FREDHOLM PROPERTIES AND INTERPOLATION OF FAMILIES OF BANACH SPACES

BY

W. Cao, Y. Sagher and Z. Slodkowski

1. Introduction

Throughout this paper, D will denote a simply connected domain in the complex plane whose boundary Γ is a rectifiable simple closed curve. Denote by Δ the unit disc $\{w/|w| < 1\}$.

DEFINITION 1.1. An interpolation family of Banach spaces on Γ is a collection $\{A(\gamma)/\gamma \in \Gamma\}$ of Banach spaces which satisfies:

- (1) Every $A(\gamma)$ is continuously embedded in a common Banach space \mathcal{U} .
- (2) For every $a \in \bigcap_{\gamma \in \Gamma} A(\gamma)$, $||a||_{A(\gamma)}$ is a measurable function on Γ with respect to dP_z , where $z \in D$ and dP_z is harmonic measure on Γ with respect to z.
 - (3) Let

$$\mathscr{A} = \left\{ a \in \bigcap_{\gamma \in \Gamma} A(\gamma) \middle/ \int_{\Gamma} \log^{+} ||a||_{A_{\gamma}} dP_{z}(\gamma) < \infty \right\},$$

where $\log^+ x = \max(\log x, 0)$. \mathscr{A} is a linear space which is called the log-intersection space for $\{A(\gamma)/\gamma \in \Gamma\}$. We assume that \mathscr{A} is dense in each $A(\gamma)$ and that there exists a measurable function ψ on Γ which satisfies $\int_{\Gamma} \log^+ \psi(\gamma) dP_z < \infty$ such that

$$||a||_{\mathscr{U}} \leq \psi(\gamma)||a||_{A(\gamma)}$$

for all $a \in \mathcal{A}$ and $\gamma \in \Gamma$.

DEFINITION 1.2. The class $N^+ = N(\Delta)^+$ contains all analytic functions in Δ for which $\int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta$ are bounded with $0 \le r < 1$ and

$$\lim_{r\to 1^{-}}\int_{0}^{2\pi}\log^{+}\left|f(re^{i\theta})\right|d\theta = \int_{0}^{2\pi}\log^{+}\left|f(e^{i\theta})\right|d\theta.$$

Received August 10, 1990.

Primary 46B70.

1991 Mathematics Subject Classification.

For detailed information on the class N^+ , see [8].

We denote by $N^+(D)$ the class of all functions f(z) analytic on D such that $f(\phi(w))$ belongs to the class $N^+ = N^+(\Delta)$, where ϕ is a conformal map from Δ to D. Thus $N^+(D)$ is closed under pointwise addition and multiplication and each $f(z) \in N^+(D)$ possesses a.e. non-tangential limits on Γ . If these non-tangential limits are essentially bounded on Γ , then $f \in H^\infty(D)$, the space of bounded analytic functions on D. A function $f \in N^+(D)$ is termed an outer function in $N^+(D)$, if $f(\phi(w))$ is an outer function in $N^+(\Delta)$.

Let $\mathscr{G}(A(\cdot), \Gamma) = \mathscr{G}(\mathscr{A}) = \mathscr{G}$ be the space of all functions of the form $g(z) = \sum_{j=1}^{n} \varphi_j(z) a_j$, where $a_j \in \mathscr{A}$ and $\varphi_j \in N^+(D)$, and such that

$$\|g(\cdot)\|_{\mathscr{I}} = \operatorname{ess sup} \|g(\gamma)\|_{A\{\gamma\}} < \infty.$$

Note that in general $(\mathscr{G}, \|\cdot\|_{\mathscr{G}})$ is not complete.

Definition 1.3. For $z \in D$ and $a \in \mathcal{A}$ define

$$||a||_{A\{z\}} = \inf\{||g||_{\mathscr{G}}/g \in \mathscr{G}, g(z) = a\}.$$

The interpolation space $\{A(\gamma)\}\{z\} = A\{z\}$ is defined to be the completion of $(\mathscr{A}, \|\cdot\|_{A\{z\}})$.

