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1. Introduction

In this paper, we shall study the holomorphic sectional curvatures on
indefinite almost Hermitian manifolds, with attention to the behaviour of the
Jacobi operator along spacelike, timelike and null geodesics.
The study of sectional curvatures on manifolds with indefinite metrics

exhibits significant differences from the positive definite case. In fact, at each
point m of a Riemannian manifold M the sectional curvature is a function
defined on the Grassmann manifold Gz(TmM) of planes on the tangent
space TmM at m, and hence bounded. For a semi-Riemannian manifold M,
however, Gz(TmM) at each point m contains degenerate planes, on which
the sectional curvature is not defined. That is, the sectional curvature is
well-defined only on the noncompact submanifold G(TmM)of Gz(TmM),
which consists of all nondegenerate planes in TmM. Thus the sectional
curvature is not necessarily bounded.

It is a significant observation by Kulkarni [7] that boundedness of the
sectional curvature on a semi-Riemannian manifold implies the constancy of
the sectional curvature. It is elementary to recognize that if the sectional
curvature is to be a function with definite values over Gz(TmM), then the
curvature tensor R must satisfy the condition

(1.1) R(x,y,x,y) =0

for any degenerate plane 7r {x, y} G2(TmM), where x, y TmM span
the plane 7r. Dajczer and Nomizu [4] showed that such a condition implies
the constancy of the sectional curvature on all nondegenerate planes. See
also a work of Thorpe [14] for a Lorentz manifold.
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In the study of an indefinite Kiihler manifold M, Barros and Romero [1]
showed that the holomorphic sectional curvature on M is constant c if and
only if the curvature tensor has the form

(1.2) w)g(y, Jw)g(y,
+g(x, Jz)g(y, Jw) 2g(x, Jy)g(z, Jw)},

for all x, y, z, w TmM. It is possible to consider any degenerate holomor-
phic plane and any degenerate totally real plane for the curvature tensor R of
the above expression. In fact, as an analogue of the necessary condition (1.1),
we have three kinds of vanishing conditions for R as follows:

(a.3) R( Jx, y, Jy) 0

(1.4) R(x,y,x,y) =0,

for all totally real degenerate planes 7r {x, y} (Jr c 7r -), and

(1.5) R(u, =0,

for all degenerate holomorphic planes 7r--{u, Ju} (JTr 7r), where u is a
null vector. Note that an indefinite Kiihler manifold is called null holomorphi-
cally fiat if the curvature tensor R satisfies the condition (1.5).

In the authors’ previous paper [2], it is shown that for a general indefinite
almost Hermitian manifold boundedness of the holomorphic sectional curva-
ture leads to spaces of pointwise constant holomorphic sectional curvature,
and that for an indefinite Kihler manifold either (1.3) or (1.4) implies the
constancy of the holomorphic sectional curvature. Moreover, it is pointed out
that the condition (1.5) does not imply the constancy of the holomorphic
sectional curvature.

In light of these situations, we shall study in the present paper the problem
of the holomorphic sectional curvatures on indefinite almost Hermitian
manifolds from a rather general point of view, with a special attention to the
behaviour of the curvature tensor, restricted to degenerate holomorphic
planes.
The paper is organized as follows. In 2, after a brief review on sectional

curvatures on a semi-Riemannian manifold, the definition of null holomor-
phically flatness is given for an indefinite almost Hermitian manifold. Our
first main result (Theorem 3.1) is stated in 3 as a generalized version of
criteria of Nomizu [10] ancl Tanno [13] for the pointwise constancy of the
holomorphic sectional curvature. In this section, also introduced is a function
c,, which allows us to measure the deviation of null holomorphically flatness
from a pointwise constant sectional curvature. There are interesting relations
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between the boundedness of the holomorphic sectional curvature and the
sign of c,, which will be studied in 4. In 5, some important relations among
the function c,, the Ricci tensor and the *-Ricci tensor are established. Such
formulas are applied in 6 to obtain certain general formulas for the
curvature tensors of null holomorphically flat manifolds. In the last section
(7), using such expressions of the curvature tensors, we shall state some
decomposition theorems for null holomorphically flat indefinite Kihler mani-
folds.

2. Preliminaries

Let (M, g) be a semi-Riemannian manifold, with an indefinite metric g.
Let V denote the metric connection of g, and R its curvature tensor:
R(x, y) Vtx y] [Vx, Vy], for tangent vectors x, y on m. Put R(x, y, z, w)
g(R(x, y)z, w’).
A plane at each point m of M, an element of the Grassmann manifold

Ge(TmM), is denoted by 7r- {x, y} if it is spanned by two tangent vectors
x, y TraM. A plane 7r {x, y} is called degenerate if

(2.1) g(x, x)g(y, y) g(x, y)2 0.

(Note that if g is a Riemannian metric, then g(x, x)g(y, y)- g(x, y)2 > 0
for any linearly independent x, y.) For each nondegenerate plane rr
{x, y} G(TmM), the sectional curvature for rr is defined by

K(vr) K({x, y}) R(x,y,x,y)
)2"g(x x)g(y,y) -g(x,y

This is clearly not well defined for any degenerate plane rr {x, y}
Ge(TmM)\G(TmM).
We now consider a possibility for a sectional curvature be extended for any

degenerate plane. Since any degenerate plane 7r can be considered as a limit
plane of a suitably chosen infinite sequence {Tri} of nondegenerate planes,
necessary for K(Tr) to have a finite definite value is the following condition

(2.2) R( xi, Yi, xi, Yi) --) 0 ( ),

where xi, Yi span 71- for each i. Therefore (1.1) is a necessary condition for
the sectional curvature to be extended over degenerate planes.
We now restrict our attention to an indefinite almost Hermitian manifold

(M, g, J). A plane 7r is called holomorphic if it remains invariant under the
action of the almost complex structure, (JTr c 7r). This is equivalent to the
existence of a vector z such that 7r {z, Jz}. If the sectional curvature K is
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considered only on holomorphic planes, we shall write the sectional curvature
by H instead of K, and call it the holomorphic sectional curvature. Since
g(z, z) g(Jz, Jz) and g(z, Jz) 0, the sectional curvature H for any non-
degenerate holomorphic plane rr {z, Jz} is given by

(2.3) =/-/({z, R( z, Jz, z, Jz)
g(z,z)2

Note that a holomorphic plane rr {z, Jz} is degenerate iff z is a null vector.
A manifold (M, g, J) is called null holomorphicallyfiat if the curvature tensor
R satisfies for all null vectors z,

(2.4) R( z, Jz, z, Jz) =0.

