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GLOBALIZING ESTIMATES FOR THE PERIODIC
KPI EQUATION
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1. Introduction
Consider the initial value problems

) U + Uy + Uy = :i:D_luyy
u(x,y,0) = g(x,y)

where D! is defined by the formula D~ f(x, y) = [; f(s,y)ds. The + and —
equations are called the K P] and K P11 equations respectively. They were first
introduced by Kadomtsev and Petviashvili in [2]. The well-posedness theories of
these two equations differ in their present state and perhaps intrinsically. For K P11,
Bourgain [1] has shown global well-posedness in H* for s > 0 on the torus I1? and
R2. The method of his proof is a fix-point argument using norms defined via Fourier
transform. Bourgain’s method does not apply to the K PI equation. For K PI
the present theory is expressed in terms of certain anisotropic Sobolev spaces V,,
motivated by the linearized equation and/or their natural appearance in the conserved
densities of the K PI flow. Form =0, 1, 2, ... define

1
(2) Vin = {u e L*(I%): / u(x,y)dx =0, [lully, < 00}
0
where
m_ i g %
3) lully, = IZZ||8;—2Ja;uuL2] :
i=0 j=0

Negative exponents of 3, are interpreted via D~'. The compatibility of the zero
X-mean assumption is explained in Bourgain’s paper. Ukai [7] showed KPI is locally
well-posed in H? on the torus and has local results on other domains. A short proof
is given by Saut in [5]. Schwarz [6] showed global well-posedness in V3 on the torus
provided the inital data g is small enough in L. It is shown in this note that the form
of the conserved densities of the KPI flow imply:
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THEOREM. If g € Vj then there exists a constant C depending only on | g|ly,
such that

4) lu@lly, = C

where u(t) is the solution of KPI at time t.

This theorem globalizes the local solutions of Ukai, since H 3 is contained in V5.
Multiplying the KPI equation u;, + utt, + thyy = D™ 'u yy by u, integrating over
I1? and recognizing perfect derivatives reveals

©)) 3y / u*(t)dx dy = 0.
T2
This gives [lu(®)|ly, = llu@®)ll2 = llgll,2 < C. Rewrite KPI as

-1
(6) Uy = D7 Uy — Uyyx — Ully

and multiply by (D™ %u,y, — u. — 3u?). Integrating over I1? leads to

1
(7 EX / ((ux(t))z + (D uy (1)) - 5u3(t)) dx dy = 0.
n2
Therefore, if it could be shown for some ¥y > 0and 0 < § < 2 that

12 ok
®) N}y < Cllul a2z + 1D~ uylly)?

then it would follow that
©) f (e (t)? + (D", (0))?) dx dy < C.
n2

Together with the L? conservation this would imply
(10) lu@®lly, < C.

In fact, the L3 estimate is true for y = § = % as will be shown shortly. A similar
argument applied to the next two (nontrivial) conservation laws for the KPI flow will
show |[u(¢)|ly, and |lu(¢)|ly, remain bounded for all time. A stronger result for the
KdV equation was proven by Lax in [3]. The rest of the paper is organized as follows:
Two a priori Sobolev-type estimates for L” norms in terms of V,, norms are proven.
These estimates contain the L3 estimate above. The conserved densities for the K P
equations are presented and then |lu(¢)||y, and [|u(t)||y, are proven to be bounded for
all time. Finally some remarks concerning the limitations of this approach and higher
order regularity results are made.
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2. A priori estimates
The L? norm is compared to the V,, norms in the following two estimates.

ESTIMATE 1. The following estimate holds for2 < p < 6:

1/243 3/2-3
(11) lullr < Cllally, Pl >~

0

Proof. Letq € [1,2) and set w(m, n) = max(|m|, lml) The definition of Vj

allows us to assume |m| # O so that w?(m,n) < m? + - m—; and w > 1. For all
R > 0 define Tr = {(m,n) € Z* w(m,n) < R} and Sg = Z> — Tx. Let
A2 =3 ez lamn|*and B2 =3 o w?(m, n)|a,|*. Holder’s inequality and
ITg| < CR? imply

(12) > laml? < CR¥T: A7
Tg

Holder gives

29

(13) > laml < (Z(w(m,n))fi‘f) B,
Sr

Sr

The cardinality of the level set {(m, n): w(m, n) =t} is Ct2.

(14) Z<w<m n) = ;

(15) - f 97 dt
R

provided g <qg <2
Combining these estimates gives

(16) lamallfy =Y lamnl? + Y lamnl?
Sk Tr
an < CR - B + CR*™ A,

Minimizing over R leads to selecting R = % which yields

546 (=]
p2
(18) Namnllis < Cllamalls™ w(m, n)amall,
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Hausdorff-Young, Parseval and w(m, n)? < m? + r':l—zf imply

[ 3¢'~6

19) Nl o 2y < Cliullyy llully,

for2 < ¢’ < 6. Using % + ;]1—, = 1 and renaming ¢’ = p establishes Estimate 1.