In most applications the family of dual spaces $\{A^*(\gamma)\}\$ is itself an interpolation family and $(A\{z\})^* = \{A^*(\gamma)\}\{z\}$. In this paper we shall assume that the above duality result holds.

We consider linear operators T mapping \mathscr{A} into $\bigcap_{\gamma \in \Gamma} B(\gamma)$, with $||Ta||_{B(\gamma)} \leq M(\gamma)||a||_{A(\gamma)}$ for all $a \in \mathscr{A}$ and $\gamma \in \Gamma$, where $\{A(\gamma)/\gamma \in \Gamma\}$ and $\{B(\gamma)/\gamma \in \Gamma\}$ are interpolation families on Γ and

$$\int_{\Gamma} |\log M(\gamma)| dP_z(\gamma) < \infty.$$

We will denote the restriction of T to $A\{z\}$ by T_z . A well-known result due to Szegö [11] says:

Let $f(\gamma)$ be a positive dP_z measurable function on Γ such that

$$\int_{\Gamma} |\log f(\gamma)| dP_z(\gamma) < \infty$$

for some (and thus every) $z \in D$. Then there exists a non-vanishing outer function G(z) in $N^+(D)$ whose a.e. non-tangential limits $G(\gamma) = \lim_{z \to \gamma} G(z)$ satisfy $|G(\gamma)|f(\gamma) = 1$ for a.e. $\gamma \in \Gamma$.

Therefore there exists an outer function $G(\cdot)$ such that

$$|G(\gamma)M(\gamma)| = 1$$
 for a.e. $\gamma \in \Gamma$.

DEFINITION 1.4. Let A and B be Banach spaces, and let T be a linear bounded operator mapping A into B. T is a Fredholm operator if its kernel has a finite dimension and $B = TA \oplus M$, with dim $M < \infty$. The dimension of M is called the codimension of T and is denoted by $\operatorname{codim} T$. The index of T is defined by $\operatorname{i}(T) = \dim \ker T - \operatorname{codim} T$.

The question of the stability of Fredholm property when one changes the parameters which determine the interpolation space has been considered by several authors [1], [4], [5], [9], [10], [12], [13]. In [5] it is proved that if $\ker T_s = \{0\}$ and codim $T_s = d < \infty$, then there exists a ball B centered at s such that $z \in B$ implies that $\ker T_z = \{0\}$ and codim $T_z = d$. This generalizes the results of Vignati and Vignati who proved the theorem in the case d = 0 (see [12]). In this paper we extend the results of [5] in two directions. We prove that if dim $\ker T_s < \infty$, codim $T_s = \infty$ and T_s has closed range, then there exists a ball B centered at s such that $z \in B$ implies that dim $\ker T_z \leq \dim \ker T_s$, codim $T_z = \infty$ and T_z has closed range. We also eliminate the restriction $\ker T_s = \{0\}$ imposed in [5], i.e., prove that if T_s is Fredholm then there exists a ball $B(s, \delta)$ such that the operators T_z are Fredholm and $i(T_s) = i(T_z)$ for all $z \in B(s, \delta)$.

We recall some results from [5].

DEFINITION 1.5. Suppose U(A) is a subset of $\mathscr{G}(\mathscr{A})$. Let

$$U_s = \{a \in A\{s\} | \exists f \in U(A), \text{ such that } f(s) = a\}.$$

Define

$$||a||_{U_{s}(A)} = \inf\{||f||_{\mathscr{G}}/f(s) = a, f \in U(A)\}.$$

Clearly $||a||_{A\{s\}} \leq ||a||_{U_s(A)}$ for all $a \in U_s$.

Let $U_{\{s\}}$ be the completion in $A\{s\}$ of $\{U_s, \|\cdot\|_{U_s}\}$. Clearly $U_{\{s\}} \subset A\{s\}$. If also $\|a\|_{U_s(A)} \leq k \|a\|_{A\{s\}}$ for some k and all $a \in U_s$, we call U(A) an s-Calderón subset (with constant k). If U(A) is an s-Calderón subset and a linear subspace of $\mathscr{G}(\mathscr{A})$, we will say that it is an s-Calderón subspace.