It is interesting to point out the existence of null holomorphically flat
indefinite almost Hermitian manifolds which are not of constant holomorphic
sectional curvature. Main examples we consider are as follows. The product
manifold M Ml(C) M2(-c) of two indefinite almost Hermitian mani-
folds of constant holomorphic sectional curvatures c and -c. Note that M is
Kihler if and only if so are the both factors. Also, it is not difficult to check
that previous (2.4) is invariant by conformal changes on the metric. This
provides a family of non-Kihler examples; in particular those manifolds
locally conformally equivalent to indefinite complex space forms. Finally we
note that the tangent bundle TM of a (positive definite) Kihler manifold
(M, g, J) endowed with the complete lift, gc, of the metric g and the
complete lift, jc, of the complex structure J of M is an indefinite Kihler
manifold. Moreover, it is shown in [3] that (TM, gC, jc) is null holomorphi-
cally flat if and only if (M, g, J) is a complex space form.

3. Constancy of the holomorphic sectional curvature

As a key observation of the present issue, we shall establish a theorem on
the conditions for the holomorphic sectional curvature to be pointwise
constant on an indefinite almost Hermitian manifold. This may be considered
as a natural generalization of the expressions obtained by Tanno [13] for the
almost Hermitian manifolds and by Barros and Romero [1] for the indefinite
Kiihler manifolds (see also [8], [9]).
We note that the criteria obtained in [9] and [13] are based on the study of

the Jacobi operator, R(-, Jx)Jx. The result in the theorem below involves
the study of the Jacobi operators R(-,Jx)Jx and R(-,x)x. Also, note
that the condition R(x, Jx)Jx + JR(x, Jx)x x is reduced to that in [9] and
[13] due to curvature identities.
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THEOREM 3.1. Let (M, g, J) be an indefinite almost Hermitian manifold.
The holomorphic sectional curvature H on M is pointwise constant if and only if
one of the following holds:

(3.1)
(3.2)
(3.3)

R(x, Jx)Jx + JR(x, Jx)x x

R( x, Jx ) Jx + JR( x, Jx ) x x

R( u Ju ) Ju + JR(u, Ju ) u 0

for all spacelike vectors x;

for all timelike vectors x;

for all null vectors u,

where means is proportional to.

For the proof of Theorem 3.1, it is convenient to introduce two functions F
and L, associated with the curvature tensor R. The functions F and L are
defined by

F( x, y) 2R( x, Jx, x, Jy) + 2R( x, Jx, y, Jx)
L( x, y) 2R( x, Jx, y, Jy) + 2R( x, Jy, y, Jx)

+ R(x, Jy, x, Jy) + R(y, Jx, y, Jx).

In terms of such functions, we have an expression

(3.6)

R( Ax + /y, J( Ax + /xy), Ax + /xy, J( Ax + /xy))

A4R( x, Jx, x, Jx) + /z4R( y, Jy, y, Jy)

+ A3tzF(x, Y) + Al3F(y,x) + A2/z2L(x, y).

There are two more useful formulas similar to the above:

(3.7)

(3.8)

Proof of Theorem 3.1. We shall show first that (3.1) is necessary for H to
be pointwise constant. Let x be a spacelike unit vector, i.e., g(x, x)= 1.
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Take y (x)a. Consider a non null vector Ax + txy so that

g( hx + Iy hx + iy ) t2 + ff.y ].lb
2 ::/: O,

where ey g(y, y). Then, Ax +/xy defines a nondegenerate holomorphic
plane r {Ax + Ixy, J(Ax + xy)}. If the holomorphic sectional curvature
H(r) is pointwise constant, say c, then from (2.3) and (3.6)we have

c(h2 + ey x2 ) A4R( x, Jx, x, Jx) + Ix4R( y, Jy, y, Jy )

+ htzF(x, y) + h/x3F(y, x) + A2tz2L(x, y).

Comparing terms in both sides, we get

hF(x, y) + h2tz2(L(x,y ) 2Cey) + htzF(y,x) O,

and hence F(x, y) 0. From (3.4),

g( R( x, Jx)Jx + JR(x, Jx)x, y) O.

This implies that (3.1) is necessary.
Conversely, suppose that (3.1) holds. Take a unit timelike vector y, which

is orthogonal to x, i.e., y (x)", and g(y, y) 1. Consider two mutually
orthogonal vectors Ax + xy and /xx + Ay, with

g( hx + Ixy, hx + txy ) l2- I1,2, g( txx + by, txx + by) t.
2 h2

In the case /2 ]2,2 > 0, replacing x in (3.1) by Ax + zy, we see that

R( + y hJx + ) ( hJx + )
+ JR( hx + txy, hJx + txJy)( hx + tzy) hx + txy,

and, hence that it is orthogonal to zx + Ay. Then, we get

R( hx + txy hJx + txJy hJx + IJy txx + by)

-R( hx + txy, hJx + txJy, hx + txy, txJx + hJy ) O.

Linearizing previous expression, and comparing the terms with the coeffi-
cients A3/x and Ax3, we see that

R( x, Jx, x, Jx) R( y, Jy, y, Jy ).

Since dim(x) - dim M 1, any timelike holomorphic plane zr intersects
x)+/-, and hence, the holomorphic sectional curvature of r is obtained by
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H(’n’) R(y, Jy, y, Jy), for any unit vector y 7r A (x) +/- This shows that if
(3.1) holds, then H is pointwise constant on timelike holomorphic planes.
Analogously, it is shown that the constancy of the holomorphic sectional
curvature on spacelike holomorphic planes is obtained.

