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FREDHOLM PROPERTIES AND INTERPOLATION OF
FAMILIES OF BANACH SPACES

BY

W. CAO, Y. SAGHER AND Z. SLODKOWSKI

1. Introduction

Throughout this paper, D will denote a simply connected domain in the
complex plane whose boundary F is a rectifiable simple closed curve. Denote
by A the unit disc {w/Iwl < 1}.

DEFINITION 1.1. An interpolation family of Banach spaces on F is a
collection {A(T)/T F} of Banach spaces which satisfies:

(1) Every A(T) is continuously embedded in a common Banach space
(2) For every a f)rrA(y), IlallA(r) is a measurable function on F with

respect to dPz, where z D and dPz is harmonic measure on F with respect
to z.

(3) Let

where log+x max(log x, 0). ’ is a finear space which is called the log-inter-
section space for {A(y)/y F}. We assume that " is dense in each A(y) and
that there exists a measurable function on F which satisfies fr log + q(y)dP
< c such that

for all a / and 7 F.

DEFINITION 1.2. The class N+= N(A)+ contains all analytic functions in A
for which f log+ [f(rei)[ dO are bounded with 0 < r < 1 and

lim f02r log+lf(rei)ld0 fo2 log+lf(ei)ld0.
rl-
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For detailed information on the class N+, see [8].
We denote by N+(D) the class of all functions f(z) analytic on D such

that f(ch(w)) belongs to the class N+= N+(A), where b is a conformal map
from A to D. Thus N+(D) is closed under pointwise addition and multiplica-
tion and each f(z) N+(D) possesses a.e. non-tangential limits on F. If
these non-tangential limits are essentially bounded on F, then f H(D),
the space of bounded analytic functions on D. A function f N+(D) is
termed an outer function in N+(D), if f(ch(w)) is an outer function in
N+(A).

Let (A(.), F) (s’)= be the space of all functions of the form
g(z) n.l=lqj(z)a., where a. and %. N+(D), and such that

Ilg(’)ll ess sup [[g(y)[[A(v) < .
Note that in general (, [1) is not complete.

DEFINITION 1.3. For z D and a see" define

]lallA( inf(llglle/g W, g(z) a}.

The interpolation space {A(y)}{z} A{z} is defined to be the completion of

In most applications the family of dual spaces {A*(y)} is itself an interpo-
lation family and (A{z})* {A*(y)}{z}. In this paper we shall assume that
the above duality result holds.
We consider linear operators T mapping e’ into fqvvB(y), with

]]Ta liB(v) -< M(’y)[[a[[A() for all a and ), F, where {A(y)/7 F} and
{B(y)/y F} are interpolation families on F and

log M( y) dPz( 3,) < .
We will denote the restriction of T to A{z} by Tz. A well-known result due
to Szeg6 [11] says:

Let f(y) be a positive dP measurable function on F such that

fv]log f(T) dP(T) <

for some (and thus every) z D. Then there exists a non-vanishing outer

function G(z) in N+(D) whose a.e. non-tangential limits G(T) lim r G(z)
satisfy IG(y)lf(y)= 1 for a.e. y F.
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Therefore there exists an outer function G(’) such that

IG(./)M(,)I 1 for a.e. y F.

DEFINITION 1.4. Let A and B be Banach spaces, and let T be a linear
bounded operator mappingA into B. T is a Fredholm operator if its kernel has
a finite dimension and B TA M, with dim M < . The dimension ofM is
called the codimension of T and is denoted by codim T. The index of T is

defined by i(T) dim ker T codim T.

The question of the stability of Fredholm property when one changes the
parameters which determine the interpolation space has been considered by
several authors [1], [4], [5], [9], [10], [12], [13]. In [5] it is proved that if
ker T {0} and codim T d < , then there exists a ball B centered at s
such that z B implies that ker T {0} and codim T d. This generalizes
the results of Vignati and Vignati who proved the theorem in the case d 0
(see [12]). In this paper we extend the results of [5] in two directions. We
prove that if dim ker T < , codim T and Ts has closed range, then
there exists a ball B centered at s such that z B implies that dim ker T <
dim ker Ts, codim T and Tz has closed range. We also eliminate the
restriction ker T {0} imposed in [5], i.e., prove that if T is Fredholm then
there exists a ball B(s, 8) such that the operators T are Fredholm and
i(Ts) i(Tz) for all z B(s, 8).
We recall some results from [5].