Clearly U(A) is an s-Calderón subspace for some k if and only if $U_{\{s\}}$ is a closed subspace of $A\{s\}$.

THEOREM 1.6. Let $\{v_1, \ldots, v_d\} \subset \mathscr{G}(\mathscr{A})$ and assume that $\{v_i(s)\}$ are independent. Denote by U the span of $\{v_i\}$ in $\mathscr{G}(\mathscr{A})$. Then there exists $\delta > 0$ such

that for all $|z - s| < \delta$, U is a z-Calderón subspace with a uniform constant k and $\dim(U_{\{z\}}) = d$.

THEOREM 1.7. Let U(A), V(A) be subspaces of $\mathscr{G}(\mathscr{A})$, and let S be an open subset of D. Assume that U(A) and V(A) are z-Calderón subspaces for all $z \in S$, with constant k which is uniform for $z \in S$. Then the function

$$\chi_z = \chi_z(U(A), V(A))$$

= $\inf\{\|f(z) - g(z)\|_{A\{z\}}/g \in U(A), f \in V(A) \text{ and } \|f(z)\|_{A\{z\}} = 1\}$

is continuous in S.

2. Fredholm properties

LEMMA 2.1. Let E be a closed subspace of $A\{s\}$ with infinite codimension. Given any positive integer d, there exists $\{v_i, i = 1, ..., d\} \subset \mathscr{G}(\mathscr{A})$ such that $\{v_i(s)\}$ is linearly independent and $E \cap \operatorname{span}\{v_i(s)\} = \{0\}$.

Proof. Since E has infinite codimension, there exists $M \subset A\{s\}$ with dim M = d such that $E \cap M = \{0\}$. Assume that $\{e_i, 1 \le i \le d\}$ forms a basis for M with $\|e_i\|_{A\{s\}} = 1$. Let

$$\rho = \rho(e_1, \dots, e_d; E) = \inf \left\{ \left\| \sum_{i=1}^d c_i e_i - x \right\|_{A\{s\}} / \max |c_i| = 1, x \in E \right\}.$$

Clearly $\rho \leq 1$. Since E is a closed subspace and M has finite dimension, then $E \cap M = \{0\}$ implies $\rho > 0$.

Since $\{v(s), v \in \mathscr{S}(\mathscr{A})\}$ is dense in $A\{s\}$, we can find $\{v_i, i = 1, ..., d\} \subset \mathscr{S}(\mathscr{A})$ with $\|v_i(s) - e_i\|_{A\{s\}} < \rho/2d$. Now suppose $\max\{|c_i|\} = 1$ and let $x \in E$, we have

$$\left\|x - \sum_{i=1}^{d} c_{i} v_{i}(s)\right\|_{\mathcal{A}\{s\}} \ge \left\|x - \sum_{i=1}^{d} c_{i} e_{i}\right\|_{\mathcal{A}\{s\}} - \left\|\sum_{i=1}^{d} c_{i} (v_{i}(s) - e_{i})\right\|_{\mathcal{A}\{s\}} > \rho/2.$$

Taking infimum we get $\rho(v_1(s), \dots, v_d(s); E) \ge \rho/2 > 0$. Hence $\{v_i(s)\}$ is linearly independent and $E \cap \text{span}\{v_i(s)\} = \{0\}$.

Lemma 2.2. Assume $\ker T_s = \{0\}$. If operator T_z has closed range and $\operatorname{codim}(T_sA\{s\}) = \infty$, then there exists $\delta > 0$ such that, for all z with $|z - s| < \delta$, the operator T_z has closed range and $\ker T_z = \{0\}$. Further, given d with $0 < d < \infty$, there exists $\delta_1 > 0$ such that for all $|z - s| < \delta_1$ we also have $\operatorname{codim} T_z A\{z\} \ge d$.