Finally, we turn our attention to (3.3). If the holomorphic sectional
curvature is pointwise constant, say c, then

(3.9)

for any non null vector x TmM. Since each null vector u can be approxi-
mated by a suitable sequence {Xn} of non null vectors, taking limits in
previous expression when n , it follows that (3, 3) is a necessary condi-
tion for the pointwise constancy of the holomorphic sectional curvature. In
order to prove the sufficiency, let us consider orthogonal unit vectors x, y,
with g(x, x)= -g(y, y)= 1. Then x + y and x-y are null vectors, and
hence

0 R(x + y,J(x + y))J(x + y) + JR(x + y,J(x + y))(x + y)

R(x -y,J(x -y))J(x -y) + JR(x -y,J(x -y))(x -y).

Now, applying (3.7) and (3.8) to the identity

0=R(x + y,J(x + y),J(x + y),x-y)
R(x + y,J(x + y),x + y,J(x -y))

+ R(x -y,J(x -y),J(x -y),x + y)
R(x y,J(x y),x y,J(x + y)),

it follows that R(x, Jx, x, Jx) R(y, Jy, y, Jy), and hence the pointwise con-
stancy of the holomorphic sectional curvature as in above, o

At this point, we note that condition (3.1) is also valid for positive definite
almost Hermitian manifolds (just with minor changes in the proof above),
and it may be viewed as a natural generalization of the criteria of Nomizu [9]
and Tanno [13] for the constancy of the holomorphic sectional curvature.
Note the different behaviour of the operator 92 R(-,Jx)Jx +

JR(x, J- )x on spacelike or timelike vectors and null vectors. Equivalent
condition for the constancy of the holomorphic sectional curvature is that x
to be an eigenvector of 91 for all spacelike or timelike vectors. However
condition on null vectors requires the associated eigenvalue to be zero. This
motivates the study of those spaces with nonvanishing eigenvalue u(U)=
c(u)u as a natural generalization of that of constant holomorphic sectional
curvature. The next theorem shows the relation of this property with null
holomorphically flatness
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THEOREM 3.2. An indefinite almost Hermitian manifold (M, g, J) is null
holomorphically fiat if and only if it satisfies

R(u, Ju)Ju + JR(u, Ju)u c(u)u

for all null vectors u.

Proof It is clear that (3.10) leads to (2.4), and hence to null holomorphi-
cally flatness.

Conversely, if M is null holomorphically flat, then R(u, Ju)Ju +
JR(u, Ju)u (u) +/- We will show that g(R(u, Ju)Ju + JR(u, Ju)u, v) 0
for all null vector v (u)+/-, and so, it must lie in the direction of u, which
proves the result.

For an arbitrary null vector v (u)+/-, u + Av remains null for all A R,
and hence (2.4) together with (3.6) leads to

0 R(u, Ju, u, Ju) + 14R(v, Jv, v, Jv)
+ A3F(v,u) + AZL(u,v) + AF(u,v).

Now, if previous polynomial vanishes, so must be each coefficient, and so
we get F(u, v) 0. Hence, the desired result follows from (3.4). rn

4. Bounds on the holomorphic sectional curvature

Previous Theorem 3.2 shows that the functions c(u) measure the failure of
a null holomorphically flat indefinite almost Hermitian manifold to have
pointwise constant holomorphic sectional curvature. In this section we inves-
tigate the influence of the sign of c(u) on the values of the holomorphic
sectional curvature.
The next identities follow from the definition (2.4) of null holomorphically

flatness.

LEMMA 4.1. Let (M, g, J) be a null holomorphically fiat indefinite almost
Hermitian manifold. Then

(4.1)
(4.2)

R( x, Jx, x, Jx) + R( y, Jy, y, Jy) -L( x, y),

F( x, y) + F( y, x) O,

for all orthogonal vectors x, y with g(x, x) g(y, y).

Proof Since x, y are orthogonal vectors with g(x, x) -g(y, y), x + y
and x-y are null vectors. Hence the result follows from (2.4) using the
identity (3.6). rn
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Remark 4.1. For each null vector u, there exist spacelike and timelike
orthogonal unit vectors x and y with g(x, Jy) 0, such that u A(x + y).
Note that there exist infinitely many such vectors since the metric g is not
Lorentzian. Also note that v defined by v (1/2A)(x -y) is a null vector,
and further g(u, v) 1. We will refer to such v as an associated null vector
to u.

LEMMA 4.2. Let (M, g, J) be a null holomorphically flat indefinite almost
Hermitian manifold.

(1) If the holomorphic sectional curvature H is bounded from below (resp.
above) on spacelike holomorphic planes, then c(u) < 0 (resp. c(u) > 0).

(2) If the holomorphic sectional curvature H is bounded from above (resp.
below) on timelike holomorphic planes, then c(u) < 0 (resp. c(u) > 0).

Proof Let u be a null vector, and consider x, y orthogonal unit vectors
with g(x,x)= 1= -g(y,y), u=A(x+y) for some AR. Let v=
(1/2A)(x- y) be an associated null vector, so that g(u,v)= 1. Since M is
null holomorphically flat, due to (3.10) in Theorem 3.2, it follows that

c(u) R(u, Ju, Ju, v) R(u, Ju, u, Jr)

--R(x + y,J(x + y),J(x + y),x -y)

--R(x + y,J(x + y),x

and, from (3.7) and (3.8)with A 1, we obtain:

(4.3)
1
c(u)=R(y Jy y Jy)-R(x Jx x Jx)-F(x y)

Next, suppose that H is bounded from below on holomorphic spacelike
planes. For all orthonormal vectors x, y as above, rx + sy with r2 s 2 1 is
a unit spacelike vector, and hence k < H(rx + sy). Using the identity (3.6), it
follows that

and hence

k <_ r4R(x, Jx, x, Jx) + s4R(y, Jy, y, Jy)

+ r2s2L(x, y) + rsF(x, y) + rsF(y, x),

k < r2{R(x, Jx, x, Jx) + s2R(x, Jx, x, Jx) + s2L(x,y)} + s4R(y, Jy, y, Jy)

+ r3sF(x, y) + rs3F(y, x).
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From (4.1) and (4.2) in previous lemma, it follows that

k < r2(R(x, Jx, x, Jx) s2R(y, Jy, y, Jy))
+ s4R(y, Jy, Y, JY) + (r3s rs3)F(x, y)

(1 + s2)R(x, Jx, x, Jx) -s2(1 + s2)R(y, Jy, y, Jy)

+ snR(y, Jy, Y, JY) + (r3s rs3)F(x, Y)
R( x, Jx, x, Jx) + s2R( x, Jx, x, Jx) s2R( y, Jy, y, Jy ) + rsF( x, y ).

