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RATIONAL PERIOD FUNCTIONS ON G(V2) AND G(V3)
WITH HYPERBOLIC POLES
ARE NOT HECKE EIGENFUNCTIONS

ELLEN GETHNER

1. Introduction

The theory of automorphic forms lends itself naturally to a variety of
generalizations. One such, which was initiated by M. Knopp in [Kn1], [Kn2],
[Kn4], is the theory of automorphic integrals and their associated rational
period functions. This generalization of the notion of automorphic forms has
provoked much activity in recent years: see for example [As], [Ch], [CP1],
[CP2], [CZ], [Gel], [Ge2], [Hal, [HK], [Kn3], [MR], [Pal], [Pa2], [PR], and [Sc].

The object of this paper is to obtain an analogue to a theorem which
appears in [Gell, [Ge2]. In particular, in [Gell, [Ge2] it is shown that a
rational period function defined on the modular group with at least one
quadratic irrational pole cannot be an eigenfunction of the induced Hecke
operator T(n). (This problem was orlgmally posed by M. Knopp in [Kn3].) In
fact, there are exactly two settings in which an analogue may take place,
namely for rational period functions defined on the two Hecke groups G(v2)
and G(3). In this paper we show that a rational period function defined on
G(N) for A = V2 or V3 with a pole that is the fixed point of a hyperbolic
element of G( A) cannot be an eigenfunction of the induced Hecke operator

7,(n). This will be accomplished by using results from [Gel, Ge2] as well as a
linear map [BK, PR] between the space of rational period functions defined
on G(X) and the space of rational period functions defined on I'(1), the
modular group.

The author is grateful to Alayne Parson for her helpful insights, and to
Marvin Knopp who suggested this problem.
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696 ELLEN GETHNER
2. Definitions

DEFINITION 2.1.  For each positive integer n > 3, the Hecke group G(A,)
is the group of linear fractional transformations generated by

S, = ((1) /\1”) and T = ((1] _(1)),
where A, = 2cos(w/n).
Note that when n = 3 the group G(A;) is I'(1), the modular group.
DEeFINITION 2.2.  The slash operator is given by
(1) (Fl, M)(z) = (cz +d) "F(Mz),

whereM=( Z)and r € R.

Rational period functions can be defined on the Hecke groups G(A,) for

n > 3 € Z. To make this more precise, we give a definition.

DEFINITION 2.3. Suppose f is meromorphic in # for n > 3 in Z, and
satisfies

(f|2k SA,,)(Z) =f(2)

and

(f e T)(2) =£(2) +q(2),

where k is an integer and ¢(z) is a rational function. If, in addition, f is
meromorphic at i, then f is an automorphic integral of weight 2k with
associated rational period function (abbreviated as RPF) g(z).

Under such circumstances, we say that g(z) is an RPF of weight 2k on
G(A). If ¢ =0, then f is an automorphic form of weight 2k. In fact, a
rational function g is an RPF of weight 2k on G(A,) if and only if the
following two functional equations are satisfied [Kn4]:

(2) qloxT+q=0

and

n—1

(3) Y qlu(S,T) +4q=0.

i=1
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Moreover, in the special case that n = 3, since G(A;) = I'(1), f is a modular
integral, and if, in addition, g = 0, then f is a modular form.

To give substance to the notion of RPFs defined on G(A,), we note that
Parson and Rosen in [PR] gave an infinite family of (non-trivial) RPFs for
each group G(A,) as follows:

_ 1 1
) 9(2) (zz—bz—l)k i (zz+bz—1)k’

where k > 1 is an odd integer, and

A s )

2 Ny

In fact, when n = 3 the function g,(z) is precisely Knopp’s original example
of RPFs on I'(1) with quadratic irrational poles [Kn1]. Specifically,

1 1
2 Pt 2 k>
(z°=z-1) (z2+z-1)

(5) 7;(2) =

where k is a positive odd integer.
In [Gel] and [Ge2] the following theorem, a conjecture of Knopp [Kn3],
was proved.

THEOREM 2.4. Let q(z) be a rational period function with at least one real
quadratic irrational pole. Then q(z) is not an eigenfunction of the induced Hecke
operator T(n) for any n > 1.

In this paper, we obtain an analogue to Theorem 2.4 for RPFs defined on

G(A) = G(Y2) and G(Ay) = G(Y3). Before stating the analogue, we pro-
vide some of the necessary machinery.

3. Background

Unless otherwise specified, for the remainder of this paper, let A = 1, V2,
or V3.

DEFINITION 3.1.  Suppose z, is fixed by M = (3 ’;) € G(M). Then M is
hyperbolic if [Trace(M)| = |a + &| > 2.
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Remark 3.1. If M = (z ’;) € G(A) is hyperbolic, then B,y # 0. Other-

wise, if, say, B = 0, then aé — By = 1 implies that « = 6 = +1, in which
case [Trace(M)| = 2, a contradiction. The same argument holds if y = 0.

THEOREM 3.2.  If z,, is a finite non-zero pole of an RPF q, defined on G()),
for X = V2 or V3, then z, is fixed by a hyperbolic element of G(A).

We omit the proof of Theorem 3.2 because it is almost verbatim that of the
proof that Knopp gave in [Kn2] for the case A = 1. Also, in [Sc], T. Schmidt
has an alternative proof of Theorem 3.2 using A-continued fractions.

Remark 3.2. It is convenient to note that for A = V2 or V3 , the elements

of G(A) fall into two categories, the even elements (C“A ”;) and the odd

elements (“c)‘ d”)\), where a,b,c,d € Z and ad — bcA’> = 1 and ad)*> — bc =
1, respectively. In fact, this description also holds for the elements of TI'(1)
simply by observing that the two categories of elements actually coincide

since A = 1. For details, see [Hul] and [Yo].

In some sense, Theorem 3.2 describes what the finite non-zero poles of
rational period functions are, namely, the fixed points of hyperbolic elements
of G(A). The following corollary of Theorem 3.2 sheds more light on the
nature of these poles by describing where they are. But first, Theorem 3.2
inspires the following definition.

DEeFINITION 3.3. If 2z, is a finite non-zero pole of an RPF g, defined on
G(A) for A =1, V2, or V3, then z, is said to be a hyperbolic pole of g,.

