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1. Introduction

Consider the initial value problems

(1) ut + UUx + Uxxx -t-D-1 blyy

u(x, y, O) g(x, y)

where D-1 is defined by the formula D-1 f(x, y) f f(s, y)ds. The + and
equations are called the KPI and KPII equations respectively. They were first
introduced by Kadomtsev and Petviashvili in [2]. The well-posedness theories of
these two equations differ in their present state and perhaps intrinsically. For K P I I,
Bourgain 1] has shown global well-posedness in H for s >_ 0 on the torus I-I 2 and
R2. The method of his proof is a fix-point argument using norms defined via Fourier
transform. Bourgain’s method does not apply to the KP I equation. For K PI
the present theory is expressed in terms of certain anisotropic Sobolev spaces Vm
motivated by the linearized equation and/or their natural appearance in the conserved
densities of the K P I flow. For m --0, l, 2 define

(2) V U E L2(I-I2): U(X, y)dx O, IlUllVm <--

where

(3) L
i=0 j=0

Negative exponents of 0x are interpreted via D-. The compatibility of the zero
x-mean assumption is explained in Bourgain’s paper. Ukai [7] showed KPI is locally
well-posed in H on the torus and has local results on other domains. A short proof
is given by Saut in [5]. Schwarz [6] showed global well-posedness in V3 on the torus
provided the inital data g is small enough in L2. It is shown in this note that the form
of the conserved densities of the KPI flow imply:
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THEOREM. If g V3 then there exists a constant C depending only on Ilgllv.
such that

(4) Ilu(t)llv C

where u(t) is the solution ofKPI at time t.

This theorem globalizes the local solutions of Ukai, since H is contained in V3.
D- by u integrating overMultiplying the KPI equation ut + uux + uxx Uyy

1-I 2 and recognizing perfect derivatives reveals

(5) 0 fFi2 u2(t) dx dy O.

This gives Ilu(t)llw0 -Ilu(t)ll -Ilgll C. Rewrite KPI as

(6) Ut D-luyy Uxxx UUx

12) 1-i 2and multiply by (D-Zuyy Uxx gu Integrating over leads to

(7) ot fr2 ((Ux(t))2 + (D-luy(t))2 u3(t)) dx dy O.

Therefore, if it could be shown for some ?’ _> 0 and 0 < 6 < 2 that

(8) I]UI[3L < CI]ull YL2(I]u 112]_,2-}-lID -1 Uy ]12L2)
then it would follow that

(9) fr ((Ux(t))2 -+-(D-luy(t))2) dx dy < C.

Together with the L2 conservation this would imply

(10) Ilu(t)llv, C.

In fact, the L estimate is true for , 6 7 as will be shown shortly. A similar
argument applied to the next two (nontrivial) conservation laws for the KPI flow will
show Ilu(t)[lv2 and [lu(t)[Iv. remain bounded for all time. A stronger result for the
KdV equation was proven by Lax in [3]. The rest of the paper is organized as follows:
Two a priori Sobolev-type estimates for LP norms in terms of Vm norms are proven.
These estimates contain the L3 estimate above. The conserved densities for the K P
equations are presented and then Ilu(t) v and Ilu(t) Ilv are proven to be bounded for
all time. Finally some remarks concerning the limitations of this approach and higher
order regularity results are made.
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2. A priori estimates

The Lp norm is compared to the Vm norms in the following two estimates.

ESTIMATE 1. Thefollowing estimate holdsfor 2 < p < 6:

(11) -1/2+3/p 113/2-3/pIlullL _< C u vo u v,

Proof. Let q e [1, 2) and set w(m, n) max(Iml, ILI). The definition of V0
nallows us to assume Iml 0 so that w2(m, n) < m2+- andw >_ 1. For all

R > 0 define TR {(m,n) e Z2" w(m,n) < R} and SR Z2- TR. Let
w2(m n)lamnl2 H61der’sinequality andA2 Z(m,n)eZ ]amnl 2 and Be Z(m,n)eZ

TR < CR3 imply

3_q)Aq(12) lamnlq < CR
TR

H61der gives

(13)

2-q

2
2q

lamnlq (w(m, n))- Bq.
SR SR

The cardinality of the level set {(m, n)" w(m, n) t} is Cte.

(14) y(w(m, n))q--- - 9

S t=R

(15) t- dt

5q--6

CR--,

provided < q < 2.
Combining these estimates gives

(16) [[amnll,q lamnlq -[- lamnlq
s T

3-q)

Aq(17) < CR 6-5 Oq .-[- CR

B which yieldsMinimizing over R leads to selecting R

(18)
5q-6 6-3q

[lamnlllq <_ C[[amn[llq [Iw(m,n)amnlllq
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nHausdorff-Young, Parseval and w(m, n) < me + m-r imply

6-q 3qp-6

2q 2q(19) Ilull’n _< Cllullvo Ilullv,

and renaming q’for 2 < q’ < 6. Using + q-V p establishes Estimate

Remark. Refining the preceding a bit using the Littlewood-Paley square function
theorem yields (11) for p 6 as well.