Dividing both sides of previous expression by S 2, and taking limits when
s , we obtain

0 <R(x, Jx, x, Jx) -R(y, Jy, y, Jy) + F(x,y).

Hence, it follows from (4.3) that c(u) <_ O.
The result forthe holomorphic sectional curvature bounded from above on

spacelike planes is obtained in an analogous way. Also, the proof of the
second part of the lemma is similar. []

The following theorem shows the mutual relations among the different
bounds on the holomorphic sectional curvature and the sign of c(u).

THEORFM 4.1. Let (M, g, J) be an indefinite almost Hermitian manifold.
Then:

(1) M is null holomorphicallyflat and c(u) < 0 if and only if the holomorphic
sectional curvature H is boundedfrom below on spacelike planes andfrom
above on timelike planes.

(2) M is null holomorphicallyflat and c(u) > 0 ifand only if the holomorphic
sectional curvature H is boundedfrom above on spacelike planes andfrom
below on timelike planes.

Proof. We will prove the first part of the theorem, and the second one is
analogous. Let us show the sufficiency:

Let u be an arbitrary null vector, and consider orthonormal vectors x, y
with g(x, x) 1 -g(y, y), such that u h(x + y) for some , R. Then
{rx + y,J(rx + y)} spans a timelike holomorphic plane for Irl < 1, and it
spans a spacelike holomorphic plane for Irl > 1. If the holomorphic sectional
curvature is bounded from below on spacelike planes and bounded from
above on timelike planes, it follows that

k H(Fx nt- y), Irl > 1

k2>H(rx+y), Irl<l,
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and hence

r

r

1)2kl _< R( rx + y, J(rx + y), rx + y, J(rx + y)),

1)2k2 > R(rx + y,J(rx + y),rx + y,J(rx + y)), Irl < 1.

Taking limits in previous expressions when r 1, it follows that
R(u, Ju, u, Ju) > 0 and also that R(u, Ju, u, Ju) < O, which shows that M is
null holomorphically flat. Moreover, that c(u)< 0 follows from previous
lemma.

In order to prove the necessity, we proceed as follows. For each orthonor-
mal vectors x, y satisfying g(x, x)= 1 -g(y, y), consider the null vector
u x + y, and its associate v 1/2(x -y). Then, we have

It follows now from the identities (3.7) and (3.8) that

(4.4) c(u) + 4c(v) 2R(x, Jx, Jx, x) 2R(y, Jy, Jy, y).

Now, if c(w) < 0 for each null vector w, equation (4.4) shows that

(4.5) R( x, Jx, x, Jx) > R( y, Jy, y, Jy ),

and hence H(x) > H(y), for all {x, Jx}, {y, Jy} holomorphic planes of signa-
ture (+, +) and (-, -) respectively, with g(x, y) O.

Let us show now that the holomorphic sectional curvature is bounded from
below on holomorphic spacelike planes. Let z be an arbitrary timelike unit
vector and consider the subspace (z)+/-. Since any holomorphic plane inter-
sects (z)+/-, for any spacelike holomorphic plane rr, its holomorphic sectional
curvature is given by H(rr) R(x, Jx, x, Jx), where x is an unit vector in
rrn (z)’. Hence equation (4.5) above shows that H(rr)> H(z), which
proves that the holomorphic sectional curvature is bounded from below on
spacelike planes. Proceeding in the same way, it is shown that H is bounded
from above on timelike planes, rq

In [1], Barros and Romero show that the holomorphic sectional curvature
of an indefinite Kiihler manifold is bounded from above and from below if
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and only if it is constant. Moreover they exhibit an example showing that
boundedness from above (and equivalently from below) does not ensure
constant holomorphic sectional curvature (cf. a result of Kulkarni [7] for the
sectional curvatures). Kiipeli [8] shows that such condition may be relaxed to
bounds from above and from below only on spacelike (or timelike) planes. In
the author’s earlier paper [2], it is shown that such condition holds for
arbitrary indefinite almost Hermitian manifolds.
The next theorem shows the possibility of relaxing those conditions for a

null holomorphically flat indefinite almost Hermitian manifold.

THFORFM 4.2. Let (M, g, J) be a null holomorphicallyfiat indefinite almost
Hermitian manifold. Then the following are equivalent:

(1) The holomorphic sectional curvature is pointwise constant.
(2) The holomorphic sectional curvature is bounded from above and from

below on spacelike (or timelike) holomorphic planes.
(3) The holomorphic sectional curvature is bounded from above or from

below.

Proof Condition (3) implies that c 0 by Theorem 4.1, and hence that
the curvature tensor R satisfies (3.3) in Theorem 3.1. Therefore H is
pointwise constant, rq

5. Ricci tensors and holomorphic sectional curvatures

In this section we investigate the influence of null holomorphically flatness
on the Ricci tensors of an almost Hermitian manifold. The results in the
present section will be applied in 6 to null holomorphically flat indefinite
almost Hermitian manifolds in order to give the curvature tensors explicitly.

Let us recall the definitions of the Ricci, p, and *-Ricci tensors, p*, of an
(indefinite) almost Hermitian manifold

(5.1)
(5.2)

p(x,y) trace{z - R(x,z)y}

-JR(x Jy) z}p* (x, y) 5 trace{ z --,

Note that tensors p and O* coincide with each other if the manifold is
Kiihler. Moreover the Ricci tensor p is symmetric, but p* is, generally
neither symmetric nor antisymmetric. However, it satisfies that p*(Jx, Jy)
p*(y,x).

Next, we will compute the values of both tensors for null vectors. For, let
u TmM denote a null vector. According to Remark 4.1, it is possible to
choose orthonormal vectors x, y with g(x, Jy)= 0, such that u A(x + y)
for some real A. Further, assume that x to be spacelike, and y to be timelike.
At each point rn of M, in addition to x and y we can choose n-2
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orthonormal vectors za,..., Zn- 2 SO that

x, y, Jx, Jy, zl,..., Zn_2, JZI,... Jzn_ 2

is an orthonormal basis for TmM; i.e.,

With respect to the basis above, from (5.1) and (5.2), we have

Since u A(x + y), using the identities of the curvature tensor, together
with (3.7) and (3.8), it follows that

R( u x. u x ) R( u y. . ) ( Ju Jx. J. Jx ) .( J. Jy Ju Jy ) O.

and

R( u Jx u Jx ) R( u Jy u Jy ) + R( Ju x, Ju x )

R( Ju, y, Ju, y) -2c(u).

