
ments must be made if one or both of b,c are infinite. We will do some
representative computations; it is convenient to specify new quantities y =
e??, z = €%, and new variable x = e2“:

(i). Assume first that b, ¢ are finite; by the Cosine Rule,

(xy + D(xz+1) —2x(yz+ 1) '

Cos a = (xy—l)(xz—l)
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A computation gives

deosa _ 2(chyz - 1)(y-1(z-1)
& (v =Dz -1

Since this is strictly positive, a is strictly decreasing with x, hence also with a.
If, say, b is finite but ¢ is infinite, then the Cosine Rule becomes

x(xy +1) —2xy

cos a = ,
x(xy = 1)

while if both are infinite,

-2

cos a = .

x

Again, computations show
dcos a
o 0

so strict monotonicity follows. As for the behavior of @ when a goes to 0 or
infinity, these limits are geometrically evident.

(ii). If b = «, then B = 0, independent of a. Therefore assume b < o, If
¢ < o, the Cosine Law gives

(yx+ D)(yz+1) = 2y(xz+ 1)
(y»x = D(yz - 1)

cos B =

A computation shows

deosB _ 2y(1 —y)(1 - z)(1 —yz)
dx (yx = )*(yz = 1)°

<0,

so B is strictly increasing with a. The computation in case ¢ = o« is similar.
Interchanging the roles of b and ¢ completes the proof of (ii).

Gii). Area(T) =7 — (@ + B + y). If b = ¢ = », then this area is strictly
increasing by (i). On the other hand, suppose b, say, is finite; the monotonici-
ties in (i) and (ii) now compete in their effects on Area(T"). Nonetheless, one
can see geometrically that the area increases: Place the angle B at the origin
and y on the positive real axis. The side between these remains fixed as a
changes, but the angles open up. In particular, the angle B is strictly
increasing, so area is strictly increasing.

(iv). Assume for the moment that b,c < «. Let / = [ (a) and let ¢ be the
hyperbolic distance from p to w. The Cosine Law for T and for the triangle
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(w, p, v) gives

cosh [ = cosh(a + b)cosh t — cos Bsinh(a + b)sinh ¢,
cosh(a + ¢) = cosh(a + b)cosh(b + ¢) — cos Bsinh(a + b)sinh(b + c).

Eliminating cos B gives

cosh / = cosh(a + b)cosh ¢
cosh(a + c¢) — cosh(a + b)cosh(b + c)

+ sinh ¢ sinh(b + ¢)
- coshl = cosh(a + c)sinh ¢ + cosh(a + b)sinh(b + ¢ — t)
sinh(b + ¢)
_, 4l _ sinh(a + c)sinh ¢ + sinh(a + b)sinh(b + ¢ — t)
da sinh(b + c)sinh / '
Define m = max{a + b,a + ¢},
_ sinh(a + ¢) sinh(a + b)
7(a) = mm{ sinhm > sinhm }

Recalling that 0 < ¢ < b + ¢, we see that dl/da > 1(a) > 0, as desired.

Taking limits as ¢ increases gives the result when ¢ = « (or by symmetry,
when b = «). The result is similar when both b and ¢ are infinite; this case
will not arise, so the computations are left to the reader. This completes the
proof of (iv) and the lemma.®

Next, we consider all triangles in the star of a vertex of K. A collection R
of radii for K associates with each face a unique hyperbolic triangle. For a
particular vertex v, the way in which the triangles comprising its star will fit
around v in the hyperbolic plane depends on the angle sum 6,(R). Of
course, this angle sum only depends upon the radii of v and its immediate
neighbors; the next result summarizes how it is affected by these radii.

LemMa 3. Let v be a vertex of K with neighboring vertices w, ...,w,. Let

r,0<r<w andry...,r,, 0 <r; <, respectively, denote their hyperbolic
radii and let

6 =06(r,ry,...,r,)

be the resulting angle sum at v.

(a) 0 is continuous and strictly decreasing in r.

(b) 0 is continuous and strictly increasing in each of ri,J=12,...,n

(¢) Fix radii r,...,r,. Given any number ®, 0 < ® < nm, there exists a
unique radius r, 0 < r < o for which 6 = @.

(d) If 0 =27, thenr < Vn.
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Fic. 8 A typical flower.