COROLLARY 3.4.  If z, is a hyperbolic pole of an RPF q, on G(X) for A = 1,
V2 or V3, then

(a) z, is a root of a quadratic polynomial of the form P(z) = \az* + bz + Ac,
where a, b, c € Z such that a, ¢ # 0, gcd(a, b, ¢) = 1, and b> — 4\ *ac > 0.

Consequently,

() z, € Q(A, VN)\ AQ, for some positive integer N, where if N is a square
orif N = N> (N')? for some positive integer N', then z, € Q(A) \ AQ.

The proof of Corollary 3.4 is elementary and is left to the reader.

Remark 33. (i) When A = 1, Corollary 3.4(b) simply restates a theorem
of Knopp [Kn2] regarding the non-zero poles of RPFs defined on I'(1). That
is, such poles must belong to Q(VN) \ Q, where, in this case, N is a positive
non-square integer, and therefore poles are real quadratic irrational num-
bers.
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(i) It also follows from [MR, Theorem 2] that the finite poles of RPFs
defined on G(v2) and G(¥3) must be in Q(A, VN )\ AQ, for some positive
integer N.

(iii) The condition that finite non-zero poles of RPFs are fixed points of
hyperbolic elements of G(A) is necessary, but not sufficient.

Corollary 3.4 motivates the following definition.

DEFINITION 3.5, Suppose 0 # z, € Q(A, VN) \ AQ for some positive inte-
ger N. If z, is the root of a quadratic polynomial of the form P(z) = aAz? +
bz + cA where a,b,c € Z, ac # 0 and ged(a, b, ¢) = 1, then P(z) is said to
be an associated quadratic for z,.

Remarks. (i) Since z, # 0 and z, & AQ, a priori, an associated quadratic
P(z) = aAz?® + bz + cA must satisfy ac # 0. Moreover, since z, is real (and
z, & AQ) we must have b? — 4\%ac > 0.

(ii) When A = 1, an associated quadratic for z, is (up to multiplication by
—1) the minimal polynomial for z,, and hence is uniquely determined.

(iii) When A = V2 or V3, associated quadratics are not necessarily mini-
mal polynomials. For example, if z, = p/q is a rational number in lowest
terms, then g?A\z? — p°A is an associated quadratic for z,, but is not the
minimal polynomial for z,. More importantly, though, associated quadratics
are unique up to multiplication by —1, as will be verified in the following
proposition.

PROPOSITION 3.6.  Suppose 0 # z, € Q(A, VN )\ AQ for some positive inte-
ger N. Then an associated quadratic for z, (if it exists) is unique up to
multiplication by — 1.

The proof of Proposition 3.6 is a straightforward use of the Euclidean
Algorithm for polynomials, and may be found in [Ge2].

By Corollary 3.4, all hyperbolic poles of RPFs defined on G(A) have
associated quadratics. To prove the main theorem in this paper, quite often
we will study real numbers that are potential poles of RPFs because they are
roots of polynomials of the form Q(z) = aAz? + bz + cA. However, these
quadratic polynomials will not necessarly be associated quadratics. That is, it
may be the case that ged(a, b, ¢) # 1. These quadratic polynomials provide a
means by which we can associate a potential pole of an RPF with a triple of
integers, namely [a, b, c]. For convenience, then, we write Q(z) = [a, b, c] in
place of Q(z) = aAz? + bz + cA wherever appropriate. Also, we say that a
is the lead coefficient of Q(z) (as opposed to al), b is the second coefficient
of O(z), and c is the constant term (as opposed to cA).
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DEFINITION 3.7.  Suppose z, is in Q(A, VN)\ AQ, for some positive inte-
ger N, and has associated quadratic given by P(z) = [a, b, c]. Define disc(z,)
to be the discriminant of the polynomial P(z). That is, disc(z,) = b> — 4A%ac.

Note that disc(P(z)) = disc(—P(z)), so that by Proposition 3.6, disc(z,) is
well defined.

In order to make a distinction between the definition of disc(z,) and the
discriminant of any quadratic polynomial of which z, is a root, we give the
following definition.

DEFINITION 3.8. Suppose P(z) =rz® + sz + 1t is in R[z]. Then Dp,, =

s% — 4n. In other words, Dp,,, is the discriminant of the quadratic polyno-
mial P(2).

If in fact P(z) is an associated quadratic for z, then disc(zy) = Dp,,.

LEMMA 3.9. Suppose z, is a root of the polynomial P(z) = rz> + sz + t
in R[z] and let M = ‘; § be a linear fractional transformation such that

det(M) =d # 0. Then
(a) Mz, is a root of the (at most quadratic) polynomial Q(z) = (P |-, M'Xz),

where M’ _Sy _aﬁ), and

(©) Dyz) = d*Dp(zy.
Proof. First note that

(Ploa M')(Mzy) = (—y(Mzy) + &)’ P(M'( Mz,))

=(——y(MZO) +a)2P((a6837 aagﬁy)ZO)

d
= (—v(Mzy) + a)zP(zo)
=0,

because z, is a root of P(z).
Moreover, Q(z) is a polynomial of at most degree 2 because

Q(Z)=(—72+a)2(r( 0z — B )2+s( bz — B )+t)

-vzZ+ « —vzZ+a

= (—v(Mzy) + a)ZP(-({EQ)

=r(8z—B) +5(8z— B)(—yz+ a) +t(—yz + a)’
= (r82 — sy8 + ty?)z* + (s(ad + By) — 2(rBé + tay))z
+(rB? — sap + ta?).
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Finally, the second statement follows from the first since

Dyg,y = (s(ad + By) — 2(rB8é + tay))?
—4(rB? — spa + ta®)(ré* — sy + ty?)
= d*(s* — 4n)
= d’Dp,),

as desired. O

COROLLARY 3.10.  Suppose z,, is a hyperbolic pole of an RPF q, on G(A) for
A =1,V2, or V3. If an associated quadratic for z, is P(z) = [r, s, t], then for
any M € G()),

(a) an associated quadratic for Mz, exists, and is given by Q(z) =
(P |-, M~'X2), and consequently,

(b) disc(z,) = disc(Mz,).

