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THE HILBERT TRANSFORM ALONG CURVES THAT ARE
ANALYTIC AT INFINITY

Linpa Saar! AND Marta Urcruoro!

1. Introduction

It is known that if B denotes the unit ball of R™,y: B — R” is an analytic
function, y(0) =0, and k is a C°(R™ — {0}) function, homogeneous of
degree —m, then the operator given by Tf(x) =p - v - [p f(x — y(t)k(t) dt
is bounded on LP(R"), 1 < p < =, See for example [2],[9]. We observe that
in this case y is “approximately homogeneous” at the origin in the sense
given in [10].

The purpose now is to consider the analogous problem at infinity, for the
case m = 1. More precisely we prove the following:

THeorREM 1.1. Let B¢ = {t € R: |t| > 1} and let y: B¢ > R" be defined
by

y(t) = (¢ + ay(t),...,t" + a,(t)),a, €N, a; < -+ <a,,
where a; is a real analytic function on B€, at) = h(t) + P(t) with h,

analytic at infinity, and P; a polynomial of degree at most a; — 1. Then the
operator

Hfx)=p-o- [ Jx=v()F

is bounded on LP(R"), 1 < p < o,

This result still holds if y(¢) = (y{(¢) + a1),...,7,(t) + a,(t)) where
v{t) are homogeneous functions of degree a;,, a,€R,1<a,; < -+ <a,,
and asking weaker conditions about the behavior at infinity of a,(¢).
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2. Proof of the theorem

Let us consider R” with the group of dilations given by D,(x) =
(rixy,...,r%x,) for all r > 0, where a; < -+ <a,,a4,€N,i=1,...,n.
We set D(x) =r-x.

Associated to {D,},,, we fix a homogeneous norm, i.e., a continuous
function

| |:R" - [0,)
which is C* on R” — {0} and satisfies:
(a) |x| = 0 if and only if x = 0;
®) | — x| = |xl[;
@) |r-x|=rix|forall x € R", r>0.
It can be proved that homogeneous norms always exist. Also it is known that

(2.1) |x + yl < c(lx| + |yl) for some constant ¢ > 0, for all x,y € R".

For the proof of these facts see [4].
Let a = a, + --- +a, be the homogeneous degree of R".

LemmMa 2.2.  Let {¢}, j € Z, be a family of functions in L'(R") satisfying:
(i) Ju;=0
and for some ¢ > 0 and 0 <6 < 1;
(ii) fl«pj(x +y) — ¢;(x)l dx < cly|® (L'-Holder condition);
(i) J1xPly(x)l dx < c.

Let T; be the operator of convolution by 2/*y(2’ - x), then for n,m € Z,
n<m,

(£}

<c,lIfll,, 1 < p < », with c,, independent of n and m.
D
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Proof. By the Marcinkiewicz Interpolation Theorem and a usual duality
argument, it is enough to check

m

(2.3) (Z’!})f < 6 lIfll2, ¢, independent of n and m,
n 2

and

(2.4) {x: (ZT])f(x) > /\} < %Ilflll (weak type 1-1)

with ¢, independent of » and m. . ‘
To prove (2.3) we use Cotlar’s Lemma, from [5]. Let f(x) = 2"¢(2' - x).
The operator T;* is given by convolution with g;(y) = f;(—y). So, for i <j

TN, = Ny 8111 = f}[f,-(x —y)g,.(y)dy}dx
=f|f(f,~(x—y> —ﬁ(x))ﬁ(_—y‘)dyldx
< 25 fly(x = 2+ y) = (%)l dely; (=27 - y)l dy
< ¢ [27°2°1y Py (=27 - y) dy
= 2""")‘*f|yl‘s|¢,~(Y)l dy < c26-8

The estimations for || 7;*T;|| > when i <j and the case j < i are similar. So

+ o0
<c ¥ 2mles

2,2 = —o

m
T
j=n

It is known that (2.4) follows if we check that there exists a constant A4
independent of n and m, such that, for y # 0,

m

2 (fi(x +y) = fi(%)

j=n

dx <A

'[le>2clyl

X where c is the constant in (2.1) [3].
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Now

m

L (fi(x +y) = fi(x))| dx

j=n

‘/I‘xl>2dy|

<X
jeZ

- ¥ + ¥

27+ 1elyl<1 27+ 1cly|>1

[ ) |¢’j(x+2j')’) _l/’j(x)ldx
[x|>27*1c|y]