Proof. (a) and (b) are just restatements for the star at v of results
established in Lemma 2(i) and 2(ii) for individual triangles. Likewise, (c)
follows from Lemma 2(i) and the intermediate value theorem. In light of (a),
it suffices to consider the case of equality, 8 = 2, in the proof of (d). In this
case, the configuration of circles can be placed in the disc to form a “flower”,
as in Figure 8. Let P be the polygon obtained by connecting the centers of
the outer circles by geodesics. Then Area(P) < (n — 2)ar. The circle at v of
radius r has area 47 sinh?(r /2) (cf. [Ch. 7, 3]) and lies inside P. We have

wr? = 477(%)2 <4m sinhz(%) <(n-2)m<nm.

Part (d) follows. (More careful analysis gives the sharp upper bound r <
—log(sin(mr/n)).) m

As we shall see, the bound on r obtained above is one of those advantages
gained by working in the hyperbolic plane rather than the euclidean plane,
where no such bound exists.

The final monotonicity result compares distances in hyperbolic complexes.
Write pg(-, -) for distance in K(R), where as usual, the distance between
points is the infimum of the lengths of paths connecting them. We have:

Lemma 4. Let K(R") and K(R) be hyperbolic complexes, R' < R. Then
Pr(V1,0;) < pr(v1,0;) (2

for every pair of vertices vy, v,. If v, satisfies v,(R') < v{(R) and if p(v,,V,)
is finite, then the inequality is strict.
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Proof. Throughout the following, v; and v, will be fixed, distinct vertices
of K, while T' denotes the collection of paths between them. Quantities
associated with K(R’) will be marked with a prime () to distinguish them
from those associated with K(R). For example, /(-) will denote length in
K(R) while I'(:) denotes length in K(R'). It suffices to work under the
assumption that R and R' differ only for a single vertex v. We let r = v(R)
and r' = v(R)with0 <r' <r < o,

Fix y € I. Without affecting the infimum of lengths over I', we may
assume that y is simple and that it passes through a finite chain C =
{fos f1s- -5 fn} Of (not necessarily distinct) faces. It is not appropriate to
compare [(y) and I'(y), since we have not specified the point maps by which
structures have been placed on K. Instead, (2) will follow by building a path
y' € T, depending perhaps on R’, for which

I'(y") <1(v)- 3

Our approach involves successively laying down triangles for the faces of C
and then measuring lengths of paths via their immersed images in A. To this
end, suppose Ty, Ty,...,T,, and Ty, Ty, ..., T, are triangles corresponding to
the faces in C in the structures on K. Carry out developments along the
chain using each of these two sets of triangles; we may loosely refer to the
developments as D and D'. The path y is immersed in A in the development
D. (With a slight abuse of notation, we use the same symbols for quantities in
K and in the development). We will build ' in D'.

Let S € K be the closed star of v. We need to start under the assumption
that all radii for the vertices of S are finite—we will see how to jiggle the
picture to accomplish this at the end. Let us start by breaking vy into
segments y;, j = 1,2,..., N, classified as “good” or “bad”. Corresponding
segments y; will be built in D’ and concatinated to form y'. The (maximal
connected) segments of y which lie in the complement of S are termed good.
Triangles associated with faces not in § are congruent under the structures of
K(R) and K(R'), so a good segment vy; may be transplanted via a hyperbolic
isometry to a segment y; in D’ having the same length. The bad segments
require more work.

Fix attention on a bad segment y;» letting ¢ = {g1,82,.-., 8, be the
subchain of C through which it passes, with corresponding triangles
ty,ty, ..., t, and £y, 15, ..., ¢,. In each of our two developments, the triangles
associated with ¢ all have a common vertex (the one corresponding to v) in
A, so they lay out like a “fan” about that point. Caution is in order, since
there is not a well-defined immersion of all of § when the packing condition
fails at v. Thus, the fan of triangles may wrap around v and overlap itself, or
a face which occurs more than once in ¢ may give rise to distinct (though
congruent) triangles in the development. (It is not difficult to arrange, for
example, that the shortest path between two points of the same face is not
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Fic. 9 The fan about v.

the geodesic curve between them in that face but rather a path which leaves
the face and goes around v.)

Now, by its maximality and connectedness, vy; either connects v to a point
p which is the endpoint of a good segment (this can happen if v = v; or
v = v,) or else it connects points x and y which are both endpoints of good
segments. Endpoints of good segments have well-defined locations in D',
since we have already transplanted those segments. So, we have the end-
points of the path y; we are trying to build. The two situations we face
require slightly different treatments.