Hence, we have

(5.4) o ( u, u) + o* ( J,, Ju)
n-2

-c(u) + I2 lR(,,u,z) + R(u,,u,)
i=1

+R(Ju, zi, Ju, zi) + R(Ju, Jzi,Ju,Jzi) }.



648 BONOME, CASTRO, GARCA-R]O, HERVELLA, MATSUSHITA

Proceeding in the same way, for the *-Ricci tensor, we have

n-2

p* ( u u ) R( u Ju x Jx ) R ( u Ju y Jy ) + E z R( H Ju z Jz )
i=1

Using the fact that u A(x + y), one gets

R(u, Ju, x, Jx) R(u, Ju, y, Jy) -c(u).

Hence

n-2

(5.5) p*(U,U)-- --C(bt) + E 6-z,R(tl, Ju, zi, Jzi).
i=1

To establish a formula relating the Ricci tensors and the function c(u), we
need the following:

LEMMA 5.1. Let (M, g, J) be a null holomorphically fiat indefinite almost
Hermitian manifold, and let z be a unit vector. Then, for each null vector
u (z, Jz) +/- we have

2ezC(U ) -R(u, z, u, z) R(u, Jz, u, Jz)
R(Ju, z, Ju, z) R(Ju,Jz, Ju,Jz) 6R(u, Ju, z, Jz).

Proof Let v be a null vector, v (z, Jz ) +/- with g(u, v) -1/2 and, for
each a R, put

1
W (U nt- aezV).

ga

We have

g(wa, Wa) g(u + aezv, u + aezV) ez,

which shows that z, w are orthogonal unit vectors, and hence, from Lemma
4.1 and (3.5), we have

Z(z,Wa) -R(z, Jz, z, Jz) R(wa,Jwa,Wa,JWa)
2R( z, Jz, Wa, JWa) -I- 2R( z, JWa, Wa, Jz)
+ R(z, Jwa, Z, JWa) + R(wa, Jz, wa,Jz ).
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Linearizing previous expression, and multiplying both sides by a, we get

Taking the limit when a 0 in the above expression, we have

(5.6) ezF(U, v) -2R(u, Ju, z, Jz) 2R(u, Jz, z, Ju)
R( u, Jz, Jz) R( z).

If we put Jz instead of z in (5.6), it follows that

(5.7) ezF(U, v) 2R(u, Ju, Jz, z) + 2R(u, z, Jz, Ju)
R( u, z, u, z) R( Ju, Jz, Ju, Jz),

and the desired result follows from (5.6) and (5.7) using the first Bianchi
identity, together with the expression of F(u, v) in (3.4).

THEOREM 5.1. Let (M2n, g, J) be a null holomorphically fiat indefinite
almost Hermitian manifoM. Then, for each null vector u on M,

-1
c(u) p(u,u) + p(Ju,Ju) + 6p*(u,u)}.+ 4)

Proof Considering the result of Lemma 5.1, (5.8) follows directly from
(5.4) and (5.5). 3

The result of previous theorem will play a fundamental role in the
determination of the curvature tensor of a null holomorphically flat indefi-
nite almost Hermitian manifold in the next section. Also note that it provides
the following criteria for a null holomorphically flat manifold to be of
constant holomorphic sectional curvature

COROLLARY 5.1. Let (M, g, J) be a null holomorphically fiat indefinite
almost Hermitian manifold. IfM is Einstein and *-Einstein, then it is a space of
pointwise constant holomorphic sectional curvature.

Proof If M is Einstein and *-Einstein, both Ricci tensors p and p* are
multiples of the metric, and then p(u, u) O, p(Ju, Ju) O, p*(u, u) O.
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From (5.8), it follows that c(u) 0 for each null vector u, and hence (3.3) in
Theorem 3.1 shows that the holomorphic sectional curvature of M is point-
wise constant. C3

It is a well-known result that the Ricci and *-Ricci tensors of an almost
Hermitian manifold of pointwise constant holomorphic sectional curvature
are completely determined by the value of the holomorphic sectional curva-
ture [12]. Next, we will show that such result also holds for null holomorphi-
cally flat indefinite almost Hermitian manifolds.

LEMMA 5.2. Let M be a null holomorphicallyflat indefinite almost Hermitian
manifold. If {x,y} are ectors with g(x,x)= 1 =-g(y,y), g(y,x)=
g(x, Jy) O, then

2R( x, Jx, x, Jx) + 2R( y, Jy, y, Jy)
-R(x,y,x,y) -R(x, Jy, x, Jy)

R(Jx, y, Jx, y) R(Jx, Jy, Jx, Jy) 6R(x, Jx, y, Jy).

Proof Since x, y are orthonormal vectors with g(x, x)= 1 -g(y, y)
and g(x, Jy)= 0, then x _+ y and x +_ Jy are null vectors, and the result
follows from Lemma 4.1. []

LEMMA 5.3. Let M be a null holomorphicallyflat indefinite almost Hermitian
manifold. If {x, z} are ectors with g(x, x) 1 g(z, z), g(x, z) g(x, Jz)
O, then

2R( x, Jx, x, Jx) + 2R( z, Jz, z, Jz)
R(x,z,x,z) + R(x, Jz, x, Jz)
+ R(Sx, z, Jx, z) + R(Jx, Sz, Jx, Jz) + 6R(x, Jx, z, Jz)

Proof Let {y, Jy} be a timelike holomorphic plane orthogonal to both
{x, Jx} and {z, Jz}, and consider the vector

O)

V/1 2

where to tz + y. It is a timelike unit vector orthogonal to {x, Jx}, for all
(-1, 1) and, according to the result of Lemma 5.2,

2R(x, Jx, x, Jx) + 2R(ot,Jot, ot,Jot)
R(x, co,,x, co,)
R(Jx, (or, Jx, (or) R(Jx, J(o

t, Jx, JFot) 6R(x, Jx, (o, J(ot).
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This gives

2(1 -tZ)ZR(x, Jx x Jx ) + 2R( tz + y tJz + Jy tz + y tJz + Jy )
(t a)(tC(x,t + y,,t + y) + 1(, + Jy,,t + Jy)

+I( Jx, t + y, Jx, t + y) + I( Jx, tJ + Jy, Jx, tJ + Jy )
+ 6R( x, Jx, tz + y tJz + Jy )

Finally, the desired result is obtained from the coefficient of 4 in previous
expression. []

As a consequence of Lemmas 5.2 and 5.3, we obtain the following expres-
sion for the Ricci tensors of a null holomorphically flat indefinite almost
Hermitian manifold.

