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FORMALIZABILITY OF DG MODULES AND MORPHISMS
OF CDG ALGEBRAS

AGUSTi ROIG

The aim of this paper is to study homotopy types, more precisely, formal-
ity, of certain local systems over compact K/ihler manifolds, following works
of J. Morgan [Mor] and V. Navarro Aznar [Na], [Na2]. Global sections of
these local systems can be seen as dg modules over cdg algebras. Following
[Sul], we prove that formalizability of such dg modules does not depend on
the ground field (Theorem 2.2). Results and proofs are easily translated for
cdg algebra morphisms, so we develope the case of dg modules in detail and
confine ourselves to state them for cdg algebra morphisms, remarking differ-
ences whenever they can arise. For both situations, our principal tool is the
minimal model.

D. Sullivan’s theory of the minimal model says that, for a rational space X,
the Q-homotopy type is determined by a minimal model of the Q-cdg algebra
ApL(X) (see [Sul]). For certain spaces, this minimal model, and so its
homotopy type, is a formal consequence of its rational cohomology algebra
H*(X; Q). They are called formal spaces. Among them one can find Lie
groups, classifying spaces, compact K/ihler manifolds... Formality of these
latter ones was proved in [D-G-M-S] over the real numbers. The descent of
formality from R to Q is proved in [Sul]. This is done in two steps: first, one
gives a caracterization of formality in terms of the lifting property of
automorphism from the cohomology algebra to the algebra [Sul, Theorem
12.7]. Second, one sees that this property does not depend on the ground
field [Sul, Theorem 12.1]. For morphisms of cdg algebras, the first one of
these results is due to Y. Felix and D. Tanr6 (see [F-T]). The second one can
be found in [ViP ]. In this paper, we give independent proofs of both results,
which, in the line of Sullivan’s, do not depend on the choice of a particular
construction of models with extra structure (namely, filtrations), but rather on
abstract properties of formalizability and minimality (Theorems 3.1 and 3.2).
The paper is organized as follows: in 1, we give some preliminaries which

will allow us to translate Sullivan’s results from cdg algebras to dg modules
and cdg algebra morphisms. Particularly, we define the notions of formaliz-
ability and minimality in abstract terms in such a way that they include the
cases of cdg algebras, dg modules over cdg algebras, morphisms of cdg
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algebras and others. We check that these notions agree with the known ones
in the examples. 2 is dedicated to the statement and proof of the two
theorems of formalizability for dg modules. Finally, in 3 we translate the
results and the idea of the proofs for cdg algebra morphisms.

I am indebted to Vicente Navarro Aznar for showing me the interest of the
subject and for many helpful discussions. I am also grateful to Francisco
Guill6n and Pere Pascual-Gainza who have read this paper and made
valuable suggestions.

1. Some preliminaries

We begin with some categorical definitions of formalizability and minimal-
ity which will allow us the mentioned generalization. Our definition of
formalizability is done in terms of the homotopy category (see [Quil]): given a
category and a class of morphisms S c mor’, the homotopy category,
Ho, is the category obtained by adjoining to a the inverses of the
morphisms of S. We are interested in classes of morphisms $ obtained in the
following way: let

be a couple of functors such that Ht 1. Take

S s morl Hs is an isomorphism} (1)

DEFINITION 1.1. An object x of ’ is said to be (H, )-formalizable (or
simply formalizable) if it is isomorphic to Hx in the homotopy category
Ho-.

When a is a model category with all objects being fibrant, and S is the
class of its weak equivalences, by [Oui], Corollary 2 of Theorem 1, Chapter I,

1, S admits a calculus of right fractions "up to homotopy"; i.e., we have
such a calculus in the category 7r’, whose objects are the same as those of ’and whose morphisms are the homotopy classes of morphisms of . This
implies that, by taking representatives of homotopy classes, we may think of
morphisms of the homotopy category Ho as being diagrams of ’ like

s f
a< ------b

with s S. If, in addition, is a closed model category, by [Qui], Proposi-
tion 1, Chapter 1, 5, isomorphisms of Ho are then exactly those diagrams
with s, f S; otherwise, their description is more complicate. So, in this
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case, x is formalizable if and only if there exists a diagram in (,

s f
x, Hx (2)

with s, f S. We will call such a diagram a formalization of x.
We will also need an abstract notion of minimality, which is inspired by the

definition of minimal (R, r)-algebras of [H-T]:

DEFINITION 1.2. Let be a category and S c mor a class of mor-
phisms. An object m of ’ is S-left minimal (or minimal for short) if for all s:
x - m S, there exists s’" m - x mor such that ss’= ln.