Case 1. vy; connects v to p. p lies on the edge of ¢, which is opposite to
v. Since the triangles ¢,,¢,,...,¢, have a common vertex, it is evident that
the length of v; is at least the hyperbolic length of the geodesic segment from
v to p in t,. By Lemma 2(iv), the corresponding segment in ¢, will be
shorter, so it is our choice for v].

Case 2. y; connects x to y. Here x lies on the edge of #; opposite to v
while y lies on the edge of ¢, opposite to v. Without loss of generality, we
may assume that the two developments of ¢ have v placed at the origin and
x placed along the positive real axis. If y; passes through v, we are done by
two applications of Case 1; so assume v & ;. Since y; does not pass through
the origin, we may consider the argument of a point (as a complex number)
moving from x to y along ;. Let ® > 0 denote the change in argument. If
® > m, then the shortest path from x to y (through ¢,,...,t, in succession)
would pass through the origin. Again, we would be done by Case 1.

We are left, then, with the case 0 < ® < 7, a situation illustrated in
Figure 9. Let

P=[x,wy,Wi,...,w,_1,¥]

denote the polygonal path from x to y along the outer edges of the triangles,
with ) the polygonal region consisting of the rays from the origin to points of
P. 1t is clear that the shortest path from x to y within our development of
triangles must lie in €. It is clear that this picture evolves continuously as r
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decreases. When we arrive at the development D', where the radius of v has
dropped from r to r’, we know by earlier monotonicity results how this
picture will have changed:

— the angles the triangles form at v will be larger

— the distances p(0, x) and p(0, y) will be smaller

— the interior angles §; formed by the edges of P (see Figure 9) will be
smaller.

The edges of the triangles opposite to v will not change in length, since
they are shared with triangles not in S. Likewise, the locations of x and y as
endpoints of good segments determine the locations of x' and y' in D’. Our
task is to find a path y; in Q' connecting x' to y' and having length no
greater than [(y)).

We start with the simplest situation: suppose that the geodesic [x, y] lies,
except for its endpoints, in the interior of 2, so we may take y; = [x, y]. By
convexity of the triangles, we see that the corner points wy, wy,...,w, of P
lie on one side of and a positive distance away from the geodesic through x
and y. If we decrease r, the edge lengths of P remain unchanged, but the
interior angles i, at which they meet decrease. It is not difficult, using for
example the Cosine Law and an induction on the number of edges in P, that
the distance between the endpoints of P, the distance p(x, y), decreases and,
for small decreases in r, the geodesic segment [x, y] remains in €. (This
depends on the fact that P lies on one side of the geodesic through its
endpoints—it may fail otherwise—and also on the assumption of finite radii,
which implies the angles ¢; are positive.) Specifically, there exists & > 0 so
that if » — 8 <r' <r, then the segment y; = [x’, y'] lies in ' and satisfies

I'(y)) =p(x',y") <p(x,y) =1(y)-

In this case, we are done. In case [x, y] does not lie in Q, or we want to
decrease r by more than 8, we must consider paths with geodesic segments
which pass through the interior as well as segments (or points) in 9Q. We
may apply the reasoning above to the former, replacing each by a segment in
D' with corresponding endpoints but whose length is no greater. Meanwhile,
those segments in d{) may be left unchanged, since their lengths are the
same in D and D'. The result is a new path y; with I'(y)) < I(y)).

To complete Case 2, we must consider the situation when one or more of
the vertices of S has infinite radius. The triangles in the development of ¢
are determined by circles whose hyperbolic radii are specified. A vertex with
infinite radius gives a horocycle, and it is evident that by replacing that radius
with a sufficiently large but finite value, one may jiggle the immersion of Y by
no more than some preassigned small euclidean amount. The previous
reasoning applies to the resulting finite situation, and our inequality follows
by a standard approximation argument.
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The good and bad segments of y have now given us segments in D’ of no
greater length which link together to form y’. This proves (3), and taking the
infimum over T gives (2).