The proof of Corollary 3.10 is a straightforward and elementary computa-
tion and may be found in [Ge2]. Further, we note that for G(A) = I'(1), with
the same hypotheses as in Corollary 3.10, statement (b) follows directly from
the fact that we may view P(z) and Q(z) as binary quadratic forms. That is, if
we let Q,(x,y) = ax* + bxy + cy? and Q,(x, y) be the binary quadratic form
with the same coefficients as (P | , M~')(z) (so that P(z) = Q,(z,1) and
(P |-y M™')(2) = Q,(z,1)), then since Q,(x,y) and Q,(x, y) are equivalent
in the narrow sense, we have that the discriminant of P(z) is the same as the
discriminant of (P |-, M~ 'Xz). In other words, disc(Mz,) = disc(z,). (For
more information on binary quadratic forms, see [Bu] and [Za].)

LEMMA 3.11.  Let q be a rational period function on G(A) for A = 1, V2 or
V3. If z, is a hyperbolic pole of q, then given a fixed prime p, there is a
hyperbolic pole z, of q satisfying disc(z,) = disc(z,) and with associated
quadratic [r, s, t] such that gcd(r, p) = 1. In other words, q has a hyperbolic
pole with associated quadratic whose lead coefficient is relatively prime to p.

The proofs of Lemma 3.11 for A = 1, V2, and V3 are analogous, and the
case A = 1 appears as Lemma 2.2 in [Gel] and as Lemma 2.1.13 in [Ge2].

4. More Background

The main result of this paper is restricted to RPFs defined on the two
groups G(v2) and G(V3) essentially because of the existence of Hecke
operators on the space of automorphic integrals of a given weight, which, in
turn, induce operators on the corresponding space of RPFs. To better
understand why this is so, we give a definition.
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DEFINITION 4.1. Suppose G, and G, are subgroups of a group G such
that for some g, h € G,

[G,:8(G, N Gy)g '] <wand [G,:h(G, N G,)h '] <=

G.e., g(G, N G,g ' and (G, N G,)h"! are of finite index in G, and G,
respectively). Then G, is said to be commensurable with G,.

The Hecke groups, G(A,), are subgroups of SL(2, R). Leutbecher, in [Le],
showed that the only Hecke groups which are pairwise commensurable are
I'(1), G(/2), and G(Y3). In [BK], J. Bogo and W. Kuyk used the pairwise
commensurability of T'(1), G(/2), and G(¥3) to show the existence of, and
subsequently define Hecke operators on the space of automorphic forms on
G(Y2) and G(Y3). Implicit in their construction of Hecke operators was the
use of the map ¢,, defined by Hecke, which maps the space of automorphic
forms on G()), of weight 2k for A = V2 or V3, to the space of modular
forms of the same weight.

In [PR], A. Parson and K. Rosen applied results of [BK] to the space of
automorphic integrals and the corresponding space of associated rational
period functions. By doing so, they created new modular integrals and
rational period functions defined on the modular group, from automorphic
integrals and RPFs defined on G(v2) and G(3).

Moreover, it is straightforward to see that the Hecke operators defined in
[BK] also act as operators on the space of automorphic integrals of weight
2k, and Parson and Rosen showed that these Hecke operators induce
operators on the corresponding space of RPFs. Therefore, in view of Theo-
rem 3.2, that the finite non-zero poles of RPFs on G(V2) and G(Y3) are
fixed points of hyperbolic elements of G(v2) and G(¥3), and in light of the
fact that induced Hecke operators exist on these spaces, we are irresistibly
drawn to an analogue of Theorem 2.4.

To this end, the results mentioned above which are relevant to the results
of this paper are summarized in the following theorem and the next four
definitions, which can be found, collectively, in [PR, BK, Kn1, Apl.

THEOREM 4.2. Let A = V2 or V3.
(a) If f, is an automorphic integral of weight 2k on G()), then ,(f,) is a
modular integral of weight 2k, where

2
z+t)

Ac—1
BB = R0 + 47 E f( 5
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(b) If q, is the RPF associated with f,, then {(q,) is an RPF on T'(1), where

Jf(q/\) = (‘If/\(f/\)) L2 T — % (£))
= a(22) + () o 5

() 0| )+ -0 g (2]

if A =V2, and

l/A/(q,\) = q)\(\/gz) + (ﬁ)'quA(_‘/_Z_s_) N (ﬁ)—qu/\(z —3 1)

+(z+ 1)'2"qA(Z‘/J3:—Zl) +(z- 1)_2kq)\(z‘/§zl )

ifA=13.

The Hecke operators defined on the space of modular integrals of weight
2k are given as follows.

DEerINITION 4.3. For A =1 and f a modular integral of weight 2k on
I'(1), the Hecke operators T(n) are defined as follows.

_ o 2k-1 _akpfaz + b
T(nf=n* L ah( %

ad=n

d>0

0<b<d

=n*t ) f|2k(0 Z)

ad=n
d>0
0<b<d

The Hecke operators defined above induce operators on the space of
RPFs of weight 2k defined on T'(1) as follows.

DEFINITION 4.4. If f is a modular integral of weight 2k with associated
RPF ¢(z), then the induced Hecke operator, T,,(n) is given by T(n)g =
(TWPONT — T(nf.
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The Hecke operators defined on the space of automorphic integrals of
weight 2k are defined as follows.

DEFINITION 4.5. For A =2 or V3 and f, an automorphic integral of
weight 2k on G()), the Hecke operators 7,(n) are defined as follows.
(@) If A’ + n, then

GV TS WA ey
ad=n
d>0
0<b<d

= p2k-1 2—: f).IZk(g b(;\)
ad=n

d>0
O<b<d

) If n = A2,

A2—1
2k—1 bA A t
GIPOVARNCS R W () E WA <

ad=\? t=1

d>0

O<b<d

(©) If n = (%) for some integer r > 1,

T((A)™ ) = TODT((AD))f = () (W) ),
—()* (D))

As is the case for the spaces of modular forms and modular integrals, the
Hecke operators defined on the space of automorphic integrals on G(A) are
multiplicative (see [PR, BK]). Moreover, in analogy to Definition 4.4, the
Hecke operators in Definition 4.5 induce operators on the corresponding
space of RPFs on G(A), which are given as follows.

DEFINITION 4.6. For A = V2 or V3, if f, is an_automorphic integral of
weight 2k on G()) with associated RPF q,, then T,(n)q, = (T,(n)f)lxT —
T\(n)f,.