Proof. Consider the function

$$r(T_z) = \inf\{||Ta||_{B\{z\}}/||a||_{A\{z\}} = 1\}.$$

Clearly if $r(T_z) > 0$, ker $T_z = \{0\}$ and the range of T_z is closed. Conversely, if the range of T_z is closed and ker $T_z = \{0\}$, then by the open mapping theorem $r(T_z) = \|T_z^{-1}\|^{-1} > 0$. Since the range of T_s is closed and ker $T_s = \{0\}$, we have $r(T_s) > 0$. It is proved in [9], [12] that $r(T_z) > r(T_s)/2 > 0$ for all z which satisfy $|z - s| < \delta$, for some $\delta > 0$. Thus for all those z, ker $T_z = \{0\}$ and T_z has closed range.

Let $G(\cdot)$ be an outer function such that $|G(\gamma)M(\gamma)|=1$ for a.e. $\gamma\in\Gamma$. Let $\delta>0$ be such that $\{z/|z-s|<\delta\}\subset D$ and $r(T_z)>r(T_s)/2$ for all $|z-s|<\delta$. We claim that $G(\cdot)T\mathscr{G}(\mathscr{A})$ is a z-Calderón subspace of $\mathscr{G}(\mathscr{B})$ with constant c, for all z such that $|z-s|<\delta$, where

$$c = 4\|T_s^{-1}\| \sup_{\eta} \left\{ \exp\left(\int_{\Gamma} \log M(\gamma) \ dP_{\eta}(\gamma) \right) / |\eta - s| < \delta \right\}.$$

In fact, let $y \in (G(\cdot)T\mathscr{S}(\mathscr{A}))(z)$. Then $y \in T_z\mathscr{A}$. Let $x \in \mathscr{A}$ be such that Tx = y. Since T_z has closed range, T_z^{-1} is a linear bounded operator defined on $T_zA\{z\}$, and so

$$||x||_{A\{z\}} \le ||T_z^{-1}|| ||y||_{B\{z\}}.$$

We choose $g \in \mathscr{G}(\mathscr{A})$ such that g(z) = x and

$$||g||_{\mathscr{I}(\mathscr{A})} \le 2||x||_{A\{z\}} \le 2||T_z^{-1}|| ||y||_{B\{z\}}.$$

Then $g(\zeta)/G(z) \in \mathscr{G}(\mathscr{A})$ and $H(\zeta) = G(\zeta)T(g(\zeta)/G(z)) \in G(\cdot)T\mathscr{G}(\mathscr{A})$. Clearly H(z) = y, and since $|G(\gamma)M(\gamma)| = 1$ for a.e. $\gamma \in \Gamma$, we have

$$\|H\|_{\mathscr{L}(\mathcal{B})} \leq \frac{2\|T_z^{-1}\| \, \|y\|_{B\{z\}}}{|G(z)|} \leq c \, \|y\|_{B\{z\}}.$$

Therefore $G(\cdot)T\mathcal{S}(\mathcal{A})$ is a z-Calderón subspace with constant c for all z such that $|z-s| < \delta$. Therefore:

$$(G(\cdot)T\mathscr{G}(\mathscr{A}))_{\{z\}}=T_zA\{z\}.$$

By Lemma 2.1, there exists $\{v_i, i=1,\ldots,d\} \subset \mathscr{G}(\mathscr{B})$ such that $\{v_i(s)\}$ is independent, and if we let $\operatorname{span}\{v_i(s)\} = M_s$, then $(G(\cdot)T\mathscr{G}(\mathscr{A}))_{\{s\}} \cap M_s = T_sA\{s\} \cap M_s = \{0\}$. Denote by M the space spanned by $\{v_i\}$ in $\mathscr{G}(\mathscr{B})$ and by M_z the space spanned by $\{v_i(z)\}$. By Theorem 1.6, there exists a ball S centered at S, such that S is a S-Calderón subspace with a uniform constant S for all S is S.