Finally, the case of equality: This occurs when the radius at v, decreases,
so we may assume that v = v, above. The assumption pg(v,,v,) < ® means
r=v(R) < » and allows us to consider only paths y € I' having finite
length. In particular, the initial segment y; of y connects v to a point p on
the opposite edge of some triangle, as in Case 1. Replacing r by the strictly
smaller value r' and applying the full strength of Lemma 2(iv), there exists
n > 0, independent of p and hence independent of y, so that the geodesic
segment y; in D’ satisfies

I'(vy) <Il(y) —n.

Proceeding as before with the remaining segments, we obtain a path y' € T’
with ['(y") < I(y) — n. Taking the infimum over T gives pgr(v,,v,) <
pr(vy,v,) — m; i.e., strict inequality in (2). |

5. The boundary value problem

In this section we prove the existence of packings K(R) with specified
boundary radii. We rely on a class of hyperbolic complexes broader than the
class of packings.

DEeriNiTION.  The hyperbolic complex K(R) is said to be a local subpack-
ing at a vertex v if 6,(R) > 2. It is termed a subpacking if it is a local
subpacking at every interior vertex.

The terminology derives from that of potential theory. Think of a packing
as the analogue of a harmonic function. In a subpacking, each interior vertex
feels upward pressure on its radius—its radius is too small to meet the
packing condition (see Lemma 3(a)). Increasing its radius, its interior neigh-
bors feel additional upward pressure (see Lemma 3(b)), so they increase, and
so forth. Repeated adjustments cause the radii to converge monotonically to
the radii of a packing; this is essentially the method of ‘“relaxation” for
solving the discrete Dirichlet problem and could be used in the next proof.
We have chosen, instead, to follow (quite precisely) the line of the classical
Perron method.

TueoreMm 3. Given the complex K, let wl, ,w, be its boundary vertices,
and suppose corresponding hyperbolic radii r 0 <r; < ® are specified, j =
1,...,q. Then there exists a unique collectlon R of hyperbollc radii for which
the hyperboltc complex K® isa packing with w; (R) =r,j=1,.
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Of course, the Andreev packing results if all boundary radii are infinite.
However, in the proof we need to know of the existence of some packing for
K, so we use the existence portion of Andreev’s Theorem; only in the
Appendix do we show how an inductive argument can get around this. _

Incidentally, one can show by Jhe topological argument principle that K(R)
is a planar packing: Let ¢, : K(R) —> A be a locally isometric immersion. A
face of K containing a boundary edge e is mapped to a hyperbolic triangle in
A with edge ¢,(e) a complete geodesic (starting and ending on the unit
circle). One can easily define a homotopy of that triangle which fixes the
points of the other two edges while pushing ¢,(e) out to the unit circle.
Applying this process to all such faces, one sees that ¢, is homotopic to a
continuous discrete mapping of K to A which carries K to dA. This
mapping is locally one-to-one on the interior, so the argument principle
implies it is globally one-to-one. Undoing the homotopy, this implies ¢, is
globally one-to-one, so K(R) is a planar packing.

Proof. Define the family & to consist of those collections R for which
the hyperbolic complex K(R) is a subpacking and for which wi(R) < r; for
every boundary vertex w;, j = 1,..., q. Define R to be the supremum of Z#;
that is,

for every vertex v of K.

We show successively that # is nonempty, that w; ®) = =1...,q,
while v(R) < « for interior vertices v, that Re X, and ﬁnally that K®)is a
packing. These steps will prove existence; uniqueness will be shown with
arguments involving area.

Step I. % nonempty. Let R, denote the radii for the Andreev packing of
K, whose existence follows from Theorem 2. As noted, the hyperbolic
complex K(R,) may be isometrically embedded in the hyperbolic plane A,
giving rise to an associated configuration of circles. Choose a positive ¢ such
that W = {|z] < ¢t} has hyperbolic diameter smaller than any of the given
boundary radii and shrink the configuration of circles with the map z — tz.
The resulting circles give a packing K(R,) which is embedded in W, so R, is
an element of Z#. (See Figure 5(a) and Figure 6, which give the circle
configurations of an Andreev packing before and after shrinking.)

Step II. Radii in R. Here is where our monotonicity properties enter. Let
K(R) be a subpacking and suppose we increase the hyperbolic radius in R
corresponding to some boundary vertex w, giving a new collection R’. By
Lemma 3, K(R') is also a subpacking. To be precise, the angle sum at w will
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be less in K(R’) than in K(R), the angle sums at neighboring vertices will be
more, and the remaining angle sums will be unchanged. In particular, at
interior vertices v,

0,(R") 26,(R) = 2,

so K(R') is a subpacking.