It is worth noting that in addition to multiplicativity, the induced Hecke
operators inherit the recursion formula in Definition 4.5 (c).

We now have the vocabulary with which to restate Theorem 2.4 as well as a
useful corollary.
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THEOREM 2.4. Let q(z) be a rational period function of weight 2k defined
on I'(1) with at least one hyperbolic pole. Then q(z) is not an eigenfunction of
the induced Hecke operator T2 «(n) forany n > 1.

The following corollary to Theorem 2.4 captures the essence of the proof
of Theorem 2.4 in [Gel], [Ge2] and will be relevant in establishing the main
result of this paper.

COROLLARY 4.7.  Suppose q(z) is a rational period function of weight 2k
defined on T(1) with at least one hyperbolic pole. Then the RPF T,,(n)q has a

hyperbolic pole X, with the property that for every hyperbolic pole z, of q,
disc(X,) > disc(z).

5. Statement of the theorem

THEOREM 5.1. Let A = V2 or V3. Ifq A is a rational period function with at
least one hyperbolic pole, then q, is not an eigenfunction of T(n) foranyn > 1.

The proof of Theorem 5.1 will be a proof by contradiction, in which we will
use Theorem 2.4 and the fact that essentlally b (T(n)g,) = T(n)P(q,).
However, in order to apply Theorem 2.4 in such a proof, we must guarantee
that if g, has a hyperbolic pole, then so does w(qA) This is enitrely the
purpose of the next section.

6. The Poles of §/(g,)

From now on, assume that A = 1, V2, or V3, and that all automorphic
integrals and RPFs are of weight 2k, k is a positive integer, unless otherwise
specified.

The goal of this section is to prove the following proposition.

PROPOSITION 6.1. For A = \/5 or V3, suppose q, is an RPF defined on
G(A) with a hyperbolic pole. If 0, is the map defined in Theorem 4.2 (b), then
,(q,), an RPF defined on T(1), has a hyperbolic pole.

Before proving Proposition 6.1 we give one lemma.

LEMMA 6.2.  Suppose q, is an RPF on G(2) with a hyperbolic pole z, such
that disc(z,) = 1(mod 2). Then there is a hyperbolic pole z, of q, satisfying
disc(z,) = disc(z,) with associated quadratic [r, s, t] such that 2|r. In other
words, q, has a hyperbolic pole with associated quadratic whose lead coefficient
is divisible by 2.
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Lemma 6.2 is quite useful in proving Proposition 6.1 for the case A = V2.
Unfortunately, the analogous lemma for A = V3 is false, as evidenced by the
following example. For k a positive odd integer, let

1 1
(ﬁzz—z—ﬁ)k i (\/522+z—\/3—)k

First, we verify that g is an RPF of weight 2k on G(Y3) by checking
functional equations (2) and (3).

For convenience, we use the notation introduced in Section 3 after
Proposition 3.6 to write g(z) = [1, —1, —117% + [1, 1, —1]7*. Note that since
k is odd, we have —[a, b,c]™* =[—a, —b, —c]*. Hence, it is straightfor-
ward to see that g satisfies (2), and therefore, we check only (3). In that case
we need only show

(6) q(z) =

(7 i [1, =1, = 1] “Lu(ST)" + i [1,1, = 1] *Lu(ST)’
i=1 i=1

(8) = —([1, -1, 117" + [1,1, =1] 7).

To this end,

. 5 .
[1, =1, =11 %1 (STY + ¥ [1,1, =1] *1u(ST)’
i=1
=1, =511 +[-1,-1,11 " +[-3,7, =11 * + [-3,11, =3]F
+[-1,7, =31+ [3,-7,1] F + [3, —11,3] *
+[1,-7,3] "+ [-1,1,1] * +[-1,5, —1]"*
—([1, =1, =1]7" + [1,1, =1] ),

TP

~

as desired.

Next, note that the poles of g are (1 + V13)/2y3 and (-1 + V13)/2/3
which have associated quadratics [1, —1, —1] and [1, 1, —1], respectively,
neither of which have lead coefficient divisible by 3, and both of which have
discriminant equal to 13 (= 1(mod 3)).

Therefore, we must resort to another technique, an algorithm, in the proof
of Proposition 6.1 for the case A = V3.

Proof of Lemma 6.2. Suppose an associated quadratic for z, is [a, b, c].
Without loss of generality, assume 2 + a. By functional equation (2), Tz, =
—1/z, is a pole of g, which, by Corollary 3.10 (a) has associated quadratic
[c, —b, al. If 2|c, we are done. Otherwise, gcd(c,2) = 1. Now by functional
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equation (3) and the fact that z, & v2 Q (Corollary 3.4 (b)), at least one of
(S 5Tz, (S 5T)zy, or (S 5T)z, is a pole of g,, and by Corollary 3.10 (a),
these potential poles have associated quadratics

[2a + b + ¢, —4a — b,a],
a+b+2c,—4a — —4c,2a +b + ],
b+2 4 3b — 4c,2 b

and

[c,=b —4c,a + b+ 2],

respectively. By hypothesis, disc(z,) = b* — 8ac is odd, so that b is odd.
Thus, since a and ¢ are odd, the first two associated quadratics have even
lead coefficients, and therefore if either (S ﬁT)3zo or (S ﬁT)Zzo is a pole, we
are done. Otherwise, (S 57)z, is a pole whose associated quadratic has even
constant term, and in that case we need only use —1/(S ‘/Z_T)ZO which has
associated quadratic [a + b + 2¢, b + 4c, c] with even lead coefficient. O

The proofs of Proposition 6.1 for A = v2 and A = V3 are analogous onl
up to a point. Therefore, we present the proof of Proposition 6.1 for A = \/_ZY
for as long as the analogy holds, which will, in fact, completely take care of
the case A = V2. To finish the proof, we then address what remains of the
case A = V3.