From now on we will assume that isomorphism of ( are in S, and that if in
the diagram

f g
x y z

of two of the morphisms {f, g, gf} are in S then so is the third (this is true
if we choose S as in (1) or if it is the class of weak equivalences of a model
category). Then, it is an easy exercise (see [Roig3]) to prove:

PROPOSITION 1.3. If m and m2 are minimal objects and s: m
then s is an isomorphism.

--> m2 S,

Example 1.4. If k is a field of characteristic zero, CI)GAhc(k) the
category of homologically connected k-cdg algebras and S is the class of
quasi-isomorphisms (quis), i.e., morphisms which induce isomorphisms in
cohomology, then the minimal objects of , in the sense of definition 1.2, are
exactly the minimal cdg algebras of [Sul].

Example 1.5. For A obj CDGAhc(k) let CDGAhc(A) be the category of
A-cdg algebras; i.e., the category whose objects are morphisms of k-cdg
homologically connected algebras like A B and whose morphisms are the
commutative triangles of Cl)GAhc(k) like

A
B, C

f

For this category, take S the class of such triangles with f a quis. Then the
minimal objects are the KS-minimal extensions of [Hal].

Example 1.6. Let COCAhc(k)2 be the category of morphisms of
CI)GAhc(k). Precisely, it is the category whose objects are morphisms of the
latter. A morphism between two objects A" A - B and /z" C- D is a
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commutative diagram of CDGAhc(k) like

A C

We take for S the class of such diagrams with f and q quis. Then the
minimal objects of CDGAhc(k)2 are the so-called A-minimal A-extensions of
[Hal]; i.e., those A: A--, B with A a minimal k-cdg algebra and f a
KS-minimal extension.

Let A obj CDGAhc(k) and DGM(A) be the category of non-negatively
graded A-dg modules. Results of this paper will apply to the following

Example 1.7. Let X be a topological space and .’ a local system over X.
Taking the Thorn-Whitney derived functors [Na1] of the global sections of
C-valued functions and _--valued functions on X, one obtains a cdg algebra
RrwF(X, C) and a RrwF(X, C)-dg module: R

Let S be the class of quis of A-dg modules. The minimal objects of
DGM(A) admit a caracterization analogous to the KS-minimal extensions of
k-cdg algebras. Precisely:

DEFINITION 1.8. Let M be a A-dg module and n a non negative integer.
A degree n Hirsch extension of M is an inclusion of A-dg modules

in which
(1) V is a homogeneous k-vector space of degree n,
(2) A (R)k (V)n is the free A-dg module over V, and
(3) the differential of M d (A @k(V)n) sends V into M.

DEFINITION 1.9 (cf. [Hal], [Nav2]). A minimal KS-module is an A-dg
module M together with an exhaustive filtration {M(n, q)},) i, indexed by
I {(n, q) Z ZIq >_ 0} with lexicographical order, such that:

(1) M(0, 0) is the zero A-dg module,
(2) for q > 0, M(n, q) is a degree n Hirsch extension of M(n, q 1), and
(3) M(n + 1, O) li_M(n, q).

q

Minimal KS-modules are the minimal objects of DGM(A), in the sense of
definition 1.2 (see [Roig 1] and [Roig3], cf. [H-T]).
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Let DGM be the category of dg modules over all cdg algebras. Objects in
this category are couples (A, M)with A a cdg algebra and M an A-dg
module. Morphisms are couples

(f, q): (A, M) (B,N),

where f: A --* B is a cdg algebra morphism and : M--, f*N is an A-dg
module morphism; i.e., a morphism of dg modules f-equivalent (or an
f-morphism). For this category we take S to be the class of couples (f,
where both f and are quis. Then the minimal objects are those couples
(A,M) with A a minimal cdg algebra and M a minimal A-dg module.

DEFINITION 1.10. Let x obj. An S-left model (or simply, a model) for
x is a morphism s: m x S. We will say that it is an S-left minimal model
(or simply, a minimal model) if m is a minimal object of ’.