Since $(G(\cdot)T\mathscr{G}(\mathscr{A}))_{\{s\}}\cap M_s=\{0\}$ and M_s has finite dimension, we have

$$\chi_s = \chi_s(G(\cdot)T\mathscr{G}(\mathscr{A}), M) > 0.$$

By Theorem 1.7, since $G(\cdot)T\mathscr{G}(\mathscr{A})$ and M are z-Calderón subspaces with a uniform constant when z is close to s, there exists $\delta_1 > 0$ such that $|z - s| < \delta_1$ implies $\chi_z > 0$, which implies $(G(\cdot)T\mathscr{G}(\mathscr{A}))_z \cap M_z = \{0\}$. Therefore $T_zA\{z\} \cap M_z = \{0\}$. By Theorem 1.6, dim $M_z = d$. Hence the codimension of $T_zA\{z\}$ is not less than d.

THEOREM 2.3. Assume $\ker T_s = \{0\}$. If T_s has closed range and $\operatorname{codim}(T_s A\{s\}) = \infty$, then there exists $\delta > 0$, such that for all $|z - s| < \delta$, T_z has closed range and $\ker T_z = \{0\}$, $\operatorname{codim} T_z A\{z\} = \infty$.

Proof. By Lemma 2.2, there exists a ball B centered at s such that $z \in B$ implies that ker $T_z = \{0\}$ and T_z has closed range.

Assume that for some $z_0 \in B$, codim $T_{z_0} = d$ with $0 \le d < \infty$. Denote by S the set of points $z \in B$ such that codim $T_z = d$. By Theorem 2.7 of [5], S is open. Let $z_1 \in \partial S$ and $z_1 \in B$. Then ker $T_{z_1} = \{0\}$. If codim $T_{z_1} = d_1 < \infty$, then by Theorem 2.7 of [5], there exists $B(z_1, \delta_{z_1})$ such that codim $T_z = d_1$ and ker $T_z = \{0\}$ for all $z \in B(z_1, \delta_{z_1})$. But $B(z_1, \delta_{z_1}) \cap S \neq \{0\}$, which leads to a contradiction. If codim $T_{z_1} = \infty$ we get the same contradiction, using Lemma 2.2. Therefore either S = B or $S = \emptyset$. Since $s \notin S$, we do not have S = B and since $z_0 \in S$, we have a contradiction. Therefore codim $T_z = \infty$ for all $z \in B$.

Theorem 2.4. If T_s is a Fredholm operator, then there exists $\delta > 0$, such that for all $|z - s| < \delta$, T_z are Fredholm operators with $i(T_z) = i(T_s)$.

Proof. Since T_s is a Fredholm operator, then ker T_s has finite dimension, T_s has closed range and finite codimension d. By Lemma 2.1, there exist $v_i \in \mathscr{S}(\mathscr{B}), i = 1, \ldots, d$ such that $B\{s\} = T_s A\{s\} \oplus M$, where M is the space spanned by $\{v_i(s)\}$. Note $v_i(s) \in \mathscr{B}$.

We now define Banach spaces $\tilde{A}(\gamma) = A(\gamma) \oplus M$ with norms

$$||a + m||_{\tilde{A}(\gamma)} = ||a||_{A(\gamma)} + ||m||_{B(\gamma)}.$$

It is not hard to see that the collection of Banach spaces $\{\tilde{A}(\gamma)/\Gamma\}$ is an interpolation family of Banach spaces on Γ with the *log-intersection space* $\tilde{\mathcal{A}} = \mathcal{A} \oplus M$. We then have $\tilde{A}\{z\} = A\{z\} \oplus M$.