PROPOSITION 5.1. Let (M2n, g, J) be a null holomorphically flat indefinite
almost Hermitian manifold. For each unit t)ector z,

(5.9) p(z,z) + p(Jz, Jz) + 6p*(z,z)

i=2

where {r2,..., 7"gn} are orthogonal nondegenerate holomorphic planes in ( z) -.
Proof

(z, Jz>, Let us suppose z is spacelike and consider an orthonormal basis of

in such a way that g(xi, xi) 1 -g(yj, yj) where M is of metric signature
(2p, 2q) (p + q n). Then, using the results of Lemmas 5.2 and 5.3, it
follows that

p(z,z) + p(Jz, Jz) + 6p*(z,z)
p

8R(z, Jz, z, Jz) + 2

_
{R(z, Jz, z, Jz) + R(xi, Jxi, xi, Jxi)

i=2

q

+ 2 R( z, Jz, z, Jz) + R( Yi, JYi, Yi, JYi)
i=1

2(n + 3)H({z, Jz}) + 2 H(Tri).
i=2
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Proceeding in an analogous way, we obtain a similar formula for timelike
unit vectors, rq

Associated with both Ricci tensors, the scalar curvature, r, and the *-scalar
curvature, r*, are defined to be the traces of p and p* respectively. As a
consequence of previous proposition, the scalar curvatures of a null holomor-
phically flat indefinite almost Hermitian manifold are determined by the
holomorphic sectional curvature as follows.

THrORrM 5.2. The scalar curvatures " and ’* of a null holomorphically fiat
indefinite almost Hermitian manifold (M2n, g, j) satisfy

(5.10) - + 3r* 4(n + 1) _, H(3Ti)
i=1

where {Tra,..., 7rn} are orthogonal nondegenerate holomorphic planes.

Proof Let {7rl,..., 7rn} be nondegenerate holomorphic orthogonal planes,
and let {ei, Jei} be an orthonormal basis of 7ri, 1,..., n. Then

r + "r* _, i( p(ei, ei) + P(Jei, Jei) + 6p*(ei, ei))
i=1

=2 (n +3)H(Tri) + E H(Tr,)
i= k=l,k#:i

4(n + 1)
i=1

6. Curvature tensors of null holomorphically flat manifolds

It is a well-known result [1] that the curvature tensor of an indefinite
Kiihler manifold of constant holomorphic sectional curvature is described in
terms of the metric tensor and the complex structure. Such a result is due to
the special properties of the curvature of Kihler metrics. Although there is
no direct analog for arbitrary almost Hermitian manifolds of constant holo-
morphic sectional curvature, it is possible to introduce a new curvature
function R* satisfying the curvature identities of the Kihler one to general-
ize such expression [12]. Also, associated with each curvature function F, the
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curvature tensor ff is defined by g(ff(x, y)z, w) F(x, y, z, w). Let us con-
sider

16R*(x, y, z, w)
3{R(x, y, z,.w) + R(x, y, Jz, Jw) + R(Jx, Jy, z, w) + R(Jx, Jy, Jz, Jw)}
+ R(x, z, Jy, Jw) + R(Jx, Jz, y, w) R(x, w, Jy, Jz) R(Jx, Jw, y, z)
+ R(x, Jw, Jy, z) + R(Jx, w, y, Jz) R(x, Jz, Jy, w) R(Jx, z, y, Jw).

Note that the curvature tensor R* satisfies the identities of the curvature
tensor of a Kihler manifold. For the purpose of this section, we introduce
two curvature functions R0 and R. Define Ro(x, y, z, w) to be

Ro(x, y,z,w ) 1/4{g(y,z)g(x,w) g(x,z)g(y,w)
-g(y, Jz)g(Jx, w) + g(x, Jz)g(Jy,w) + 2g(x, Jy)g(Jz, w)}.

It is to be noted that Ro(z, Jz, z, Jz) -1 for each unit vector z.
An indefinite Kihler manifold is a space of constant holomorphic sectional

curvature if and only if the curvature tensor R is a scalar multiple of R0 [1],
and more generally, an (indefinite) almost Hermitian manifold is a space of
pointwise constant holomorphic sectional curvature if and only if the curva-
ture tensor R* is a scalar multiple of R0 at each point m M.
Next we introduce a symmetric bilinear form defined in terms of the Ricci

tensors p and p* as follows.

-1
(6.1_) /z(x, y) 2(2n + 4) {p(x, y) + p(Jx, Jy)

+3p*(x, y) + 3p*(Jx, Jy)}.

It is easy to see that /x is Hermitian; i.e., tx(Jx, Jy) tx(x, y).
Define the curvature function Rl(x, y, z, w):

R( x, y, z, w) -{ g( y, z) tx( x, w) g( x, z) tz( y, w) + tz( y, z) g( x, w)
tz( x, z) g( y, w) g( y, Jz) tz( Jx, w) + g( x, Jz) tz( Jy, w)

I( y, Jz) g( Jx, w) + tz( x, Jz) g( Jy, w)
+ 2g ( x, Jy ) tz( Jz, w ) + 2 tz( x, Jy ) g ( Jz, w )

Remark 6.1. Both curvature functions R0 and R are null holomorphi-
cally flat; i.e., for all null vectors u, Ri(u, Ju, u, Ju) 0 (i 0, 1). Moreover,
the associated curvature tensors satisfy

k ( bl Jbl ) Jlg + Jk ( bl Jbl ) bl dP ( bl ) bl

for each null vector u, (i 0, 1). Also note that 0(u) 0 for each null u.
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Next we state the main theorem of this section, which generalizes the
expression of the curvature of an almost Hermitian manifold of pointwise
constant holomorphic sectional curvature.