Remark 1.11. In the preceding examples, the hypothesis about connected
cohomology ensures us the existence of a minimal model for every object in
the category (see [Hal] for CI)GAhc(R)2 and [Roig x] for DGM). From next
proposition it follows also that there are no more minimal objects, in the
sense of Definition 1.2, that the ones we have made an explicit description.

PROPOSITION 1.12. If " admits a class of objects 4’ such that
(a) every object in g" has a model in .’, and
(b) every morphism in S between objects of is an isomorphism,

then
(1) objects of are minimal, and
(2) every minimal object of is isomorphic to an object of g.

Proof. Let m g. Let us see that it is a minimal object: take s:
x - m S. Because of (a), there exists t: m’ x S with m’ ’. Be-
cause of (b), st S is an isomorphism: let u be its inverse. Then, taking
s’ tu, we have ss’ 1m and so m is a minimal object.

Let m be a minimal object. Let us see that it is isomorphic to an object of
g: because of (a), there exists m’ g and s: m’ m S. Because of (1)
and Proposition 1.3, s is an isomorphism, m

We will also need two more properties of minimal objects. The first one
says that a minimal object does not admit non-trivial quasi-isomorphic
subobjects.

PROPOSITION 1.13. Let s: a --) m be a representative of a subobject of m. If
s S and m is minimal, then s is an isomorphism.
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Proof. Because rn is minimal, there exists s" rn a such that ss’= Im.
Then s(s’s) s and so s’s 1 a because s is a monomorphism. That is to say,
s is an isomorphism.

The second one is a lifting property.

PROPOSITION 1.14. Let be a model category with all objects fibrant and S
the class its of weak equivalences. Given a diagram in

rn

x

in which s S and rn is a minimal object, then there exists a morphism f:
rn x such that s f. This is unique up to homotopy.

Proof. By the properties of the calculus of right fractions (see [G-Z]) that
we have in 7r, there exists a homotopy commutative diagram

in which s S. Since rn is minimal, we have a section r" rn z of r. Then,
we take f gr’ and have sf sgr’ frr’ f.
The unicity is verified as follows: Let h: rn x be another morphism of (

such that sh f. So sj--- sh in 7r(. Then, by the calculus of fractions, there
exists t: a rn S such that fi ht in 7r. But rn is minimal, so has a
section t’: m - a. Thus h htt’~ fit’= f’. I

COROLLARY. Let be a model category with S the class of its weak
equivalences and let s: m --, x and s’: m’ - x be two minimal models ofx. Then
there exists an isomorphism u: m -> m’ such that s’u s. This isomorphism is
unique up to homotopy.

In the preceding examples, categories have a closed model category struc-
ture taking weak equivalences to be the quis and with all objects being fibrant
(see [Roig 1] and [Roig2]). So we can take diagram (2) as a definition of
formalizability. Also, we have a minimal model for every object. Hence, for
these categories, the fact that x is formalizable is equivalent to x and Hx
having the same minimal model. That is to say, x is formalizable if and only
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if there exists a minimal object m and a diagram of ,
s f

x m Hx,

with s and f weak equivalences. Moreover, we can choose f in such a way
that Hf= Hs, by replacing it, if necessary, by f’= (Hs)(Hf)-lf. For
instance, if m obj is a minimal object, then m is formalizable if and only
if there is a morphism s: m ---> Hm S, and we can choose s such that
Hs 1Hm.

Example 1.15. The formalizable objects of ’= CDGAhc(k) are the for-
mal k-cdg algebras of [Sul]: A CDGAhc(k) is formal if and only if there is a
quis M HA, where M is a minimal model of A.

Example 1.16. For morphisms of CDGAhc(k), let us compare our
definition with the one we find in [Tho], [L-S], or IF-T]. To this end, notice
that the cohomology functor induces in an obvious way a functor from
.if2= AdgChc(k)2 to the category of morphisms of cdg algebras with zero
differential and that the morphisms of S in Example 1.6 are precisely those
morphisms made invertible by this functor. Then our definition for a mor-
phism of cohomologically connected k-cdg algebras says that f: A --, B is
formalizable if and only if there is a commutative diagram of ’,

O.