Define a new operator \overline{T} mapping $\tilde{\mathscr{A}}$ into $\bigcap_{\gamma \in \Gamma} B(\gamma)$: $\overline{T}(a+m) = Ta + m$, where $a \in \mathscr{A}$ and $m \in M$. Then

$$\|\overline{T}(a+m)\|_{B(\gamma)} \leq (M(\gamma)+1)\|a+m\|_{\tilde{A}(\gamma)}$$

for all $a + m \in \tilde{A}$ and $\gamma \in \Gamma$. We have

$$\int_{\Gamma} \left| \log (M(\gamma) + 1) \right| dP_z(\gamma) < \infty.$$

Clearly \overline{T}_s is onto and its kernel has finite dimension r. Then by Corollary 2.8 in [5], there exists a ball S centered at s such that $z \in S$ implies that \overline{T}_z is onto and its kernel has finite dimension r.

 $B_z = \overline{T}_z \tilde{A}\{z\} = T_z A\{z\} + M$. The sum may not be direct. Let $T_z A\{z\} \cap M = M'$ and let m_1, \ldots, m_{r_1} be a basis for M'. There exist $a_1, \ldots, a_{r_1} \in A\{z\}$ such that $T_z a_j = m_j$. Note that $a_j - m_j \in \ker \overline{T}_z$, but $a_j \notin \ker T_z$. Note also that if $a \in \ker T_z$, then $a \in \ker \overline{T}_z$. Therefore dim $\ker \overline{T}_z \geq \dim \ker T_z + r_1$. If however $a + m \in \ker \overline{T}_z$ but $T_z a \neq 0$, then $T_z a = -m$ and $T_z a \in M'$. Therefore dim $\ker \overline{T}_z = \dim \ker T_z + r_1$. Let M_1 be a subspace of M such that $M_1 \oplus M' = M$. Then $B_z = T_z A\{z\} \oplus M_1$ and

$$\begin{aligned} \operatorname{codim} T_z &= \dim M_1 = \dim M - r_1 = \dim M - \left(\dim \ker \overline{T}_z - \dim \ker T_z \right) \\ &= \dim M - \dim \ker \overline{T}_s + \dim \ker T_z \\ &= \dim M - \dim \ker T_s + \dim \ker T_z \\ &= \operatorname{codim} T_s - \dim \ker T_s + \dim \ker T_z. \end{aligned}$$

Hence $i(T_s) = i(T_s)$.

REFERENCES

- 1. E. Albrecht, *Spectral interpolation*, Operator Theory: Advances and Applications, vol. 14, Birkhauser-Verlag, Basel, 1984, pp. 13–37.
- 2. J. Bergh and J. Löfström, Interpolation Spaces, Springer-Verlag, New York, 1976.
- A.P. CALDERÓN, Intermediate spaces and interpolation, the complex method, Studia Math., vol. 24 (1964), pp. 113-190.
- 4. W. CAO and Y. SAGHER, Stability of Fredholm properties in interpolation scales, Ark. Mat., to appear.
- 5. _____, Stability in interpolation of families of Banach spaces, Proc. of Amer. Math. Soc., to appear.
- R. COIFMAN, M. CWIKEL, R. ROCHBERG, Y. SAGHER and G. WEISS, The complex method for interpolation of operators acting on families of Banach spaces, Lecture Notes in Mathematics, vol. 779, Springer-Verlag, New York, 1980, pp. 123–153.
- 7. ______, A theory of complex interpolation for families of Banach spaces, Adv. in Math., vol. 33 (1982), pp. 203–229.
- 8. P.L. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- 9. Z. Slodkowski, A generalization of Vesentini and Wermer' theorem, Rend. Sem. Mat. Univ. Padova, vol. 75 (1986), pp. 157-171.
- I.YA. Sneiberg, Spectral properties of linear operators in interpolation families of Banach spaces, Mat. Issled., vol. 9 (1974), pp. 214–229.
- G. Szegö, Über die Randwerte einer analytischen Funktion, Math. Ann., vol. 84 (1921), pp. 482–492.
- A.T. VIGNATI and M. VIGNATI, Spectral theory and complex interpolation, J. Funct. Anal., vol. 80 (1988), pp. 383–397.
- M. ZAFRAN, Spectral theory and interpolation of operators, J. Funct. Anal., vol. 36 (1980), pp. 185–204.

University of Illinois at Chicago Chicago, Illinois