Now, suppose we start with the collection R, € &# determined previously
and we successively increase the boundary radii to their prescribed values r;.
Each change leaves us with a subpacking. Having made all adjustments, we
arrive at a collectlon R € # with w(R) =r;, j=1,...,q. Consequently,
w,(R) = =1...,q

Concermng the radii at interior vertices, note that a vertex of K has less
than k neighbors, k the number of vertices in K. If K(R) is a subpacking,
then 6,(R) > 2 for any interior vertex v, so by Lemma 3(d), v(R) < vk < .
Thus we have a universal finite upper bounqw on the radiL of interior vertices
for any subpacking for K. The definition of R implies v(R) < Vk .

Step III. Re R. As with the classical Perron method, the essential
ingredient here is the fact that & is a net—that is, if R,, R, € &%, then
R = max{R,, R,} € #. The boundary radii of R clearly satisfy the required
inequality, so we need only verify that K(R) is a subpacking. As this is a local
condition, fix attention on an arbitrary interior vertex v and its immediate
neighbors. Suppose R; has the larger radius at v. Computing 6,(R), note
that the radius at v is that of R,, while all the neighboring radii are at least
as large as in R;. By Lemma 3(b), 6,(R) = 6,(R,) > 2, as desired.

Using the fact that &% is a net and that angle sums are continuous
functions of the radu involved, the proof that K®)is a subpackmg becomes
elementary. Since R has the correct boundary values, we see Re &.

Step IV. K®)is a _packing. We need to show that at an interior vertex v,
equality holds in 6,(R) > 2w. Suppose this were a strict inequality. The
inequality would persist if we made a small increase in the radius at v, and by
Lemma 3(b) the angle sums at neighbors would only get larger. We would
therefore obtain a co_gection of radii in & which woulc} have a radius atv
strictly larger than v(R), contradicting the definition of R. Therefore, K(R) is
a packing.

We complete our proof wit}l an area comparison which establishes the
uniqueness of the packing K(R). Write Areag(-) for area in the metric of
K(R). This may be computed as follows: Let v,,v,,...,v, denote the
interior vertices of K, wy,w,,...,w, the boundary vertices, and N the
number of faces. The area of each face in the metric of K(R) is 7 minus the
sum of its three angles. Each of these angles contributes to the angle sum of



THE SCHWARZ-PICK LEMMA FOR CIRCLE PACKINGS 599

a vertex, so by adding the areas for all faces and reorganizing the expression
we obtain

Areag(K) = N — f: evk(R) - i owk(R).
k=1 k=1

Furthermore, if K(R) is a packing, then 0Uk(R) =2m k=12,...,p, giving
q
Areag(K) = Nm — 2pm — Y. 6, (R). (4)
k=1
Similarly, we have
q L
Areaz(K) = Nmw —2pm~ Y, 6, (R). (5)
k=1

Successively replace each radius v, (R) by the radius vk(AR') and compare the
results: Since the radii of R are at least as large as those of R, the
monotonicity result of Lemma 2(iii) implies that

Areaz(K) = Areay(K),

with equality only if R = R. On the other hand, the radii of the boundary
vertices themselves are unchanged, while those of interior neighbors may
increase, so the monotonicity result of Lemma 3(b) implies that

6,(R) = 6,(R), k=1.2,...,q.

These two inequalities contradict (4) and (5) unless R = R, proving unique-
ness. W

Figure 7 illustrates the solutions of three boundary value problems for the
same complex; in fact, the three have precisely the same boundary radii, save
for a single vertex. The changes in that single circle (it can be seen on the
inside of the large bend of the configuration) force changes throughout the
interior and hence have a major effect on the overall collection.

6. The discrete Schwarz-Pick Lemma

We are now ready for the formal statement of our main result. Note that
we write pg(-, ) and Areag(-) for distance and area in the hyperbolic
complex K(R). These are shortened to p (-, -) and Area(+) for the Andreev
packing K(R),).
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Tue DiscRETE SCHWARZ-Pick LEMMA. Let K be a simplicial complex with
Andreev radii R,, and let R be any collection of radii for which K(R) is a
packing. Then:

(a) R < R,; that is, v(R) < v(R,) for every vertex v of K.