Proof of Proposition 6.1.  'We wish to show that if ¢,, an RPF on G(A) has
a hyperbolic pole, then #,(g,), an RPF on I'(1), has a hyperbolic pole. To
this end, recall from Theorem 4.2 that if A = V2,

©
7:(z) = §(q.(2))
1

= q:(V22) + 2“"%(7%) + Z‘kqA( - > ) +(1 - Z)_”qA( T %Zz),

and if A = V3,

(10)
q5(z) = ‘/A’A(CIA(Z))

= q,(V32z) + 3_kq/\(—‘/%) + 3~k‘h(%) " 3_"%(2\/%1)

+(z+1) g ( V3z ) +(1-2) quA(&)

+1 1—-2z/
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For i = 2,3 we wish to show that ¢;, a priori an RPF on I'(1), has a
hyperbolic pole. Since g; is a sum of terms of the form g,|,x M, where M is a
linear fractional transformation of determinant A, we look to the poles of g,
in order to search for potential poles of g;.

For example, if z, is a hyperbolic pole of g,, for A = V2, then V2z, is
potentially a pole of g, because the second term in equation (9) is
27%q,(z/ V2). On the other hand, V2 z, may be a removable singularity of g,
if any of 2z,, (Y2z, — 1)/ V2, and 2z,/(1 — V2z,) are poles of g,. Note
here that (1 — z)"?*q,(¥2z/(1 — 2)) is the fourth term in equation (9). By
Corollary 3.4 (b), since z, & V2 Q, we have 1 — V22, # 0 and so (1 — z)~ 2
cannot provide a zero-denominator when z = V2z,.

Similarly, if z, is a hyperbolic pole of g, for A = V3, then by examining
the second term in equation (10), we see that V3 z, is potentially a pole of g,,
but we have no guarantee that V3 z, is not a removable singularity of g;.

Therefore, we proceed as follows. First, for the sake of clarity, we tem-
porarily restrict the discussion to the case A = V2. We wish to find a
hyperbolic pole z, of g, such that 2z,, (V2z, — 1)/ V2 and 2z,/(1 — V2z,)
are not poles of g,, and in doing so, will guarantee that v2z, is a pole of g,.
This pole will necessarily be hyperbolic because since z, is non-zero and
finite, then V2 z, is also non-zero and finite. By Theorem 3.2, then, we will
have that V2z, is a hyperbolic pole of g,.

To this end, let z, be a hyperbolic pole of g, with associated quadratic
[a,, by, c,] such that D, = b3 — 8a,c, is maximal with respect to all hyper-
bolic poles of g,. For convenience, let

N1=(2 0), N2=(‘/5 _1), and N3=( 2 O),

0 1 0 V2 V2 1
so that
V2z, - 1 2z,
N,z,=2z,, Nyz, = —"——, and N,z, = —————.
122 2 222 2 322 1— V22,

Next, we apply Lemma 3.9 (a) to N,z,, N,z,, and N;z, to find that they
satisfy the (not necessarily associated) quadratic polynomials

P(z) = ap22% + 2b,z + 4c¢,V2,
Py(z) = 2a,Y22% + (4a, + 2b,))z + (a, + b, + 2¢,)V2,

and

Py(z) = (a, + b, + 2¢,)V22% + (2b, + 8¢,)z + 4cyV2,
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respectively. First, note that we must show that P,(z), P,(z) and P4(z), or
else normalizations of P/(z), P,(z) and P,(z), are of the necessary form with
respect to Definition 3.5 so that N,z,, N,z,, and N;z, may legitimately be
hyperbolic poles of ¢g,. To this end, we need only show that the lead
coefficients and constant terms of P,(z), P,(z) and P4(z) are all non-zero.
This is clearly true of P,(z) because a,c, # 0 since [a,, b,, ¢,] is an associ-
ated quadratic for z,. Therefore, it remains to show that a, + b, + 2¢, # 0.
But, if a, + b, + 2¢, = 0, then N,z, = (V2z, — 1)/ V2 is a root of P(z) =
2a,V22% + (4a, + 2b,)z. That is,

2a,V2 (N,z,)° + (4a, + 2b,) N, z, = 0,

which means that either N,z, = 0 or else 2a,/2N,z, + (4a, + 2b,) = 0.
This is a contradiction because in either case, we have N,z, and hence z, is
a rational multiple of V2. Thus, N,z,, N,z,, and N,z, all have associated
quadratics, and hence, we return to the usual notation for the P,(z), namely

P(z) = [a,,2b,,4¢,],
P,(z) = [2a,,4a, + 2b,,a, + b, + 2¢,]
and

Py(z) = [a, + by + 2¢,,2b, + 8¢,, 4c,].

Since for j = 1,2, 3 the determinant of N, is 2, by Lemma 3.9 (b), we have
Dp .y = 4Dp,), or, alternatively, D, ., = 4D, because P(z) is an associated
quadratic for z,. If it turns out that for j =1,2,3, P(z) is an associated
quadratic for N,z,, then Nz, will not be a pole of g, by the maximality of
D,, and then we are done. That is, if P(z), when viewed as a triple of
integers, does not have 2 as a common factor, then Pj(z) is an associated
quadratic for N,z,, since the remaining condition is to check that the
coefficients are relatively prime as a triple.

A similar discussion regarding potential hyperbolic poles of g; provides
the following information. First, choose z; with associated quadratic
[a;, by, c;] so that D, = disc(z,) is maximal. Then in order to guarantee that
V32, is a (necessarily hyperbolic) pole of g5, we must ensure that

V3zy—1 3z, +1 3z, and 3z3
V3o V3 V3 +1 1 -3z,

3z,

are not poles of g, for A = V3. We apply Lemma 3.9 (a) to each of the above
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numbers, and discover that they satisfy, respectively, the quadratic polynomi-
als

0i(z) = [a;,3b;3,9¢],

0,(z) = [3a5,6a; + 3bs, a; + by + 3¢5,

04(2) = [3a;, —6a; + 3b;, ay; — by + 3¢5],

Q.(z) = [a; — by + 3¢;,3b; — 18¢5,9¢4],
and

Note also that by Lemma 3.9 (b), DQ,(:) = 9D, for j = 1,2,3,4,5; if it then
turns out that each Qj(z) is an associated quadratic, we are done by the
maximality of D;. That is, if each Qj(z), when viewed as a triple of integers,
does not have 3 as a common factor, then Q(z) is an associated quadratic.
We condense the information obtained thus far in Figure 1.

The remainder of the proof is given in two cases, the second of which
includes an algorithm. Recall that D, and D, are maximal and fixed for the
rest of the proof.

