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ON THE KOSZUL ALGEBRA OF A LOCAL RING

WINFRIED BRUNS

Let (R, re, k) be a Noetherian local ring, and x a minimal system of
generators of m. The Koszul complex K.(x) is essentially independent of the
choice of x, and thus an invariant of R (as an alternating algebra equipped
with an anti-derivation of degree 1). Therefore one may write H.(R) for its
homology; it carries the structure of an alternating k-algebra and is called
the Koszul algebra of R. By the universal property of the exterior algebra
A Hi(R), there is always a natural map h.: A Hi(R) H.(R) which extends
the identity on Hi(R). (We refer to Bourbaki [2], Ch. X for notation and
results related to the Koszul complex, to [2], Ch. III for exterior algebra, and
to Matsumura [5] for commutative algebra.)
Using the methods of Tate [8], Assmus [1] gave the following beautiful

characterization of complete intersections.

THEOREM 1. Let (R, m, k) be a Noetherian local ring. Then the following
are equivalent"

(a) R is a complete intersection;
(b) H.(R) is (isomorphic with) the exterior algebra of Hi(R);
(c) H.(R) is generated by H(R);
(d) H2(R) Hi(R)2.
In particular, R is a complete intersection if (and only if) A. is surjective. In

this note we want to describe complete intersections by the injectivity of A..
More precisely, we shall prove the following theorem:

THEOREM 2. Let (R, m, k) be a Noetherian local ring containing a field.
Then"

(a) Hi(R)i= 0 for > emb dim R dim R;
(b) in particular, R is a complete intersection if (and only if) the natural

map

A" A HI(R) H.(R)

is injective.
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It is easy to see that part (a) of Theorem 2 implies part (b). In fact, if A. is
injective, then (a)yields dimk Hi(R) < emb dim R dim R, and this holds if
and only if R is a complete intersection (and dimk Hi(R)= embdim R-
dim R); see [5], {}21.
The crucial argument in proving part (a) of Theorem 2 will be the theorem

of Evans-Griffith [3] on order ideals of minimal generators of syzygies. This
explains the restriction to rings containing a field: the theorem of Evans-
Griftith has not yet been proved in general. (Even if it should fail, Theorem 2
holds ’almost’ for arbitrary local rings; cf. Remarks, (a).)

Since the Koszul algebra, the property of being a complete intersection,
and the numerical invariants in Theorem 2 are stable under completion, we
may assume that R is complete. Then R has a presentation R S/I in
which (S, n, k) is a regular local ring, and I c n2 is an ideal of S. We choose
a regular system of parameters y in S.
For the moment, let us consider more generally a (Noetherian) ring S, and

ideals I c n of S. Let y yl,..., y,, generate n, and a al,..., am gener-
ate I. We write a Eajiy with aji S.
Denote the canonical bases of S" and Sm by fl,’", fn and el,..., em

resp., and let q:sm Sn be the map given by the matrix (a:i). Setting
u q(ei) S" we have d,(ei) a dy(ui). Here da and dy are the
differentials in the Koszul complexes K.(a) and K.(y). Furthermore,

A : K.(a) K.(y).

is a chain map. The induced map H.(a, S/l) H.(y, S/I) actually yields a
homomorphism

A" A (S/n)
m

n,(a, S/11) n,(y, S/I)

of S/n-algebras: note that H.(a, S/I) K.(a) (R) S/I A(S/I)m and that
H.(y, M) is annihilated by n for an arbitrary S-module M.
One has natural homomorphisms

p.: H.(a,S/rt) TorS. (s/I,S/rt),
o,.: H.(y, S/I) Tor.S(S/n, S/I).

By a standard argument of homological algebra, Tor.S(s/I,S/n)=
Tor.S(S/n, S/I). So we have two maps from H.(a, S/n) to Tor.S(s/I, S/n),
namely p. and r. A.. The proof Of Theorem 2 hinges on the fact that these
maps are essentially equal--under the proper identification of
Tor.S(s/I, S/n) and Tor.S(s/n, S/I). This may be a well-known fact, but we
do not have a reference, and the argument is short.
We choose free resolutions F. and G. of S/I and S/n resp. Then there

are chain maps K.(a) F. S/I and K.(y) G. S/n. Taking tensor
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products yields a commutative diagram

K.(a) (R) S/rt K.(a) (R) K.(y) S/I (R)K.(y)

!
F.(R) S/n F.(R) G. S/I (R) G..

The standard argument referred to above is that the bottom row induces an
isomorphism

H.(F.(R) S/rt) g--H.(F.(R) G.) H.(S/I (R) G.).

This is the identification of

TorS. ( s/I, S/n) H.( F. (R) S/rt )

which we will use in the following.

and Tor.S(S/rt, S/I) H.( S/I (R) G.)

LEMMA 1. One has p ( 1)so’ A.

Proof Let el,... em and fl,"’, fn be bases of Sm and Sn and choose
elements u S with d(u) d,(e). It is enough to show that

and in view of the diagram above it suffices to exhibit a cycle z K.(a) (R)

K.(y) such that a(z) .i A A -i, and /3(z) (-1)(i A A i,). We
choose

z (eq (R) 1 1 (R) ui,)’..(ei, (R) 1- 1 (R) u,,).