We use (i) to get the first sum bounded by Tpisi,<;2”|yl° and this
geometric sum is bounded independently of y. Now

y,(x + 27+ y) — (%)l dx

. Jj+1
2+ 1|y 1" 1X1>27 eyl

< X ( (%)l dx + iy |t/',-(x)|dx)
2i+1glyl= 1 |x|> 2]yl lxl=27*1c|y|

< |, (2)l1x1%1x17% dx + g, (x IleslxI'adx)
2f+‘czly|21('[|xl>2’lyl 1) [x|22’*10|yl ()

<c L @77+ 0) 2RIy,
27+ eyl 1

In the last inequality we use (iii). So we obtain another geometric sum
bounded independently of y. W

Remark 2.5. It can be proved that if {{;}; c , is a family of functions as in
Lemma 2.2, then

V(f) = L 2 [9,(27 - x)f(x) dx

JEZ

defines a tempered distribution and thus we have just proved that the
operator of convolution by ¥ is bounded on L?(R"), 1 <p < o,

Let y(¢) be as in Theorem 1.1.

LEMMA 2.6. Let

T(ty,ent) =v(1) + - +v(1,)
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and
‘/(tl’ M tn) = det(DF)l(tly""tn)’

the determinant of the jacobian matrix of T at (t,,...,t,).

a1 oAy,...,t,) = P(ty,...,t,) + R(¢,,...,t,), where P is a homogeneous
polynomial of degree a — n and for some positive constant A, R is an analytic
function in

{(z,...,z,) €C™: |zl >4 >0,i=1,...,n}.
(2) If K is a compact set in C" contained in C — {0} X - -+ X C — {0} then

r(a—n)R(r—lzl, e, r—lzn) = 0 uniformly on K.

Proof. We do the proof by induction on #.

e n =1 We have to check that r*~'a/(r~'z) > 0 uniformly on K as
r = 0. Since a,(¢) = h () + P(t), h, analytic at infinity, there exists 4 > 0
such that a,(z) = Z%'b, z* in |z| > A.

So there exists r, > 0 such that ry 'K c {z: |z| > A} and this implies that

réa,(r~'z) —> 0 uniformly on K.

By Cauchy’s formula we have that if r is small enough and for z € K,

- 1 a,({)
(D) =g o
l¢=rtzl =G=Y2D/2 (¢ — r™12)
and so
- 2r
ley(r~12)| < = sup lay ().
[£—rz] =(rz]) /2
Then
1 gy 2r#
ra~ o (riz)| < T sup lay ().

[g—r~1z| =(r7Yz]) /2

But a({) = a,(r"'r{) and ;lz| < |r¢l < $lzl.
So r{ belongs to a compact K such that 0 & K. Since

r®lay(r~'w)l —> 0 uniformly on K,
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we have

r ey (r~1z)l — 0 uniformly on K.

o We now assume that the statement of the lemma holds for n — 1:

apti Tt +ay(ty) et T+ a(t,)
DT(ty,...,t,) = : :
a it an(t) o a4 a(t,)

We develop the determinant by the first column and we obtain summands of
the form

(a;tp + a;.(tl))(P,,_l(tz,...,t,,) +R,_i(ty,...,,))
=a;jty P, _y(ty,.. ., t,) + a;tfi TR, _((5,...,1,)
+aj(t) Pty .5 1y) + (1) R, i(25,...,8,)

where P,_, is a homogeneous polynomial of degree

a, + - +d;

i+ +a, - (n—1),

and R, _, satisfies

Fart +dj+ +a,,—(n—1)Rn_1(r—122’ e, r—-lzn) r_)os 0

on compact sets as those described in (2).
By inductive hypothesis and the estimate about o], the lemma follows. ®

Proof of the Theorem 1.1. Following [7], for f € S, we decompose

0
Hf(x) = (Z /‘Lj*f)(x)

J=—%®

where

wh =[S @)enin%

with ¢, € C3(3,2) satisfying T; . 70(27]¢]) = 1.
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The theorem follows if we prove that
0
(27) H#f= )Y u,+f isbounded on L?(R") independently of m.
j=-m
For x € R”, we define ¢o(x) = ¢o(Ix) and for k€ Z, let ¢, (x) =
2ka¢ (2% - x). So, for each fixed j,,
0p = ¢j0 + Z bri1 — P

k=jo
Then

0

0 =
%mf—_-:.z 60*#’1‘*]‘.:'2 (¢j+kz‘¢k+1—¢k)*/“‘f*f
=J]

j=-m j=-m

0 L3 0
= X dixp;*f+ Y X M * B * f

j=-m k=0 j=-m

where 1, = ¢y 1 — ¢,. Thus
71 L+ T wp) s

with
0 0
L,= Y, ¢;*u; and M= Y, m,*mu;

j=-m j=-m

To prove (2.7) we first show that if 1 < p < o,

(2‘8) ”Lm”p,p < Cp, "M]:n”p,p < szke’ £ > 0,
¢, independent of m.

and
(2.9) IM™|l2,2 < ¢277% for some o > 0, ¢ independent of m.