(B) prvy,0y) < p(vy,0,) for every pair of vertices v,,v, of K.

(c) Areag(f) < Area,(f) for every face f of K.

Furthermore, if equality holds for a single interior vertex in (a), for a single pair
of interior vertices in (b), or for a single face in (c), then R = R,.

We have not stated this result in the greatest generality, hoping instead to
maintain a fairly close parallel to the classical situation in complex analysis.
That parallel may remain a mystery to the reader at this point, but we will say
more about it shortly. As for the proof, however, we may proceed with more
general hypotheses.

THEOREM 4. Let K be a simplicial complex with boundary vertices w, . Wy
and assume K(R) is a packing. If K(R) is any subpacking with w(R) < w; (R)
j=1,...,q, then: -

(a) R < R; that is, v(R) < v(R) for every vertex v of K.

(b) pr(vy,0,) < pg(vy,0,) for every pair of vertices vy, v, of K.

(c) Areag(f) < Areaz(f) for every face f of K.

Furthermore, if equality holds for a single interior vertex in (a) or a single face
in (c), or if (finite) equality holds for a pair of vertices in (b), at least one of
which is interior, then R = R.

Proof. (a) This inequality is immediate from the proof of Theorem 3: Ris
the supremum oi the net Z# of collections R for which K(R) is a subpacking
and w(R) <w,R), j=1,...,q.

The case for equality depends on conditions we have placed on K: Recall
that any two interior vertices of K may be joined by an edge path which goes
through only interior vertices, and that every boundary vertex has an interior
neighbor. Suppose, now, that v is an interior vertex. The angle sum 6,(R) >
27r and is a strictly increasing function of the nelghbonng radii. Since
0 (R) = 2 and any neighboring vertex w satisfies w(R) < w(R), the equality
v(R) = v(R) would imply w(R) = w(R) for all these neighbors. It is immedi-
ate that, with the two oogdltlons mentioned on K, this equality propagates to
all vertices, giving R = R.

(b) This inequality follows from (a) and Lemma 4. As for equality, suppose
we have pg(vy,v,) = pg(vy,v,) < ®, were v, is an interior vertex. By the last
statement of Lemma 4, we have v(R) = vl(R) this gives equality in (a),
implying R = R.

(c) Every face has at least one interior vertex v, so this inequality follows
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from the monotonicity result of Lemma 2(@). Since mon(’)fonicity is strict
there, equality in (c) would imply v(R) = v(R), hence R=Rby(a). ®

7. Conclusion

We have alluded to connections between our work in the discrete setting
of circle packing and the classical continuous setting of complex analysis.
Some of these—analytic continuation, the monodromy theorem, the Perron
method, boundary value problems—are apparent and, in fact, may seem
rather superficial. However, as the topic develops, the authors feel that the
deeper and more fundamental parallels will become clear. Whether any of
that depth is apparent now depends in part on how the classical results are
viewed.

From a geometric standpoint, the classical Schwarz-Pick result is a state-
ment about contractions and extremal mappings or about curvatures and
extremal metrics. For example, in the classical setting, an analytic self map of
the disc is a contraction or an isometry. The Discrete Schwarz-Pick Lemma
(DSPL) implies that if K(R) is a packing (or even a subpacking), then the
identity map from K(R,) to K(R) is a contraction (on vertices) or an
isometry. Alternately, the classical result states that the Poincaré metric is
the maximal ultrahyperbolic metric on A (cf. [1]). In our setting, we have the
underlying complex K in place of A and we have the metrics induced by the
various hyperbolic structures, what one might term “simplicial” hyperbolic
structures. When K(R) is a subpacking, the corresponding metric is ultrahy-
perbolic. The DSPL implies that K(R,) has the unique maximal ultrahyper-
bolic metric among these.

Satisfying as these analogies might be, the reader may well be asking:
Where are the analytic functions? It is perhaps premature to settle on an
explicit definition. Nonetheless, we will suggest one possibility—a definition
which at least justifies the name of the paper, while indicating some addi-
tional parallels with the classical continuous setting.

As throughout the paper, K is a fixed simplicial complex. Each R for
which K(R) is a packing determines (up to an isometry) a locally isometric
immersion ¢z: K(R) — A. For purposes of normalization, fix an interior
vertex v, and a neighboring vertex v, of K and require

¢R(U0) =0, ¢R(vl) > 0.