A=y2 A=13
Pole Corresponding Pole Corresponding
of g,? Quadratic Polynomial of g,? Quadratic Polynomial
P(z) = 0(2) =
2z, [a,,2b,,4c¢,] 3z, [as,3b3,9¢5]
P2(Z) = Qz(z) =
\/1_2_22 -1 \/523 -1
——— | [2a,,4a, + 2b,,a, + b, + 2¢ ———=— | [3a;,6a; + 3b;, a5 + by + 3¢
¥ [2ay,4a, 2,42 2 2] A [3a3,6a; 3,43 3 3]
Py(z) = 04(2) =
2z, \/§z3 +1
————=— | [a, + b, + 2¢,,2b, + 8¢,, 4c ——=— | [3a3, —6a; + 3b;,a; — by + 3¢
1- V2, 2 2 2,207 2,4¢5] N3 [3a, 3 3,83 D3 3]
0,(2) =
32\ 4y — by + 3e3,3by — 18¢3,9¢,]
= . . |43~ 03 C3,203 — 10€3,5¢C3
623 +1
Q5(Z) =
32 |4y + by + 3¢5, 3bs + 18¢3,9¢,]
— | la Cs, Cs,
1- 3z, 3 3 3,903 3,7C3

FIG. 1 Potential poles of g, related to z;
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Case 1. D; = 0(mod \?).

Since D; = b} — 4\%a;c;, we have b, = 0(mod A*). By Lemma 3.11, we may
assume without loss of generality that ged(a;, A*) = 1. Then every potential
pole of g, in Figure 1 is eliminated because each corresponding quadratic
polynomial has either lead coefficient or constant term relatively prime to A%,
In other words, all polynomials in Figure 1 are associated quadratics. There-

fore, Az; is a hyperbolic pole of g;.
Case 2. D, # 0(mod A?)

Since D; = b? — 4A\%a,c;, we have b, # 0(mod A?).

The remainder of Case 2 is given in two steps, the first of which gives a
procedure for producing a hyperbolic pole of y,(q,), although under some-
what restrictive circumstances (due, in part, to the failure of Lemma 6.2 for
X = V3). The purpose of the second step is to show that even in the worst
case, we may always return to the first step.

Step 1. If there exists a pole z,, with disc(z,, ) = D;, and with associated
quadratic [r;, s;, ;] such that A’|r;, and if among all such poles, we choose z,,
so that |z, |, is maximal, then all potential poles of g,, shown in Figure 2 are
eliminated. That is, 2z, and 3z, are eliminated by virtue of the maximality

A=12 A=V3
Pole Corresponding Pole Corresponding
of g,? Quadratic Polynomial of q,? Quadratic Polynomial
22, [ry,25,,41,] 3z, [r3,355,925]
\/2—2,,,2 -1 \/.’sz3 -1
7 [2r),4r, + 285,17, + 5, + 21,] \/37 [3r5,6r3 + 385,13 + 55 + 3t5]
2z, 3z;+1
I——\/Z—,ZZ_—— [ry + 5y + 285,25, + 8t,,41,] f\/%— [3r3, =673 + 385,73 — 53 + 3151
my
Y, [ 313,355 — 1813,943]
—— | [ry — §4 + 315,35, — 185,91
\/3_Zm3 1 3783 3,953 3,713
3z,
W [7'3 + 853 + 3[3,35‘3 + 18t3,9t3]
msy

FIG. 2 Potential poles of g, related to z,,
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of |z, |, and all of the remaining potential poles of g, are eliminated because
each has corresponding quadratic polynomial with either lead coefficient or
constant term relatively prime to A%

Remark. By Lemma 6.2, when A = V2, we can always find a hyperbolic
pole of g, satisfying the hypotheses given in Step 1. Therefore, when
X = V2, if g, has a hyperbolic pole, so does ¥;(g,), and we are done. On the
other hand, when A = V3, as promised, the situation is more complicated,
and we deal with it in the next step.

Step 2. A =3, D, # 0(mod3). Recall that z, is a hyperbolic pole of g,
with associated quadratic [as, bs, c5] such that D, = disc(z;) is maximal.
Note that since D, # 0(mod 3), we must have ged(b,,3) = 1.

If 3la,, then go to Step 1. Otherwise, gcd(a,, 3) = 1. In that case, 3z, is
eliminated as a possible pole of g, because the lead coefficient of Q, (see
Figure 1) is not divisible by 3.

It remains either to eliminate as potential poles of g5, or else use to our
advantage, the final four potential poles of ¢, in the second column of
Figure 1. To this end, suppose X, = 3z,/(¥3z; + 1) is a pole of g,. By the
maximality of D, and because gcd(3, b;) = 1, we must have that [(a; — b; +
3¢3)/3, by — 6¢5,3c5] is an associated quadratic for X,. In that case, —1/X,
is a pole of g, with associated quadratic whose lead coefficient is divisible by
3. Go to Step 1. Similarly, if X5 =3z,/(1 — V3z,) is a pole of g,, then
—1/X, is a pole of g, with associated quadratic whose lead coefficient
divisible by 3. Go to Step 1.

Now, without loss of generality, assume that neither X, nor X are poles
of g,. We will eliminate both X, = (¥3z, — 1)/V3 and X, = (/32z; +
1)/ V3 as potential poles of g, as follows. Observe that the constant terms of
Q, and Q; (the corresponding quadratics for X, and X;) are (a; + by + 3c¢;)
and (a; — by + 3c;), respectively. Therefore, we may eliminate one of X, or
X, depending on whether or not a; = by(mod 3). By a solicitous choice of z;,
we may eliminate X, and X, simultaneously.

In particular, if a; = b;(mod3), the among all such poles of g, with
maximal discriminant and a; = b;(mod 3), choose z; to be the largest (fur-
thest to the right on the real axis). Then X, is eliminated because the
constant term of Q, is not divisible by 3, and X, is eliminated because

V3z, + 1 4 1 S
— =23+ = >z,
V3 Pz 7

Similarly, if a; # b;(mod 3), then among all such poles of maximal discrim-
inant, choose z; to be the smallest. Then X; is eliminated because the
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constant term of Q5 is not divisible by 3, and X, is eliminated because

\/§Z3 - 1 2 1 <
— = =2z; — = <2zj.
V3 oy 7
Therefore, V3 z, is a hyperbolic pole of s This concludes Step 2 and Case 2.
In all cases, we have shown that if g, is an RPF on G(A) with a hyperbolic
pole, then ¢,(g,), an RPF on I'(1), has a hyperbolic pole. i

7. Relationship among 7(n), T)(n), and ¥,

In this section we find a formula for the relationship among 1/1A, T(n), and

T,(n), where T(n) and T}(n) are the induced Hecke operators on the space of

RPFs on I'(1) and G(/\) respectively. See Theorem 4.2 (b), Definition 4.4,
and Definition 4.6.