Remark. Refining the preceding a bit using the Littlewood-Paley square function
theorem yields (11) for p = 6 as well.

Redefining w as w(m, n) = max(m?, %25) and mimicking the proof of Estimate 1
establishes:

ESTIMATE 2.  The following estimate holds for2 < p < oo:

8 36
3p+2 3p+2
(20) leells < ClullP7 lul 2.

3. Conserved densities

A linear change of variables converts the K P equations to the form
2n Uy — OUUY — Uyyy = —3a2D‘1uyy.

where o> = +1. The minus now corresponds to KPI. In this context the conservation
laws for the K P equations may be described as follows, see the appendix in [4]. Define
L = (8, +aD™'3,). The recursion

(22) Vg = U
n—2

(23) Vp = Lv, 1+ Zvn—Z—mvm
m=0

defines a sequence of expressions v,[u]. The (nontrivial) conservation laws for the
KP flowforn=0,1,2,...are

(24) 0, / voululdx dy = 0.
n2

The choice n = 1 leads to the L? conservation and n = 2 gives the conservation
law involving |u]|y, and ||u ||i3. Different constants arise due to the alternate form of
KPI used here. Calculating vg directly from the recursion shows that

25) / [(Ur)? = 100% () + So* (D %uyy)? + Su — 6u(u,)?
n2

(26) + 6a*u*(Duyy) + 40*u(D"'uy)?] dx dy
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is a conserved quantity. Since a?> = —1 the first three terms of the integrand are

equivalent to ||u ||%,2. Estimates 1 and 2 can be used to control the last four terms:

@7) lull}s < Cllully, luelly, < €
1 3 _
(28) Ju@)? < Nullyluclfe < Cllully, lulf, < Clluly,”
29) [ ur (D 2uyy) < ullZllD 2uyyll . < Cllully,
_ B 2 1 3 _
(30)  [u(D7'uy)? < lul 2D uylg. < Cllulg, lull}, < Clluly,”

for some n > 0. Using these estimates and the conservation law gives
(3D lu@®lly, =< C

where C depends upon |igly,, liglly, llgly,-

The recursion, recognition of perfect derivatives and integrations by parts may be
used to show that the terms appearing in || 2 Uslu] dx dy are (up to constant multiples)
l[ull}, and

(32) (Ku)(u)(Ku), (K*u)*(u), (K*u)(@?), (K*u)(Ku)?,
(33) (Ku)*(u?), @), (K u?))?, (K u)(K @), (K ) () (Ku),

where K = L or K = (—0, + aD"E)y). Terms above not containing Ku? may
be estimated using Holder’s inequality and Estimates 1 and 2 in a manner analogous
to the Vg terms. Cauchy-Schwarz and the following may be used to estimate the
remaining terms.

LEMMA 1. The following estimate holds
(34) 1K @)z < C [lullpsllueligs + el oo lluy ]l ]
where p~' + p' ' = 1.

Consequently, choosing p’ so that 2 < 2p’ < 6, using Estimates 1, 2 and
lu(@)ly, < C form =0, 1,2 gives, for some n > 0,

35) IK (4?2 < € + Cllu@) 1y,

Proof of Lemma 1.
(36) ||K(u2)||iz < c[/ (u?)(u?) dx dy +a/ (D_'(uuy))zdxdy]
2 n2

< Clulliuc )2 + € / (D wuy))? dx dy
I
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X 2
37 f (D™ (uuy))? dx dy = / ( / uuyds) dx dy
n2 nz \Jo
1 1
/ (f uzds></ uyzds)dxdy
nz \Jo 0

(o) ([ ([ )

where IT has been identified with [0, 1). Then Minkowski’s inequality implies

IA

IA

(38) . (D" (uuy))* dx dy < lullfa 2oy

which, upon combining terms, completes the proof of the lemma.
The estimates of the vg[u] terms combine to imply

(39) lu@®lly, = C

where C depends upon ||g||y,. This completes the proof of the theorem.

4. Remarks

It seems likely that, by analogy with the result proven for KdV in [3], the conser-
vations law fnz voululdx dy will imply [Ju(¢)||y,_, < C showing that regularity of the
initial data is preserved by the KPI flow. The difficulties encountered while handling
the vg[u] terms, however (in particular the need to handle the K (u?) terms separately),
forecast problems with an inductive argument like that presented by Lax. Part of the
problem here is that L does not satisfy the product rule due to the presence of D!,

The local well-posedness theory of Ukai establishes uniqueness using the standard
Gronwall argument. This requires an L* estimate on u,. Then Estimate 2 explains
why the local theory takes place in V5. This dependence on higher conservation laws
prevents the study of perturbations of KPI, and also precludes studying the evolution
of data g with fractional smoothness. Perhaps a fix-point argument as used in [1] for
KPII can overcome both of these difficulties at once.
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