THEOREM 6.1. Let (M, g, J) be a 2n-dimensional indefinite almost Hermi-
tian manifold. Then, M is null holomorphically fiat if and only if the curvature

function R* is written in the form

r+ 3r*
(6.2) R*

4(n + 1)(n + 2) R + R.

Proof For each vector x T M, it follows that R* (x, Jx, x, Jx)
R(x, Jx, x, Jx), and hence M is null holomorphically flat if (6.2) holds. Now
prove the converse. Let us consider the curvature function R R1. Since M
is null holomorphically flat, it follows from Remark 6.1 that

( R R1)(u, Ju, u, Ju) --0

for each null vector u.
Consider the curvature tensor /1" Theorem 5.1 shows that the symmetric

bilinear form /x defined in (6.1) satisfies Ix(u,u)= 1/2c(u), and hence it
follows from the definition of R that l(u)= c(u) for each null vector
u TraM. As a consequence of (3.3) in Theorem 3.1, it follows that (R R1)
is a curvature function of pointwise constant holomorphic sectional curva-
ture. Hence the associated curvature function (R- R1)* is, at each point
m M, a scalar multiple of R0. Also, since the curvature function R
satisfies the identities of the curvature of a Kiihler manifold,

R(x, y, z, w) Rl(X y, Jz, Jw) RI( Jx, Jy, z, w),

it follows that R R’, and hence (R- R1)* --R* -R1. This shows that
the curvature tensor R* satisfies

R* CRo + R1,

for some function C on M.
Next, we will determine such a function C. Since R* CRo + R, for each

unit vector z, we have

R(z, Jz, z, Jz) -C + 2(n +2) (p(z’z)

+0(Jz, Jz) + 3o
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and hence,

ez( p(z,z) + p(Jz, Jz) + 6p*(z,z)) 2(n + 2)(R(z, Jz, z, Jz) + C).

If z ranges over an orthonormal frame {Zl, Jzl,..., zn, Jzn}, we obtain

" + 3z* 2(n + 2) (R(zi, Jzi, zi,Jzi) + C),
i=l

and from the expression for the scalar curvatures (5.10),

-+ 3z* )’+3"r* (n +2) 2(n 1-) + n(2n + 4)C.

This shows that

and the result is obtained.

’+ 3z*
4(n + 1)(n + 2)’

As a consequence of Theorem 6.1, we are now able to state a criterion for
a null holomorphically flat manifold to have pointwise constant holomorphic
sectional curvature.

THEOREM 6.2. Let (M, g, J) be a null holomorphically fiat indefinite almost
Hermitian manifoM. Then, the holomorphic sectional curvature H is pointwise
constant on M if and only if the symmetric tensor Ix is proportional to the metric
tensor g.

Remark 6.2. Thanks to Dajczer and Nomizu [5], (see also [10]), it is
possible to express the condition of being /x proportional to the metric in
terms of boundedness of it on spacelike or timelike unit vectors, as well as in
terms of the vanishing of it on null vectors. Note that, the condition of
/x being an Einstein tensor occurs, for instance, if M is Einstein and
-Einstein. Also, note that the result in Theorem 6.2 may be followed from

Theorem 5.1 using the criteria for the pointwise constancy of the holomor-
phic sectional curvature in Theorem 3.1.

7. The local structures of null holomorphically flat indefinite
Kihler manifolds

The Ricci tensors p and p* of an indefinite Kihler manifold coincide with
each other, and hence -= z*. This implies that the symmetric tensor /x
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defined in (6.1) reduces to

-2
#(x,y) (n +2) P(x’Y)’

and therefore (6.2) takes the similar form

R
(n + 1)(n + 2) R + RI"

This fact considerably simplifies the expression (6.2), in which only the scalar
curvature appears. However, the main specific feature of the Kihler case is
that the curvature function R* is nothing but the curvature of the semi-
Riemannian metric, and hence, it satisfies the second Bianchi identity. This
fact has the following consequence

THEOREM 7.1. Let (M, g, J) be a null holomorphically flat indefinite Kiihler

manifold. Then the scalar curvature ofM is constant if and only if it is a locally
symmetric space.

Proof It is clear that any locally symmetric space has constant scalar
curvature. Conversely, let us suppose - is constant. Using the second Bianchi
identity, it follows that

0 ((v,x,y)Vo{g(y,z)p(x,w) -g(x,z)p(y,w) + g(y, Jz)p(x, Jw)
-g( x, Jz) p(y, Jw) 2g(x, Jy) p( z, Jw)
+p(y,z)g(x,w) p(x,z)g(y,w) + p(y, Jz)g(x, Jw)
-p(x, Jz)g(y, Jw) 2p(x, Jy)g(z, Jw)},

where or(v, x, y) denotes the cyclic sum over v, x, y.
Considering in the expression above v w- ei, where the {el,..., en,

Jel,...,Jen} range over a local orthonormal frame, multiplying by e

g(ei, ei), and taking the sum for 1,..., n, one obtains

(3n + 3)(Vyp(X,Z) Vxp(y,z)) + 2V]zp(x, Jy )
+ Vgyp(X, Jz) Vgxp(y, Jz )

2n 2n

g(y, z) _, eiVi p(x, ei) g(x, z) E eV, p(y,
i=1 i=1

2n

+ g(y,
i=1

2n 2n

g(x, Jz) _. eiTei p(y, Jei) 2g(x, Jy) _. i7 p( z, Jei).
i=1 i=1
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Since the scalar curvature is constant, it follows [11] that the divergence of
the Ricci tensor is identically zero, (2 div p dr), and hence the second term
in previous expression vanishes. Consequently

(7.1) 3(n + 1)(Vyp(X,Z) Vxp(y,z)) + 2Vjzp(x, Jy )

+ jyp(X, JZ) Vjxp(y, Jz) O.

We already know [15] the identity

(7.2) Vvp(x, Jy ) + Vp(y, Jv) + Vyp(V, Jx) O,

and considering x Jx, y Jy, z Jz on it, we obtain

(7.3) Vjz p( x, Jy ) Vjx p( y, Jz ) + Vjy p( X, Jz)

Analogously, from (7.2),

(7.4) Vjz p( x, Jy) V p( y, z) Vy p( X, Z).