In the next lemma, we begin by giving a formula for the relationship among
T(n), T,(n), and ¢, the usual Hecke operators, and the map from the space
of automorphic integrals on G(A) to the space of modular integrals on T'(1),
respectively. See Definition 4.3, 4.5 and Theorem 4.2 (a). Then we will show
that the corresponding formulas hold for the induced map and operators lﬁ)\,
T(n), and T)(n).

LEMMA 7.1. For A = V2 or V3, if f, is an automorphic integral of weight
2k on G()), then

@ W(T(f) = T(WY(f) if A n
and

®) Y (T(n)f) = TMY(F) + (A — DA2R(F) if n = A%

Proof. The proofs for A = V2 and V3 are analogous, and so we present
only the case A = V2.

(a) First, for convenience we write f and ¢ in place of f 5 and ¢ 5
respectively. Next, by Definition 4.5 (a), since 2 + n, we have

(11) Tp(n)f=n*"" ) f|2k(a b\/f)’
d=n 0 d
O<b<d

and by Theorem 4.2 (a),

(12) ¥(f) =f|2k((1) ‘/%)+f|2k \{)2—

+f12k((1)

5 -
\“__/



714 ELLEN GETHNER

so that
@ wraoon =[x s )| (5 5
ez mly )| (5
6?2;% 2%k
el zomle 2B (5 )
Oﬁ%<d 2%
[ X fl2k(g d\/—)+ Y flzk( a2 bf)
025l 0“5l

ad=n
0<b<d

C T f)]

On the other hand, by Definition 4.3,

(14) Ty (f) = n*"! dZ f'2k(o f) (‘5 Z)
0<b<d
_ V2
+ n? lof;di'dfl ( O)Zk(g Z)
+ p2k-1 0a<dbz<ndf|2k( ‘/15)21((?) Z)
(15) [ z f‘“(o d\/—)+ z Sk (a‘/_ b‘c/i_)
0% %a 0<5<a

ad=n
0<b<d

a b+d
+ T sl Cn )]
In order to see that (T z(n))f = T(n)y(f), it suffices to show that the
summation of the first and last terms of equation (13) equals the summation
of the first and last terms of equation (15), because the second terms in both
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equations are identical. Specifically, it suffices to show that

a 2b a a+2b
(1 Z, [f'%(a i) el o }
0<b<d
is the same as
a b+d
17) a‘En [f|2k(0 d\/_) flzk(o W
0<b<d

For convenience in computations to follow, we write #n/d in place of a.

First, observe that we need only examine the upper right-hand entries of
the matrices in (16) and (17), since all other corresponding entries are
identical. By doing so, we may rewrite (16) and (17) as follows. Recall that
2 + n so that d and n/d are odd. Let

E1=1{0,2,...2d - 2},

n n n
Ol = {E,E +2,...,E +2d—2},
02=1{1,3,...2d — 1}.

In other words, E1 is the list of consecutive even integers from 0 to 2d — 2,
O1 is the list of consecutive odd integers from n/d to n/d + 2d — 1, and
02 is the list of consecutive odd integers from 1 to 2d — 1. In that case, (16)
may be written as

o zel )zl A

beE1 bEOlﬂOZ

+ > lek(g d%),

a
beOI\(01N0O2)

and (17) may be written as

g -
(1) adz,.f'“(o df)+ = f'“(o df)
beE1 be01n0O2

. b
N f'”‘(o M)'

beON\(01N02)
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Therefore, it suffices to show that the last terms in (18) and (19) are the
same. That is, we must show that

a b
(20) I ]

ad=n
beOI\(0O1N0O2)

is the same as

a b

21 .

@ il )
beO2\(01N02)

To this end, note that for d # n,

n

01\ (01 N 02) = {2d+1,2d+3,...,d

+2d - 2},
and

02\ (01 N 02) = {1,3,...,—3— —2},

and we see that the difference between every pair of corresponding elements
in the above two lists is 2d. When d = n, O1\ (01 N 02) and 02\ (O1 N
02) are empty. Therefore, we may rewrite (21) as

a b—2d
(22) N (v

=n
beo1\0m02

which means that (20) and (21) are identical because

f|2k(g bd‘/_ ) (@3) 2k (az+dz:5—2d)

_(d‘/—) (az+b \/5)

V2
a b
:f|2k(0 d\/f)

since f is periodic with period V2. This proves (a).
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(b) We will compute (T 5(2)f) and T(2)¢(f), and then compare the
results. To this end, by Definition 4.5 (b), we have

(23) Ti(2)(f) =f|2k((1) g) +f|2k((1) ‘/25)
2 0 V21
+f|2k(0 1) + flax 0 ‘/5),

and by Definition 4.3,
(24) TQ¥(f)
—u Dl 5) ey ) Feny )
Then combining (12) and (24) yields

(25)T(2)¥(f)

=f'2k(‘/§ 0) +f|2k((1) 2‘(/)5)+f|2k(1) 255)
\/— \/— 1

3
0 2V2 +f|2"(0 2\/_)

onfy 5l )

On the other hand, combining (12) and (23) yields

+ flak + flak

Tl (2\7 0

W(Ta@f) = 1) + 2 + 08) 2z )

+ Z‘kf(% + \/5)

Since f is periodic with period V2, we conclude that
W(TEQ)f) = T@w(f) + (2) " w(f),
as desired. O

The corresponding formulas hold for ¢, the RPF associated with f, as is
shown in the next corollary.



718 ELLEN GETHNER

COROLLARY 7.2.  For A = V2 or V3, if q, is an RPF on G()), then
(@) §(T(n)g,) = T()i(q,) if A +n

and
(b) l&/\(ﬁ(n)q/\) = f(”)‘/;)\(‘h) + (A - 1))‘_2](‘/;)\(‘1)\) ifn=x\.