In case R=R,, we have the Andreev packing, and the corresponding
immersion ¢, is an embedding. Therefore, K(R,) is isometrically isomorphic
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with its image Ax = ¢,(K) C A; it is convenient in what follows to identify K
with this concrete realization.
Now, we define the class & of functions F: Ay — A of the form

FE¢°¢R°¢;1,

where ¢ is a (classical) hyperbolic isometry of A and K(R) is a packing. In
the setting of this paper, the functions of % would be termed discrete
analytic functions. They are open, continuous, and locally univalent. Their
common domain Ay plays the role of the unit disc. Each F maps Ag to an
immersed image of some hyperbolic complex K(R)—essentially this im-
mersed image is the image Riemann surface of F. F is univalent if and only
if K(R) is a planar packing, in which case the image of F is isometrically
isomorphic with K(R). F would be called an isometry if F = §|a, for some
hyperbolic isometry ¢ of A.

Let us interpret the results of the DSPL: Given vertices v,w € K, the
distance pg(v,w) is the infimum of the lengths of paths from v to w in K(R).
Working instead in the hyperbolic plane, this may be interpreted as the
infimum of the hyperbolic lengths of paths from ¢z(v) to ¢g(w) in an
immersed image of K(R). In particular,

p(¢R(U)’¢R(W)) < pg(v,w).

In the case of the Andreev packing, ¢, is an embedding and the image A is
a convex polygon; consequently

p(¢a(0); Ba(w)) = pa(v,W).

Identifying K with A, and applying inequality (b) of the DSPL, we have this
discrete version of the classical contraction principle:

THEOREM OF Pick. Suppose F € & and v,w € Ay are distinct vertices of
K. Then

p(F(v), F(w)) < p(v,w).
Finite equality holds if and only if F is an isometry.
In the classical setting, the infinitesimal version of this result concerns the
factor by which an analytic function contracts distances locally, i.e., the

magnitude of its derivative. In our discrete setting, this local contraction
factor at an interior vertex v would seem to be the ratio of v(R) to v(R)).
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Applying inequality (a) of the DSPL, we have a discrete version of the local
contraction principle:

THEOREM OF SCHWARZ. Suppose F € & and v € Ay is an interior vertex.
Then

v(R)
v(R,)

Equality holds if and only if F is an isometry.

<1

The notation |F'(v)| = v(R)/v(R,) might be appropriate. With this in mind,
a “development” along a chain (see Section 2) is more akin to a line integral
than to analytic continuation. What about arg(F’)? Well, that will have to
await further study. But think for a moment about a polygonal path between
two vertices along edges of the immersed complex A,. Decreases in those
edge lengths under F would not account for the inequality of Pick’s theorem
unless there were closely coupled changes in the angles at which they meet.
Suffice it to say that the particular hyperbolic structures which we have
imposed on K seem to embody a discrete analogue of the Cauchy-Riemann
equations.

Of course, these are only analogies; the functions of % are not analytic in
the classical sense—indeed, they are simplicial. It has been pleasing, there-
fore, to see how faithfully the results mimic the classical models when
appropriate discrete notions are found. The discerning reader may foresee
other opportunities, e.g. branch points (angle sums which are multiples of
27r) and multiply-connected complexes. Indeed, since the topic’s inception,
with Thurston’s Purdue talk, the possibility of such analogies has been very
appealing—at least to those who view complex analysis as a geometric
subject. Our objective in this paper was not simply to prove the discrete
version of the Schwarz-Pick lemma, but also to provide a framework for the
development of further parallels. The hyperbolic setting, the notion of the
“hyperbolic complex”, the contraction property, and the solution of boundary
value problems seem quite important in this regard. The authors expect that,
with further research, these and other tools will lead to a wide range of

analogies with complex analysis—ultimately, perhaps, to a discrete complex
analysis.

Appendix

Although the existence portion of Andreev’s theorem (Theorem 2) was
used in the proof of Theorem 3, we now present an inductive argument in its
place. Coupled with the consideration of more general complexes, this
furnishes an independent proof of Andreev’s Theorem.
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It is precisely because of the need for general complexes that we have left
these arguments for an appendix. To avoid ambiguity, we use “complex” here
to refer to any 2-complex which is isomorphic to a finite triangulation of the
closed disc, while we term as “special” those meeting the additional require-
ments used earlier (see the definition in Section 1). Note that if K has
boundary vertices lacking interior neighbors, or if the interior vertices of K
comprise more than one component, then the conclusions regarding equality
in the Discrete Schwarz-Pick Lemma and Theorem 4 may fail. These are
among the reasons that the special complexes of the body of the paper more
closely model the continuous complex setting.