B -Z-- Mfo

A, MA ,HA

(3)

in which we have omitted the functor r, MA is a minimal model for A and for
HA and so is f’ for fp and for (Hf)p’. The authors above mentioned ask the
diagram only to be homotopy commutative (notice that, when talking about
morphisms, [F-T] use the term "minimal model" in a different sense to the
one we have defined). Nevertheless, both notions agree because, if in (3)
squares commute only up to homotopy, we can replace r and r’ by
homotopic quis which make both rectangles commute.

Now we can prove in this general setting, the result that every automor-
phism of Hm lifts to an automorphism of m (see [Sul]). Precisely, let Aut(m)
denote the set of automorphism of m in ’ and Aut(Hm) the corresponding
set in ..
PROPOSITION 1.17. Let be a closed model category in which weak

equivalences are the class ofmorphism made invertible by some given functor H.
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Let m be a formalizable minimal object. Then

H: Aut(m) -* Aut(Hm)
Hq

is a surjective map.

Proof Let th Aut (Hm) and s: m - rHm S such that Hs 1im.
Then (rb)s: m - rHm is a minimal model of rHm and by Proposition 1.14,
there exists q Aut(m) such that sq (rb)s; i.e., Hq H(sq) Hrd d.

Remark 1.18. If , and H are as in definition 1.1, x obj,’ is a
formalizable object and the functor F: ’- d admits a left derived function
in the sense of Quillen ([Qui]) LF: Ho- d, then, obviously, (LF)(x)--
(LF)(rHx). This can be seen as a generalization of Deligne’s criterion for the
collapse of spectral sequences [De] for categories of complexes of an abelian
category, which, in our terminology, says that, if a complex is formalizable,
then the hiperhomology spectral sequence of any functor collapses at the
EE-term. Another example: the differential torsion product of dg-modules
can be seen as the left derived functor, in the sense of Quillen, of the tensor
product

(R): 2DGM --* DGM

Here 2DGM stands for the category of triples (M, A, N) in which A is a cdg
algebra and M and N are A-dg modules. So, if (A, M) is formalizable, then

TOrA( M, N) Tor/4A( HM, HN)

where TorI4A(HM, HN) means the classical (non-differential) torsion prod-
uct. Classically this last isomorphism was deduced from the collapse of the
Eilenberg-Moore spectral sequence (see [ViP2]). In our presentation, it
follows directly from the definition of formalizability. The only point which
needs some work is the verification that the differential torsion product is
actually (the cohomology of) the left derived functor of the tensor product, in
the sense of Quillen (see [Roig3]).

2. Formalizability of DG modules

Let k be a field, Q k, A a k-cdg algebra and M an A-dg module, both
minimals. Hence (A, M) is a minimal object of DGM. So (A, M) is formaliz-
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able if and only if there is a quis of DGM

(g,)" (A,M) --) (HA, HM)

That is to say, g" A HA is a quis of k-cdg algebras and b" M ---) g*HM is
a quis of A-dg modules and we can choose them in such a way that
Hg 1/A and HO lg*HM. As we have seen in Proposition 1.17, this
implies that every automorphism of (HA, HM) lifts to an automorphism of
(A, M). We are going to show that the converse is also true. In particular:

THEOREM 2.1. Let (A,M) be a minimal object of DGM, A a finitely
generated k-cdg and M a finitely generated A-dg module. If every automor-
phism (, ) of (HA, HM) lifts to an automorphism (f, t#) of (A, M), then
(A, M) is formalizable.

That is to say, if for every f Aut(HA), there exists f Aut(A) such that
Hf--f and for every f-morphism q5 Aut(HM) there exists an f-morphism

Aut(M) such that Hq qS, then (A, M) is formalizable.
Using the caracterization of formalizability of theorem 2.1, we will be able

to prove that formalizability does not depend on the ground field: if k c K is
field extension, A a k-cdg algebra and M an A-dg module, put

AK A @k K and MK M (R),, K

THEOREM 2.2. Let A be a finitely generated k-cdg algebra and M a finitely
generated A-dg module. Then (AK, MK) is formalizable if and only if (A, M)
is formalizable.

Remark 2.3. In what follows, we may assume that K is algebraically
closed, because if Theorem 2.2 is true in this case, then it is true for every
field.