DEFINITION 1.5. Suppose U(A) is a subset of (s’). Let

U {a A{s}/:lf U(A), such thatf(s) a}.

Define

IlallA) inf{llfll/f(s) a, f e U(A)}.

Clearly Ila [IA{s} Ila U(A) for all a Us.
Let U{s be the completion in A{s} of {U, IIu), Clearly U{s c A{s}. If also

Ilallu(A) <-- kllallAs for some k and all a Us, we call U(A) an s-Calder6n
subset (with constant k ). If U(A) is an s-Calder6n subset and a linear subspace
of W(e’), we will say that it is an s-Calderdn subspace.

Clearly U(A) is an s-Calder6n subspace for some k if and only if Us is a
closed subspace of A{s}.

THEOREM 1.6. Let {vl,..., vd} c (’) and assume that {Ui(S)} are inde-
pendent. Denote by U the span of {vi} in (). Then there exists > 0 such
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that for all Iz s < 6, U is a z-Calderdn subspace with a uniform constant k
and dim(Uz}) d.

THEOREM 1.7. Let U(A), V(A) be subspaces of (e’), and let S be an
open subset of D. Assume that U(A) and V(A) are z-Calderdn subspaces for
all z S, with constant k which is uniform for z S. Then the function

Xz =Xz(U(A),V(A))
inf{llf(z) g ( z)llAz}/g U(A), f V(A) and Ill( Z)IIA} 1

is continuous in S.

2. Fredholm properties

LEMMA 2.1. Let E be a closed subspace of A{s} with infinite codimension.
Given any positive integer d, there exists {vi, 1,..., d} c W(a’) such that
{vi(s)} is linearly independent and E A span{vi(s)} {0}.

Proof Since E has infinite codimension, there exists M cA{s} with
dim M d such that E A M {0}. Assume that {ei, 1 < < d} forms a basis
for M with IleillA{s 1. Let

{ll d

p P(el,... ed; E) inf

_
cie X

i=1
maxlcil 1, x E}.A{s}/

Clearly p < 1. Since E is a closed subspace and M has finite dimension, then
E N M {0} implies p > 0.

Since {t0(s), to ’(a’)} is dense in A{s}, we can find {toi, i= 1,..., d} c
(’) with Iltoi(s)- eillA{s < p/2d. Now suppose max{Ici[} 1 and let
x E, we have

X E CiUi(S) >__ X E ciei
i= A{s} A{s}

E Ci(Ui(S) ei)
A{s}

> 0/2.

Taking infimum we get P(tol(S),..., tod(S); E) > p/2 > 0. Hence {Ui(S) is
linearly independent and E span{toi(s)} {0}.

LEMMA 2.2. Assume ker T {0}. If operator T has closed range and
codim(TsA{s}) , then there exists > 0 such that, for all z with [z s[ < 6,
the operator Tz has closed range and ker T {0}. Further, given d with
0 < d < 0% there exists 61 > 0 such that for all [z s[ < 1 we also have
codim TA{z > d.
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Proof Consider the function

r(T) inf{llTallBt/llallAt 1}.
Clearly if r(T) > 0, ker T {0} and the range of T is closed. Conversely, if
the range of T is closed and ker T- {0}, then by the open mapping
theorem r(T) TI[[- > 0. Since the range of T is closed and ker T
{0}, we have r(Ts) > 0. It is proved in [9], [12] that r(T) > r(Ts)/2 > 0 for all
z which satisfy [z s[ < , for some > 0. Thus for all those z, ker T {0}
and T has closed range.

Let G(’) be an outer function such that ]G(T)M(T)[ 1 for a.e. T F.
Let >0 be such that {z/lz-s[ <} cD and r(T)>r(T)/2 for all
[z s[ < . We claim that G(’)TW() is a z-Calder6n subspace of
with constant c, for all z such that Iz s] < 8, where

In fact, let y (G(-)r())(z). Then y T. Let x be such
that Tx y. Since T has closed range, T2 is a linear bounded operator
defined on TA{z}, and so

IlxlI/ IITlll IlYlIB.
We choose g () such that g(z) x and

Ilgll 211XlIA 211TII IlYlIB.
Then g(()/G(z) () and H(() G(()T(g(()/G(z)) G(.)T().
Clearly H(z) y, and since IG(y)M(y)I 1 for a.e. y F, we have

211Tlll Ily IIg
IIHII IG(z)l cllYlIB.