To prove Theorem 2 with K any complex, we use induction on k, the
number of its vertices. Note that the topological boundary of K is a simple
closed curve y passing through all boundary vertices. If k£ < 3, our result is
evident; henceforth assume k£ > 4 and assume that our conclusion holds for
complexes having fewer than k vertices.

Suppose first that K is not a special complex. It is not difficult to find a
pair v,w of boundary vertices connected by an edge not belonging to vy. In
particular, any two components of interior vertices will be separated by such
an edge and any vertex without an interior neighbor can be separated from
the rest of the complex by such an edge. Removing that edge breaks K into
two smaller complexes, K; and K,, which share only the vertices v and w. By
the induction hypothesis, there are Andreev packings for K; and K,. Let P;
and P, denote corresponding circle configurations. The circles for v and w
will be tangent horocycles in each configuration, so applications of Md&bius
transformations allow us to assume that these circles are

C,={lz—3l=3} and C,={z+3=3)

in each case. Orientation considerations show that the remaining circles for
K, will lie on the opposite side of the real axis from those for K,. Therefore,
superimposing the two configurations provides an Andreev packing for K.
Uniqueness is evident from the hypothesized uniqueness of the Andreev
packings for K; and K,. This completes the induction step if K is not
special.

If K is special, vertices v,w as above cannot exist and we proceed
differently. Let v be any boundary vertex of K. Removing v and the edges
and faces of its star from K yields a reduced complex K’, with former
neighbors of v being boundary vertices of K'. By the induction hypothesis,
there is an Andreev packing for K', and we denote by P’ a corresponding
configuration of circles in A. By considering our situation on the Riemann
sphere, we will use the circles of P’ along with the exterior of A, call that C,
to reconstitute K.

The argument is this: Pick boundary vertices u,w of K' which are neigh-
bors both in K’ and in K (i.e., so that u, v, w are not the vertices of a face of
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K). Let C, and C, denote the corresponding horocycles in P’, and choose a
disc A(x, r) having its closure in the interstice formed by C,, C,, and C.
Apply a Mobius transformation which carries x to infinity and dA(x, r) to the
unit circle. With a slight abuse of notation, we continue to use P’ for the now
transformed configuration, again in A. The (transformed) circle C will be
identified with v and denoted C,. It along with P’ gives a collection of circles
in A with mutually disjoint interiors which represents a packing for K.
Indeed, the circles of P’ represent a packing for K'; moreover, C, is tangent
to all the boundary circles of P'. Disregarding the extraneous tangencies, C,
is tangent to all the circles associated with its neighboring vertices in the
original complex K. Thus the packing condition holds for any of those which
happen to be interior vertices of K. Conclusion: we have obtained a packing
for K.

Now consider the proof of Theorem 3, noting that K is one of the special
complexes hypothesized there. The packing we obtained for K is all we need
to show that the family &% of subpackings there is nonempty. The proof
yields an Andreev packing for K (and its uniqueness). This completes the
induction step for special complexes, and hence the proof of Andreev’s
Theorem for complexes.

On a practical note, a technique for computing the radii of packings by an
iterative process was suggested by Thurston in his Purdue talk. It relies on
Lemma 3(c) and consists of repeated adjustments to individual radii to
achieve local packing. A version of this technique produced the pictures in
this paper on a SUN microcomputer; the algorithm works especially nicely in
the hyperbolic setting, where the monotonicity results, the bound of Lemma
3(d), and finite area are available. Even on a home computer, one can
compute and display hyperbolic complexes and their circle packings, allowing
for geometric experiments while producing some very beautiful and intricate
pictures.

Added in proof. Steffen Rohde has brought to our attention a reference
which has been overlooked in the circle packing literature; namely, what has
been termed the Andreev or Andreev-Thurston Theorem (Theorem 2 above)
was proven by Paul Koebe in “Kontaktprobleme der konformen Abbildung”,
Ber. Sichs. Akad. Wiss. Leipzig, Math,-phys. K., vol. 88 (1936), 141-164.
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