To prove Theorem 2.2 we will also need some results about algebraic
groups, for which our reference will be [Bo]. The role of algebraic groups in
this context is, on one side, to show that, under the lifting hypothesis of
Theorem 2.1, there is a subobject of (A, M) quasi-isomorphic to the total
object for which formalizability is quite obvious. By minimality and Proposi-
tion 1.13, this subobject coincides with (A, M). On the other hand, once we
have shown that formalizability is equivalent to the lifting property of
automorphisms, one proves that this fact is independent on the ground field
by making use of rationality results of algebraic groups, which we state here.
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PROPOSITION 2.4. Let A be a finitely generated k-cdg algebra and M a
finitely generated A-dg module. Then:

(1) HK: Aut(AK, MK) - Aut(HAK, HMK) is a k-morphism of k-groups;
(2) HK(k) H: Aut(A, M) - Aut(HA, HM);
(3) if (A, M) is minimal,

N ker(HK: Aut(AK, MK) -) Aut( HAK, HMK))

is an unipotent group.

Remark 2.5. It is clear that Aut(AK, MK) Aut(AK) Aut(MK) is also
a morphism of algebraic groups. So it preserves semi-simple and unipotent
parts of the Jordan multiplicative decompositions. Hence, for every (f, o)
Aut(A,M), the morphisms appearing in this decomposition (f, o)=
(f, q)s(f, q)u are morphisms of DGM. Moreover, (f, q)s (f, q) and
(f,q)u (fu, q,). Finally, by [Bo], Theorem (4.4), if (f,0)
Aut(AK, MK)(k) Aut(A, M), then (f, q) and (f, q)u Aut(A, M).

Proof of Theorem 2.2 (cf. [Mor], proof of Lemma 10.2). The fact that
(A, M) formalizable implies (A, MK) formalizable is trivial. Let us prove
the converse. We can suppose that (A, M) is a minimal object, because if we
assume that the theorem is true in this case, given (A, M) not necessarily
minimal, we take a minimal model

Then

(f,o): (A’,M’) -) (A,M).

(fK, K): (A’K =A’(R)k K, Mk M’(R)k K) (AK, MK)

is also a minimal model and if (AK, MK) is formalizable, then also (A’K, Mk)
is, and because this is a minimal object, our assumption says that also
(A’, M’) is formalizable; hence so is (A, M).

So, let (A, M) be a minimal object. If (AK, MK) is formalizable, because
of Propositions 1.17 and 2.4(1), one has an exact sequence of k-morphisms of
k-groups

1 - N Aut(AK, MK) --, Aut(HAK, HMK) -) 1

where N is a connected solvable k-split subgroup, because it is unipotent by
Proposition 2.4(3). Then by [Bo], Corollary (15.7), and Proposition 2.4(2).

HK(k) H: Aut(A, M) - Aut(HA, HM)

is surjective and so, by Theorem 2.1, (A, M) is formalizable, m
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Following [Sul] (cf. [F-T]), we will prove Theorem 2.1 by showing that, in
fact, it suffices that one grading automorphism lifts.

DEFINITION 2.6. Let a k be different from zero and not a root of unity.
The grading automorphism of (HA, HM) defined by a is the pair of maps
(f, q3,): (HA, HM) - (HA, HM) defined by

f( a) otlala and (x) alXlx

In what follows, we will fix a and write simply (f, qS) for (f, qS).

Proof of Theorem 2.1. The proof is a consequence of some lemmas which
will be proved at the end.

LEMMA 2.1.1. (3, q3) Aut(HA, HM).

Let (f, q) Aut(A, M) be a lifting of the grading automorphism (j, qS).
Consider the semi-simple parts of f and q. Then we have the decompositions
as vector spaces:

where Ay ker(fs aYI), My ker(qs aJI) and B and N are the com-
plementary invariant subspaces of the previous ones.

LEMMA 2.1.2. For every i, j,
(i) dAj c Ay, dMy c My,
(ii) Ai Ay c Ai+y, Ai My Mi+y,
(iii) dB B and dN N.

This implies that (gjAy is a k-cdg subalgebra of A and yMy a A-dg
submodule of M. The fact that A and M are minimal, together with
Proposition 1.13, imply:

LEMMA 2.1.3. A Ay and M

Now, for every i, j, let A. Ay N A and M} My M and
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and

Again, minimality and Proposition 1.13 give:

LEMMA 2.1.4. A A’ and M M’.