Now, from (7.1), just considering the expressions above, it follows that the
Ricci tensor is parallel. []

Next, consider the Ricci operator Qo defined by g(Qpx, y)= p(x, y), for
each x, y 3(M). Since the Ricci operator of a Kihler manifold is complex
(Qt,J JQp) it follows that, for each eigenvector x, the vector :Ix is also an
eigenvector with the same eigenvalue. Note that the Ricci operator of an
indefinite Kihler manifold is not necessarily diagonalizable because of the
metric to be indefinite. In fact, in [3] it is shown that the tangent bundle of a
non flat complex space form is a null holomorphically flat indefinite Kihler
manifold, when one considers the complete lifts of the metric and the
complex structure, but the Ricci tensor of the tangent bundle is not diagonal-
izable.
The next theorem gives a local classification of those null holomorphically

flat indefinite Kihler manifolds with constant scalar curvature under the
hypothesis of diagonalizable Ricci tensor.

THEOREM 7.2. Let (M, g, J) be a connected null holomorphically fiat
indefinite Kiihler manifoM with constant scalar curvature. Assume the Ricci
operator is diagonalizable. Then, the holomorphic sectional curvature is constant,
or M is locally isomorphic to a direct product M Ml(c) M2(-c) of two

indefinite Kiihler manifolds of constant holomorphic sectional curvatures c and
c respectively.
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Proof Since p is parallel, under the assumption of being diagonalizable,
its eigenvalues are constant on M, and have parallel eigenspaces. Hence,
they determine complementary totally geodesic foliations on M.

Moreover, the restriction of the Ricci tensor to the leaves are Einstein, and
hence, each leaf is an indefinite Kiihler manifold of constant holomorphic
sectional curvature. In consequence, if Qp has only one eigenvalue, M is an
indefinite complex space form according to Theorem 6.2. Let us suppose that
Qp has at least two distinct eigenvalues.

Consider a decomposition M Ml(c1) M2(c2) M(ck), where
each factor is an (indefinite) Kihler manifold of constant holomorphic
sectional curvature ci. Since the product metric g gl + g2 + +gk is
strictly semi-Riemannian, some of the gi must not be positive definite, and
hence, suppose that (M1, gl, J1) is a strictly indefinite Kihler manifold.

If the Ricci operator has only one eigenvalue, then M is an Einstein
manifold, and the result follows from [8] (see also Theorem 6.3).

If Qo has at least two distinct eigenvalues, we only have to show that the
constant curvatures satisfy cl -c2.

Now, the result is obtained by just considering a null vector u (x, x2)
Y(M) such that x, x2 are non null tangent vectors to M and M2 respec-
tively. Since M is null holomorphically flat, R(u, Ju, u, Ju) 0, and so

RI( Xl, J1Xl, Xl, JlXl) -t- R2(x2, J2x2, x2, J2x2)

C +C2) =0

which shows that cl c2.
If the Ricci operator has at least three distinct eigenvalues, then M is

locally isometric to a product

Assuming that M is not positive definite, and considering null vectors of the
form u (xl, x2, 0), v (Yl, 0, Y3) and w (zl, z2, z3), if one proceeds as
before, it follows that c c2 --c 0, which shows that M is locally flat,
and hence, a space of constant holomorphic sectional curvature. 3

In [2], some examples of null holomorphically flat indefinite Kiihler mani-
folds, as products of strictly positive and negative definite Kiihler manifolds
of constant holomorphic sectional curvature, are constructed. In that sense,
we establish the following decomposition theorem.

THEOREM 7.3. Let (M, g, J) be a connected null holomorphically flat
indefinite Kiihler manifoM of constant scalar curvature. Assume that at some
point rn M there exists an orthogonal decomposition TpM W W2 where
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W and W2 are orthogonal J-invariant subspaces such that the restriction of the
metric to W and W2 are both strictly definite.

If the function c(u) is constant for each null vector of the form u x + y,
where x W and y W2 are unit vectors, then M has constant holomorphic
sectional curvature or it is locally isomorphic to a product M(c) M2(-c) of
Kiihler manifolds of constant holomorphic sectional curvature, where W are the
tangent spaces at the point rn to the integral manifolds Mi, 1, 2.

Proof From the hypothesis it follows that the Ricci tensor p satisfies
p(u,u) p(v, v) const., for every null u x + y, v x y, where x W,
y W2 are unit vectors. Then

p(x, y) O, p(x,x) + p(y, y) const.,

for every unit vectors x W, y W2.
Using the fact that the restriction of the metric tensor to W/ is strictly

definite, it follows that the Ricci operator is diagonalizable, having exactly
two eigenvalues corresponding to the eigenspaces W and W2. Since M is
locally symmetric, it follows that M has constant holomorphic sectional
curvature or it is locally isomorphic to a product as in previous theorem. Fq

We state the following results, whose proofs are similar to those of
previous theorems, just using the expression for the curvature tensor R* of a
null holomorphically flat indefinite almost Hermitian manifold, and for those
with pointwise constant holomorphic sectional curvature.

THEOREM 7.4. Let (M, g, J) be a connected null holomorphically flat
indefinite almost Hermitian manifold with parallel bilinear form tx. If the
operator Q associated with I, ( I(X, Y) g(QX, Y)), is diagonalizable, then
the holomorphic sectional curvature is constant, or M is (locally) isometric to a
product M M(c) .M2(-c) of two indefinite almost Hermitian manifolds of
constant holomorphic sectional curvature.

THEOREM 7.5. Let (M, g, J) be a connected null holomorphically flat
indefinite almost Hermitian manifold with parallel bilinearform tz. Assume that
at some point rn M there exists an orthogonal decomposition TpM WI W2

where W and W2 are orthogonal J-invariant subspaces such that the restrictions

of the metric to W and W2 are both strictly definite.
If the function c(u) is constant for each null vector of the form u x + y,

where x W and y W2 are unit vectors, then M has constant holomorphic
sectional curvature or it is locally isomorphic to a product M(c) M2(-c) of
two indefinite almost Hermitian manifolds of constant holomorphic sectional
curvature, where W are the tangent spaces at the point m to the integral
manifolds Mi, 1, 2.
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