nRedefining w as w(m, n) max(m2, ) and mimicking the proof of Estimate
establishes:

ESTIMATE 2. Thefollowing estimate holdsfor 2 <_ p < cx"

3p+2 3p+2(20) Ilull _< Cllullvo Ilullv=

3. Conserved densities

A linear change of variables converts the KP equations to the form

(21) ut 6UUx Uxxx -3ct2D-lblyy.

where c2 4-1. The minus now corresponds to KPI. In this context the conservation
laws for the KP equations may be described as follows, see the appendix in [4]. Define
L (0x + tD-l 0y). The recursion

(22) v0 u

n-2

(23) Vn Lvn-1 d- y Un-2-mUm
m---0

defines a sequence of expressions Vn [u]. The (nontrivial) conservation laws for the
K P flow for n 0, 1,2 are

(24) Ot f v2n[u] dx dy O.

The choice n leads to the L2 conservation and n 2 gives the conservation
law involving Ilullv, and Ilul13. Different constants arise due to the alternate form of
KPI used here. Calculating v6 directly from the recursion shows that

(25) fn2 [(Uxx)2 100t2(Uy)2 -- 5014(D-2Uyy)2 d- 5U4 --6U(Ux)2

(26) + 6ot2u2(D-2uyy) d- 4ot2u(D-luy)2] dx dy



696 JAMES E. COLLIANDER

is a conserved quantity. Since Ot2 --1 the first three terms of the integrand are
equivalent to I[u 11,2. Estimates and 2 can be used to control the last four terms"

(27) Ilul[4 _< CllullvollUll3v, <_ C

Ilull < Cllull2v(28) f U(Ux) <_ Ilullvolluxll24 <_ Cllullv, v2

(29) f u2(D-2uyy) < Ilull 2 D-2t411 Uyylltz <_ Cllullv

=llull <Cllull(30) f u(D-luy)2 <_ IlullllD-uyll

for some r/> 0. Using these estimates and the conservation law gives

(31) Ilu(t)llvz _< C

where C depends upon g v0, g v,, g v=.
The recursion, recognition of perfect derivatives and integrations by parts may be

used to show that the terms appearing in fn vs[u] dx dy are (up to constant multiples)

Ilu 2 and

(32) (K3u)(u)(Ku), (K2u)2(u), (K2u)(u3), (K2u)(Ku)2,

(33) (Ku)2(u2), (uS), (K(u2))2, (K3u)(K(u2)), (K(u2))(u)(Ku),

where K L or K (-Ox / D- Oy). Terms above not containing K(u2) may
be estimated using H61der’s inequality and Estimates and 2 in a manner analogous
to the V6 terms. Cauchy-Schwarz and the following may be used to estimate the
remaining terms.

LEMMA 1. Thefollowing estimate holds

(34) IIg(u2)llt < C [llullt4llUxllt4 + Ilulltz,,lluyllt2,,’]

where p- + p1- 1.

Consequently, choosing p’ so that 2 < 2p’ < 6, using Estimates 1, 2 and

Ilu(t)llv,,, <_ C for m 0, 1, 2 gives, for some 0 > 0,

(35) IIK(u2)ll <_ C / Cllu(t)llv.

ProofofLemma 1.

(36) ’[K(u2)’12 [fn fn ]i2 < C (u2)(U2x) dx dy / ot (D (UUy))2 dx dy

< Cllull 2 2 lt Ilux t + C (O- (uuy))2 dx dy
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(37) fI-I (D-l (uuy))2 dx dy fr uuy d dx dy

<_ frl2 (fo ll2ds) (follly2ds)dxdy
<_ U

2 ds dy Uy
2 ds dy

where Vl has been identified with [0, 1). Then Minkowski’s inequality implies

(38) frI2 (D-I(uuy))2dxdy <- IlulI2=IluylI2L"

which, upon combining terms, completes the proof of the lemma.
The estimates of the vs[u] terms combine to imply

(39) Ilu(t)llv. C

where C depends upon IIg u.. This completes the proof of the tlaeorem.

4. Remarks

It seems likely that, by analogy with the result proven for KdV in [3], the conser-
vations law fn2 vzn[u] dx dy will imply Ilu(t)llv,,_, <_ C showing that regularity of the
initial data is preserved by the KPI flow. The difficulties encountered while handling
the vs[u] terms, however (in particular the need to handle the K (u2) terms separately),
forecast problems with an inductive argument like that presented by Lax. Part of the
problem here is that L does not satisfy the product rule due to the presence of D-1.

The local well-posedness theory of Ukai establishes uniqueness using the standard
Gronwall argument. This requires an L estimate on u Then Estimate 2 explains
why the local theory takes place in V3. This dependence on higher conservation laws
prevents the study of perturbations of KPI, and also precludes studying the evolution
of data g with fractional smoothness. Perhaps a fix-point argument as used in for
KPH can overcome both of these difficulties at once.
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