Let

J= (/<j A.) ( . dAj-1) and K= (/< M]) ( dM]-) (6)

LEMMA 2.1.5.
J.McK.

J is a dg ideal of A, K is an A-dg submodule of M and

So M/K is an A/J-dg module. Also, because of lemma 2.1.4 and defini-
tions of J and K, we have

A/J= ( H.iA and M/K= ( HM
J J

Let g: A A/J and qr M M/K be the natural projections. Then

( g, g)" ( A, M) --) ( A/J, M/K)

is a morphism of DGM. Then, taking cohomology and applying lemmas
2.1.2(i), 2.1.3 and 2.1.4, we have

(A/J, M/K).

So (Hg, Hq): (HA, HM) (Aft, M/K) (HA, HM) is an isomorphism
and (A, M) is formalizable, m

Proof of Lemma 2.1.1. Obviously, f is a morphism of k-graded algebras
and q5 a morphism of k-graded modules. For instance,

( ab) alablab (alala)(alblb) a rio.
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Let us show that is an j(morphism:

=

Proof of Lemma 2.1.2. Let us prove (i) for A" if a Aj, then

f( da) d( fa) d( otJa) otJ( da).

Let us prove (ii) for M: if a A, and x Mj, then

qs(ax) ( fa)(,,x) (aia)(aJx) oti+J(ax).

Here we have used Remark 2.5.
Finally, Bx B (R)k K is invariant under d (R) 1, since K is an algebraically

closed field, and so BI xr ker(fs- hi), for some h a and then
one applies the same proof as in (i). But if (d (R) 1)Bx c Bx, then dB c B.

Proof of Lemma 2.1.3. Lemma 2.1.2 implies that .A is a cdg subalge-
bra of A and, since B is a dg submodule, HA (j 0HA) HB. But HA
has nothing but the eigenvector subspaces of the eigenvalues a. Hence
HB 0 and A A is a quis. Because A is minimal, it can not have
non-trivial quasi-isomorphic subobjects, by Proposition 1.13. So the first
equality follows.
Lemma 2.1.2 implies also that jM is a .A-dg module and by the

previous result, an A-dg module too. One sees in an analogous way, that the
inclusion Mj M is a quis. Again, the minimality of M implies M

Proof of Lemma 2.1.4. Firstly, A’ is a cdg subalgebra of A, by Lemma
2.1.2. Secondly, the inclusion A’ A is a quis because, by definition, all
elements in HA are eigenvectors of eigenvalue O and so A N ZA HA
is surjective. Injectivity in cohomology follows from Lemma 2.1.2. Equality is
again a consequence of A being minimal. An analogous reasoning shows that
M M’. m

Proof of Lemma 2.1.5. All the statements are alike: one has to apply
Lemma 2.1.2 again, taking into account that by Lemma 2.1.4 A A’, in the
first two statements. Explicitly, for the second one: let a + b A and
x + dy K, a A., b Ak cI ZkA and x M/m, y Mnn-1 with < j and
< m. Then (a + b)(x + dy) ax + a dy + bx + b dy belongs to K since,
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MTM ]ln’t’i and bx ]l/tl+k with + < mby Lemma 2.1.2, ax m-t-j, a dy ""n-t-j ""-tin+k,
,411/1 +k+j,n +i<n +jandl+k<m+k Finally:b.dy +d(by) i+k

because b is a cocycle.
The proof of the third one proceeds in an analogous fashion: use Lemma

2.1.2, now taking into account that by Lemma 2.1.4, M M’. m

Now we return to the proof of proposition 2.4.

Proof of Proposition 2.4. Since Q c k, by [Bo], page 47, the proof that
Aut(AK, MI) is defined over k and that its k-points are Aut(A, M) reduces
to verify that it has some set of defining equations with coefficients in k. Also
the proof that the group structure is defined over k reduces to the verification
that the coordinate functions of the product and unity have its coefficients in
k. In the same way, we may see that HK is defined over k and that
H(k) n.