(IL,,|l,,, denotes the convolution operator norm of L, on LP(R"), and
similarly for [IM/" I, ,.)
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From (2.8) and (2.9) we obtain (2.7). Indeed, let p be a fixed exponent,
1 <p <2, and take p, such that 1 < p, < p < 2. We use the Riesz convex-
ity Theorem and so we interpolate between (2.9) and the estimate (2.8) for
|M Iy, oo If We choose the exponent ¢ in (2.8) small enough, we obtain

s 1-s
5 +
2 Dy

1
M, , < c27oks2ek=9) where — =

and thus 7 _,IIM*]l,, , is bounded independently of m.
For 2 < p < =, (2.7) can be proved by duality.
To check (2.8) we observe that

0

0
L,(x)= X (¢xm)(x) = X 27(¢o*v)(2' - x)

j=-—m j=-m
and
0 0 ) )
M (x) = ' > (M * m)(x) = . > 2% *v;)(27 - x)
j==-m j=-m

where v;,(f) = u,(f o D,)).

It is easy to check that n, * v; and ¢, * v; satisfy (i), (ii) and (iii) of Lemma
2.2. Moreover the constant 2"e in (2.8) comes from the L!-Hélder condition
of n; *v;.

To prove (2.9) we use Cotlar’s Lemma and the iterative method in [1].

It is enough to check that if j, [ € Z,

(2.10)  llmpey;* pj* (e * my)*ll2,2 < €277¥27 071 for some o > 0.
We verify this for 0 > j < /.

To this end we recall that, if 4 and B are bounded linear operators on a
Hilbert space, then

Il4BIl < l41I"*Il4BB*||"/*
Iterating N times, we have
_~»=N -1, =N
I4BIl < I141*=2"").4(BB*)*" 117"
Now
”"7k+j *pj* (Meerr* 1) *ll2,2 < C||"7k+j * ;¥ Kill2,2

and taking 4 and B as the operators of convolution by 7, ;*u; and wj
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respectively, we obtain

1_2—N 2N—l 2‘N
"nk+j*l"'j*l“">;”2»2 < ”nk+j*l~"j”2,2 ”nk+j*l"j*(”ﬂl‘ *“’I) "2»2

2N-1 2—N
I

< cllmpyy*my* (] * )" i

since |lm;,; * u;ll1 < ¢ independently of k and j. So (2.10) follows if we
check that for 0 > j > [,

(2.11) gy * pj = (u7 * w)? "y < c27ok20=)  for some o > 0.
Let
T(tp,eerty) = =y(t;) +y(83) + -+ +(=1)"y(2,)

and let

j(tl’ M tn) = det(Dr)I(th”"tn)'
It is clear that we can apply Lemma 2.6 to I'. Thus if

Fl(tl’ ceey tn) = Dzlr(z_hl, ceey 2_””)

and

%(tl’ ce tn) = det(DFl)l(tlr"”tn)
then
Ity ty) =200 F(270,.,270) = P(1y,...,t,)

+2/@MR(271y,...,27,)

which converges to P(t;,...,t,) when l » —wif t;# 0for1 <i < n.
Since a, < -+ <a,, P # 0and so .# is not identically null. Furthermore

H(ty,..5t,) #0 ae. (t,...,1,)

such that |#;| > 1, since it is a real analytic function there.
Now we apply Proposition (2.1) in [7] to obtain

Bt W By — B]
R R s (-1)"(%)
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is absolutely continuous since it is the transported measure of
n
wi(ty,...5t,) = l_Il‘Po(thi)l/ti
=

by I'(¢,,...,t,). Moreover its density p, satisfies an L'-Holder condition.
From now on we fix N such that 2VY~! > n. Then it is enough to prove

(2.12) oy * wj * My jlly < €27%2¢=D for some o > 0.
Let
W(ty,. .. t,) = 27w (27,...,27",)
which doesn’t depend on L. So if 5,(y) = 27%,(27" - y) we have that g, is

the density of the transported measure by I, of w.
If we prove that

(2.13) J16:(x + ) = pi(%)ldx < clyl”
for some o > 0, ¢ independent of /,

then
[loi(x +) = pi(x)| < c2elyle.