Therefore G(.)T() is a z-Calder6n subspace with constant c for all z
such that Iz s < 6. Therefore:

By Lemma 2.1, there exists {vi, i= 1,..., d} c () such that {vi(s)} is
independent, and if we let span{vi(s)} Ms, then (G(.)T())s M
TsA{s} M {0}. Denote by M the space spanned by {vi} in () and by

M the space spanned by {vi(z)}. By Theorem 1.6, there exists a ball S
centered at s, such that M is a z-Calder6n subspace with a uniform constant

c for all z S.
Since (G(.)T())s M {0} and M has finite dimension, we have

M) > 0.
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By Theorem 1.7, since G(’)T’(sg’) and M are z-Calder6n subspaces with a
uniform constant when z is close to s, there exists 81 > 0 such that Iz s
< 81 implies Xz > 0, which implies (G(.)T’(’))z N M {0}. Therefore
TzA{z} N M {0}. By Theorem 1.6, dim M d. Hence the codimension of
TzA{Z} is not less than d.

THEOREM 2.3. Assume ker T {0}. If T has closed range and
codim(TsA{S}) , then there exists > O, such that for all [z s[ < , T
has closed range and ker T {0}, codim TA{z} .

Proof. By Lemma 2.2, there exists a ball B centered at s such that z B
implies that ker T {0} and T has closed range.
Assume that for some z0 B, codim Tz0 d with 0 < d < . Denote by S

the set of points z B such that codim T d. By Theorem 2.7 of [5], S is
open. Let z OS and z B. Then ker TI {0}. If codim Tzl d < 0%
then by Theorem 2.7 of [5], there exists B(z 1, 3zl) such that codim T d
and ker T {0} for all z B(z 1, ). But B(z1, r3z) c S 4= {0}, which leads
to a contradiction. If codim Tl we get the same contradiction, using
Lemma 2.2. Therefore either S B or S . Since s S, we do not have
S B and since z0 S, we have a contradiction. Therefore codim T
for all z B.

THEOREM 2.4. If T is a Fredholm operator, then there exists > O, such
that for all [z sl < 8, T are Fredholm operators with i(T) i(Ts).

Proof Since T is a Fredholm operator, then ker T has finite dimension,
T has closed range and finite codimension d. By Lemma 2.1, there exist
v .(.), 1,..., d such that B{s} TsA{s} M, where M is the space
spanned by {vi(s)}. Note vi(s) ..
We now define Banach spaces A(,) A(y) M with norms

Ila + m I1<) Ila IIA() + IIm IIB<).

It is not hard to see that the collection of Banach spaces {(/)/F} is an
interpolation family of Banach spaces on F with the log-intersection space
x’= s’ M. We then have A{z} A{z} M.

Define a new operator mapping into f’lrrB(7): (a + m)=
Ta + m, where a and m M. Then

Ilr(a + m)ll.( _< (M(,) + 1)lla + mild(r>

for all a +m AandyF. Wehave

fr log(M(y) + 1) dP() < .
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Clearly T is onto and its kernel has finite dimension r. Then by Corollary
2.8 in [5], there exists a ball S centered at s such that z S implies that Tz is
onto and its kernel has finite dimension r.
B z(z} TzA{z} + M. The sum may not be direct. Let TzA(z} N M

--M’ and let ml,..., mr1 be a basis for M’. There_ exist al,..., arl A{z}
such that Tza mj. Note that aj mj ker Tz, but aj ker Tz. Note also
that if a e ker T, then a e ker T. Therefore dim ker Tz > dim ker Tz + r.
If however a +rn ekerTz but Tza 4:0, then Ta -m and Ta e M’.
Therefore dim ker Tz dim ker T + r1. Let M be a subspace of M such
that M M’= M. Then Bz TEA{z} M and

codim T dim M dim M r, dim M (dim ker dim ker T)
dim M- dim ker T + dim ker T
dim M dim ker T + dim ker T
codim T dim ker T + dim ker Tz.

Hence i(T) i(Ts).
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