Let us assume that A and M are generated in degrees < n- 1 and
< rn 1. Then Aut(AK, MK) is a subgroup of

( GL(A) i GL(MK).
i<n j<m

An element

(f,q) (] GL(Ak) i GL(MJK)
i<n j<m

induces a morphism of DGM if and only if
(i) dfa fda, dq x q dx,
(ii) f(aa’) fa fa’ and q(ax) fa

for a, a’ A and x MI such that a I, Ix _< n in (i) and aa’l, axl <_ n
in (ii). Differentials and products of (AK, MK) come from differentials and
products of (A, M) after tensoring with 1K. So, we may choose basis of A
and M as k-vector spaces and we see that these morphisms have coefficients
in k. So the coordinates of f and q in these basis satisfies equations
which are linear (i) or second order equations (ii) with coefficients
in k. Hence Aut(AK, MK) is defined over k, also its group structure and
Aut(AK, MI)(k) Aut(A, M). Analogously for Aut(HA, HM). To end
with (1) and (2), by choosing basis accordingly with decompositions

A =HA BA CBA[+I] and M=HMCBMCBM[+I]

we may see that the coefficients of the coordinate functions of H reduce to
1 or0.
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Finally, take to (f, q) N and decompose it in its semi-simple and
unipotent parts: to tos tou. We have to show that tos 1. Since Hto 1
and an algebraic group morphism preserves semi-simple and unipotent parts,
I Hto (Hto). (Htou) (Hto) (Hto)u. So, by the uniqueness of this
decomposition, Hto Htou 1. Thus the only eigenvalue of Hto is 1. Let
us see that the same holds for tos. By Remark 2.5, to (f, q). Take
A --ker(f- I)and M ker(qs- I)and decompose A and M into
invariant subspaces: A A B and M M N. Since A and M are
minimals, one concludes that A A1 and M M1, by analogous reasonings
that we have used in proving lemmas 2.1.3 and 2.1.4. Hence to 1 as we
wanted to prove. 1

3. Formalizability of morphisms

Let us translate the previous results for the category CDGA(k)2 (cf. [F-T]
for Theorem 3.1, and [ViP1] for theorem 3.2). Let m" A B be a minimal
object of CDGA(k)2. By Example 1.6 this means that A is a minimal k-cdg
algebra and m is a minimal KS-extension.

THEOREM 3.1. Let m: A B be a minimal object of CDGA(k)2 and A
and B finitely generated k-cdg algebras. If every automorphism (f, ) of Hm
lifts into an automorphism (f, q) of m, then m is formalizable.

Let k c K be as in 2. Put

mK rn . K: AK -- BK
THEOREM 3.2. Let m: A - B be a morphism of finitely generated k-cdg

algebras. Then mK is formalizable if and only if m is formalizable.

If m is formalizable, one also says that the induced map on homotopy
types is a formal consequence of the map m,: HA HB. It is proved in
[D-G-M-S], main theorem (ii), 6, that the map induced on real De Rham
homotopy types by a holomorphic map between compact Kihler manifolds is
a formal consequence of the induced map on real cohomology. This result,
together with Theorem 3.2 implies:

COROLLARY. Let f: M- N be a holomorphic map between compact
Kiihler manifolds. Then the induced map on rational De Rham homotopy types
is a formal consequence of the induced map on rational cohomology.
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Proofs of both theorems follow the same steps of 2.

PROPOSITION 3.3. Let m: A B be a morphism offinitely generated k-cdg
algebras. Then:

(1) Hr: Aut(m) Aut(Hm) is a k-morphism of k-groups;
(2) HK(k) H: Aut(m) Aut(Hm);
(3) if m is minimal,

N ker(HK: Aut(mI) --* Aut(Hmi) )

is an unipotent group.

Proof. Let (f, 0) Aut(mI); i.e., f Aut(AI), q Aut(BI) and
mf mK. It is the same thing as an element of inGL(A) (R)j ,,
GL(BYK) satisfying the following conditions:

(1) dfa fda, dq b q db,
(2) f(aa’) fa fa’, q(bb’) qb qb’, and mr.fa pma.

and so on m

One also has analogous grading automorphisms:

DEFINITION 3.4. Let a k be different from zero and not a root of unity.
The grading automorphism of Hm defined by a is the pair of maps (f, q3):
Hm --. Hm, defined by

f,( a) alala and q3,(b) alblb

We fix a and denote (f,, qS) by (f, qS). In the same way as in Lemma 2.1.1
we have (f, qS) Aut(Hm). Considering semi-simple and unipotent parts of
a lifting of one of these grading automorphism, we get decompositions for A
and B:

in which (see Lemma 2.1.2) the subspaces Ai, Bj, C and D are invariant
under differentials, A .A c Ai+, Bi.B c ni+ and m(Ai) c Bi, for all
i, j > 0. Then:

LEMMA 3.5. m ml (ljZj" (jaj "-’> jnj.
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Proof. As in Lemma 2.1.3, A Aj. Now the subobject we have to
consider is m

A

in the category A \ CDGA(k). Since m is minimal there and the inclusion

.B B is a quis, m m l%Aj. I

For all i, j, define A., B], A’ and B’ as in (5). Then m(A’) c B’. Let

m’= mlA," A’ B’

As in Lemma 2.1.4, we have m m’. We define also J and K in the same
way as in (6) and we have:

LEMMA 3.6. J and K are dg ideals ofA and B, respectively and m(J) c K.

Thus m induces rh: A/J --. B/K that makes the diagram

commutative. So the pair (g,$) defines a morphism of CDGA(k)2 that
becomes a quis between m and Hm rh. Finally, Proposition 3.3 allows us,
as in the proof of Theorem 2.2, to lift automorphism of Hm assuming so for
the automorphisms of HmK.

[Bo]
[De]

[D-G-M-S]

[F-T]

[G-Z]

[H-T]

REFERENCES

A. BOREL, Linear algebraic groups, Benjamin, Reading, Mass., 1969.
P. DELIGNE, Thdorme de Lefschetz et critres de dd.gdndrescence de suites spectrales,
Publ. IHES 35 (1968), 107-126.
P. DELIGNE, P. Griffiths, J. Morgan and D. Sullivan, The real homotopy theory of
Kiihler manifolds, Inv. Math. 29 (1975), 245-274.
Y. FELIX and D. TANRI, "Formalit6 d’une application et suite spectrale d’Eilen-
berg-Moore" in Algebraic topology. Rational homotopy, Lecture Notes in Math., no.
1318, Springer-Verlag, New York, 1988, pp. 99-123.
P. GABRIEL and M. ZISMAN, Calculus of fractions and homotopy groups, Springer-
Verlag, New York, 1967.
S. HALPERIN and D. TANR, Homotopie filtrd et fibrds , Illinois J. Maths. 34
(1990), 284-234.



FORMALIZABILITY OF DG MODULES AND MORPHISMS 451

[L-S]

[Mor]

[Nal]

[Na2]

[Qui]

[Roig1]

[Roig2]

[Roig3]

[Sul]
[Tho]

[ViP

[ViP

J.-M. LEMAIRE and F. SIGRIST, Sur les invariants d’homotopie rationnelle lids la L.S.
catdgorie, Comment. Math. Helv. 56 (1981), 103-122.
J. MORGAN, The algebraic topology of smooth algebraic varieties, Publ. IHES 48
(1978), 137-204.
V. NAVARRO AZNAR, Sur la thdorie de Hodge-Deligne, Invent. Math. 90 (1987),
11-76.

Sur la connexion de Gauss-Manin en homotopie rationneile, Ann. ]cole Nat.
Sup., (4) 26 (1993), 99-148.
D.G. QUILLEN, Homotopical algebra, Lecture Notes in Math, no. 47, Springer-Verlag,
New York, 1967.
A. Rolo, Alguns punts d’?dgebra homotbpica, Thesis, Universitat Autbnoma de
Barcelona, 1992.

Model category structures, in bifibred categories, J. Pure Applied Algebra, to
appear.

ModUles minimaux et foncteurs ddrivds, J. Pure Applied Algebra, 91 (1994),
231-254.
D. SULLIVAN, Infinitesimal computations in topology, Publ. IHES 47 (1977), 269-331.
J.C., THOMAS, Eilenberg-Moore models ]’or fibrations, Trans. Amer. Math. Soc. 274
(1982), 203-225.
M. VIGUt-PoIRRIER, Formalitd d’une application continue, C.R. Acad. Sc. Paris 289
(1979), 809-812.

Rdalisation de morphismes donnds en cohomologie et suite spectrale d’Eilen-
berg-Moore, Trans. Amer. Math. Soc. 265 (1981), 447-483.

UNIVERSITAT POLITCNICA DE CATALUNYA
BARCELONA, SPAIN