In order to see that z is a cycle one uses that the product of cycles in
K.(a) (R) K.(y) is again a cycle. Thus it is enough to show that e (R) 1 1 (R) u
is a cycle, and this is immediate if one uses the definition of the differentia-
tion on a tensor product of complexes. That a(z)---’1 A A ’is and
/3(z) (- 1)’(i A A i,) follows from the fact that a and/ are algebra
homomorphisms, ra

Let us return to the special situation above in which S is a regular local
ring, and y a regular system of parameters. Let x denote the sequence of
residue classes of y yl,..., Yn in R S/I. One has H.(R) -= H.(y, R), and
it is well known that the residue classes of the cycles u introduced above are
a k-basis of Hi(R), provided a is a minimal system of generators of I (cf. for
example Scheja [6]). Therefore the maps A. and A. differ only by an
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automorphism of A k’: both A and A are isomorphisms km’- Hi(R).
Theorem 2 claims that /i-----0 for > embdim R- dim R. Since y is a
regular sequence, K.(y) is a free resolution of k---S/n, and so r. is an
isomorphism. Summarizing our arguments, we have reduced the theorem to
the fact that Pi 0 for > emb dim R dim R. This follows from the next
lemma since S/I has finite projective dimension over S. Moreover, one has

emb dim R dim R dim S dim R height I.

LEMMA 2. Let (S, n, k) be a Noetherian local ring containing a field, and
I c rt an ideal generated by a sequence a. If proj dim S/I < oo, then the
natural homomorphism

Hi(a, k) K.(a) (R) k - Tor/S(s/I, k)

is zero fori > height I.

Proof. The natural homomorphism Hi(a, k) Tor/S(s/1, k) is induced
by a chain map y. from K.(a) to a free resolution F. of S/I. It only depends
on I and a, so that we may assume that

F.’O F "- Fs_ -") F - Fo 0

is a minimal free resolution. That Hi(a, k) K.(a) (R) k and ToriS(S/l, k) ---F. (R) k, follows from the minimality of the complexes K.(a) and F.. Thus the
map

H.(a, k) TorS. (s/I, k)

is just /. (R) k.
For an S-module M and x M let ’t(x)-{f(x): f Homs(M,S)}

denote its order ideal. We choose M Im qi. The theorem of Evans-Griffith
says that

height @s(qi(e)) > for every element e F/, e nF/;

cf. [3], Proposition 1.6. We need the stronger assertion that height @F(qi(e))
> where F Fi_ 1. (Of course, if gl,..., gw is a basis of F and qi(e)
Slgl + ""+Swgw with s S, then @F(qi(e)) is the ideal generated by
S1, Sw.)

In order to prove height @e(qi(e)) > i, we show that @F(qi(e)) S for
every prime ideal p with height p < 1. Since proj dim(S/I) < 1, the
embedding M --* F splits for such a prime ideal; furthermore the formation
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of order ideals commutes with localization. Therefore one has @v(q(e))
@M(oi(e)), and that @M(qi(e)) S is the result of Evans-Griffith.
The assertion of the lemma amounts to yi(Ki(a))c nF/ for > height I.

Let z Ki(a). If yi(z) q rtFi, then height @F(Yi_ l(d a( z )))
height @F(qi(yi(z)))> as just explained. On the other hand,
d’F(,Yi_l(da(z))) c I since Im da c IK.(a).

Remarks. (a) Suppose that (S, n, k) is a regular local ring not containing
a field. Let p char k, and S S/(p). Then S is a Cohen-Macaulay local
ring containing a field. Let I be an ideal of S, and F. a minimal free
resolution of S/I. As in the proof of Lemma 2 we have a comparison map
K.(a) F.. Let F’. be the truncation

of F.. Then F’. (R) S is a minimal free resolution of I (R) S over S, and we can
apply the theorem of Evans-Griffith to F’. (R) S over S. With the notation of
the proof of Lemma 2 it yields height (’v(q(e)) + (p))/(p) > 1, and it
follows easily that

height F(i(e)) > 1.

This argument shows that Lemma 2 holds for regular rings not containing a
field if we replace height I by height I- 1. Thus Theorem 2, (a) is valid
without the hypothesis that R contains a field if embdim R- dim R is
replaced by emb dim R dim R + 1.

(b) The method we used to prove Theorem 2 also yields a quick proof of
Theorem 1. Again one may assume that R is complete. If I is generated by
an S-sequence a, then K.(a) resolves R, and therefore p. is an isomorphism;
it follows that A. is an isomorphism, proving (a) (b). While (b) (c) (d)
is trivial, the implication (d) (a) results from the fact that /92 must be
surjective if 2 is surjective. In order to conclude that (d) = (a) choose F. as
a minimal free resolution of S/I. Then we have a commutative diagram

A 2Sin

The map/92 is just Y2 (R) k, and Y2 (R) k being surjective, y is surjective itself.
It follows immediately that Ha(K.(a)) 0, and this implies that a is an
S-sequence ([5], Theorem 16.5).
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(c) Lemma 2 is false without the hypothesis that proj dim S/I < oo. In fact,
Serre [7] showed that the map Hi(a,k) Tori(S/I,k) is injective if a
generates I rt. If S is not regular, this yields a counterexample.

(d) The reader may have noticed that Theorem 2 is trivial if R is a
Cohen-Macaulay ring. Then dim R depth R, and one always has Hi(R) 0
for > emb dim R depth R by the grade-sensitivity of the Koszul complex
([5], Theorem 16.8). On the other hand, if Hi(R)v =/= 0 for p emb dim R-
depth R, then it follows easily from a theorem of Wiebe [9] that R is a
complete intersection. Cf. Gulliksen-Levin [4], 3.5.3. (There the number n
must be replaced by emb dim R- depth R; one first reduces to the case
depth R 0, and then applies Wiebe’s theorem.)

(e) It is easy to find rings R which are not complete intersections, but for
which Aa: Hi(R)p --, Hv(R) is injective for p embdim R- dim R. This
shows that Theorem 2 is optimal. O
The author is very grateful to Jiirgen Herzog for stimulating discussions of

the subject of this note.
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