The same holds for p,* u; since the total variation of w; is bounded

independent of j. Also 7,,; has mean value zero and supp 7., C {x:
|x| < c2=*+},
Thus

oy * b1y mieaslls = [loy* ey % mp (%)l e
= [|f o 1) (x = Yy muss(3) |

< [ [loyx pi(x =) = (pr* ;) (%)) dxlme(¥)] dy

<c 2l9)y|7 dy < 2o~ k+ie
SUPD 7y 4,

which proves (2.12).
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To prove (2.13) we first observe that

JI6:(x +y) = i(x)l dx

< CIyI”(f

o |~| 1-0
w
W] + |vm) | e
supp W uppw [ F| 277177

S|

for all 0 < & < 1 such that [, ;1/171%771 77 < = (8.
Thus we have to check

(2.14) There exists a > 0 such that for |/| large enough, [,/ A1 <¢
independent of /.

Since A(ty,...,t,) =P(t},...,t,) + 2"*"™RQ7't,,...,27"t,), we will
check that there exists @ > 0 such that

f [P(t) + r® ™R(r~'t)|™* dt < c for r small enough.

supp w

To see this we make use of Lemma (2.1) in [6].
Let

to€suppw C [1/2,2] X -+- X [1/2,2] and G,(t) =r“"™R(r 't).
For r small enough G, is analytic in the neighborhood
to+ [-M, M]" of ty=(£3,...,t0)

where M = min,|t{| /4.
We will check that if G,(t) = L,aj(t — t,) then

ripH|
Llaim ——5 0

where

d'R

1
r S C ol O Lol | f P A (% VO
! atil v at:‘n( 0)

e g



572 LINDA SAAL AND MARTA URCIUOLO
Now by Cauchy’s formula
IR 1
—(r 't
atil . 3tf,”( 0)
IAREE i,,!]» R({H)d¢g, - d¢,
(27Ti)n ({/l{;—’_lt(i)l =(r—1|16|)/2) ({1 _ r"‘t(} i +1 .. ({n _ r__lt(,,,)t,.+1

then

ay < 2 |ed| " pan sup IR(O)I.
@/g=r 1l =G~ 1D /2

We write R({) = R(r~1r¢). Since r{ belongs to a compact set %, satisfy-
ing (2) of Lemma 2.6, we have a} < £2!|¢{| ™" for r small enough. So

YlajMT <Y 2711,
I I

Now, Lemma, (2.1) in [6] states that for @ < 1/(a — n) there exist c(¢,), r(¢,)
and a neighborhood U(¢,) of ¢, such that

[ IP(2) + G(1)] ™ < e(t,) for r < r(ty).
U(ty)
Since supp w is compact, (2.14) follows.

3. Remarks

Remark 3.1. The theorem still holds if a;(¢) is a real analytic function for
|t] > 1, satisfying:
() For each ¢, |¢| > 1, the Taylor expansion of a; converges in

I

{{EC/M—tOI < T}
(i) For each ¢, |t,| > 1, lim, , , r%a;(r~'¢) = 0 uniformly on

I

{g eC/lt—tl < T}

This result includes more curves than the Theorem; for example let
aft) =e "l for i =1,...,n. We extend a,(¢) as e for Re z > 0 and e*
for Re z < 0. So (i) and (ii) hold.
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Proof of 3.1.  As in the proof of the theorem, we must estimate

1 "R
r — p(a—n)—|I| -1
a=r T T o e U )

Reviewing Lemma 2.6 it is easy to see that the summands of #(¢,,
are either

P(t,, s ti)(t) - @ (t,)
where P is homogeneous of degree

a—(a;+ - +a,)—(n—k),
or

a(t) - @) (t,).
Without lost of generality we assume
R(ty,..5t,) =aj(ty) o o (L) P(tisprseeostn)-

We must estimate ©;|a}|M!"! with M as in the theorem.

E'aﬂMl”
I

573

cesty)

_ Z ran=1- |a('1+1)(r‘1t1)|M’1 ZLla("‘”)( ~lef) M

Lk
Lp(gk+1,
» D"2P(1} 1) Jyna
P ln' '
L=Cigyy o ip)
By Cauchy’s formula
rén—t"h .
G+ D[ =141
% (r~'t)
- rajl—l—ilil +1 ajl(g) ¢
27Ti I i1+2

P =CMD/2 (L = r )
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So
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rajl—l—il .
G+1) [, =141
i! aill (r to)
< ron(iy + 1)|ed| T 120+! sup la; (£)

lg=r~ 1§l =(r~tef ) /2

Since |r¢ — tgl = lt5l /2 and @ () = a)(r~'r), rea supla; ()] — Oas r — 0
by (ii).

So by the choice of M, L; converges and tends to zero with r. The same

hold for the other sums. W

Remark 3.2. The theorem still holds if y(¢) = (y,(¢) + a/(t),...,y,(¢t) +

a,(t)) where y; is a homogeneous function of degree a;, a;, € R, 1 < a; <

8.

9.

10

< a,, and «; satisfying the conditions of Remark 3.1.
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