The proof of Corollary 7.2 is a straightforward computation using Theorem
4.2, Definition 4.4, and Lemma 7.1.

We need one final lemma in order to prove Theorem 5.1.

LEMMA 7.3. Suppose q, is an RPF of weight 2k on G(X) for A = V2 or
\/§ and suppose q, has a hyperbolic pole. If s > 1 is an integer, then the RPF
G(T,((A2)*)q,) (defined on T(1)) has a hyperbolic pole z; with the following
property: if z, is any hyperbolic pole of (g V) the disc(z,) > disc(z).

Proof.  We proceed by induction on r. Specifically, we will show that for
all integers r > 1, 1//(7:\((/\2)’)61)\) has a hyperbolic pole z, such that for any
hyperbolic pole z, , of J(T,(A2)~")g,) we have dlSC(Z ) > dise(z,_,). To
finish the proof, we apply this result to the case r = 1, or equivalently, to the
hyperbolic pole of §i(g,).

Let r = 1. Then

(26) (1) )a,) = §(T(W)g,)

= T(A)d(q,) + (X — 1)1k (q,)

by Corollary 7.2 (b). Moreover, by Corollary 4.7, T(A2)4(q,) has a hyperbolic
pole z, such that disc(z,) > disc(z,) for any hyperbolic pole z, of i(q,), and
therefore, by equation (26), so does §(T,(A*)q,).

Now suppose the induction hypothesis holds for all positive integers j such
that 1 <j < r. It remains to show that §(7,(A2)*1)g,) has a hyperbohc
pole z,,, such that disc(z,,,) > disc(z;) for any hyperbohc pole z, of
lp(TA(( A)"gq,). To accomplish this, we use the recursive deflmtlon of
T,((A2))*1) as given by Definition 4.6 (c) in Section 4. Specifically,

@7 B(H(O " a,)

= H(TOOHT(O ) g, — T )y — T T Hay).
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Since ¢ is linear, and by applying Corollary 7.2 (b), we can rewrite equation
27) as

H(T((M))a)) = TODHT(() )as) + (2 = DA(T((A))g,)
—) (R )a) = ™ HB((D))a,)
= T2 ((1((2))a,)
+[(2 = a2 = ) R () )4,)
()R )

In total,

28) #(F(O )a)
= TOHG (T ) 0))) + (T )a,) + CF(T(OD ™ a,),

where C; = (> — DA™?* — (A*)F and C, = —(A?)** 1,

By the induction hypothesis, df(T,\(( AZ)’)q ) has a hyperbohc pole, z, such
that for any hyperbolic pole z,_, of 1//(T((A2)' Dq,), we have dlSC(Z ) >
disc(z,_,). Moreover, by Corollary 4.7, T( )t2)1,ll(TA(( A*)")g,) has a hyperbolic
pole z,,, such that for any hyperbolic pole z. of Y(T,((A*)")q,), we have
disc(z,,,) > disc(z;). Therefore, by equation (28) the same can be said of
G (T,((A2)*1)q,). This completes the induction on r.

To finish the proof, simply note that for 1 <j<s, we know that
$(T,((A*))q,) has a hyperbolic pole z; such that disc(z;) > disc(z]_,) for any
hyperbolic pole z;_, of G(T (A2~ l)q ). In partlcular if z, is any hyper-
bolic pole of (g )\) then disc(z,) > disc(z,), as desired. i

8. Proof of Theorem 5.1
We are now ready to prove Theorem 5.1, which we restate.

THEOREM 5.1.  For A = V2 or V3, if q, is a RPF on G()) with at least one
hyperbolic pole, then q, is not an eigenfunction of the induced Hecke operator
T,(n) forany n > 1.

Proof. We give a proof by contradiction, which is accomplished in two
steps: for any integer n > 1 such that A* + n, and for n = (A?)*n/, where
s>1,n>1and A2 +n.
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Step 1. n > 1is a integer with A? + n. By way of contradiction, suppose
,\(n)q,\ Cq, for some C # 0 in C. Then by Corollary 7.2 (a),

(29) (T(n)ax) = T(n)ib(q,),
and by assumption,

(30) ‘/A/(ﬁ(”)q,\) = J’(C‘IA) = C‘/A’(q,\)
so that

(31) T(n)idi(q,) = C¥(q,)-

By Proposition 6.1, §i(g,) has a hyperbolic pole, and hence Theorem 2.4
applies, and therefore equation (31) gives a contradiction. Specifically, by
Theorem 2.4, §/(g,) is not an eigenfunction of 7(n).

Step 2. n = n'(A?)*, where s and n' are positive integers, and A%+ n. By
way of contradiction, suppose T,\(n (A®)*)q, = Cq, for some C # 0 in C, so
that J(7,(n'(A%)*)q,) = Cii(q,). Since the induced Hecke operator is multi-
plicative and by Corollary 7.2 (a), we have

$(T(n () )a,) = (T T((2))a,)
= T(n)§(T,(3*) q,)-

In total, with our original assumption, we have

(32) T(n)§(1((X2))g,) = Cé(q,).

By Lemma 7.3, $(T,((A\*)*)q,) has a hyperbolic pole, z, such that disc(z,) >
disc(zg) for any hyperbolic pole z, of i(q,). Moreover by Corollary 4.7,
T )w(n((Az)s)q ») has a hyperbolic pole Z, such that disc(Z,) > disc(z,).
In other words, since disc(Z,) > disc(z,), T(n ) (T,(A2)*)gq,) has a pole, Z,,
which cannot be a pole of z/l(q »)> and this contradicts equation (32).
Therefore, g, is not an eigenfunction of K(n) for any integer n > 1, as
desired. O

9. Conclusion

That RPFs on I'(1), G(v2) and G(Y3) with hyperbolic poles are not Hecke
eigenfunctions has now been established. Moreover, RPFs defined on I'(1)



RATIONAL PERIOD FUNCTIONS 721

have been completely classified, independently, in [CZ] and [Pa2], where an
explicit construction is provided for all RPFs of a given positive weight. In
[As], A. Ash has also looked at the classification of RPFs on I'(1) from a
cohomological point of view. However, there is still work to be done in the
classification of RPFs on all of the Hecke groups.

T. Schmidt is taking the cohomological approach to this problem. The
author and A. Parson have a constructive approach to the classification, and
these results will appear in subsequent papers.
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