GLOBALIZING ESTIMATES FOR THE PERIODIC KPI EQUATION

JAMES E. COLLIANDER

1. Introduction

Consider the initial value problems

(1)
$$u_t + uu_x + u_{xxx} = \pm D^{-1} u_{yy}$$
$$u(x, y, 0) = g(x, y)$$

where D^{-1} is defined by the formula $D^{-1} f(x, y) = \int_0^x f(s, y) ds$. The + and – equations are called the *KPI* and *KPII* equations respectively. They were first introduced by Kadomtsev and Petviashvili in [2]. The well-posedness theories of these two equations differ in their present state and perhaps intrinsically. For *KPII*, Bourgain [1] has shown global well-posedness in H^s for $s \ge 0$ on the torus Π^2 and \mathbb{R}^2 . The method of his proof is a fix-point argument using norms defined via Fourier transform. Bourgain's method does not apply to the *KPI* equation. For *KPI* the present theory is expressed in terms of certain anisotropic Sobolev spaces V_m motivated by the linearized equation and/or their natural appearance in the conserved densities of the *KPI* flow. For $m = 0, 1, 2, \ldots$ define

(2)
$$V_m = \left\{ u \in L^2(\Pi^2) \colon \int_0^1 u(x, y) \, dx = 0, \ \|u\|_{V_m} \le \infty \right\}$$

where

(3)
$$\|u\|_{V_m} = \left\{ \sum_{i=0}^m \sum_{j=0}^i \|\partial_x^{i-2j} \partial_y^j u\|_{L^2}^2 \right\}^{\frac{1}{2}}.$$

Negative exponents of ∂_x are interpreted via D^{-1} . The compatibility of the zero x-mean assumption is explained in Bourgain's paper. Ukai [7] showed *KPI* is locally well-posed in H^3 on the torus and has local results on other domains. A short proof is given by Saut in [5]. Schwarz [6] showed global well-posedness in V_3 on the torus provided the initial data g is small enough in L^2 . It is shown in this note that the form of the conserved densities of the *KPI* flow imply:

© 1996 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received October 18, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35Q53; Secondary 42B05.

THEOREM. If $g \in V_3$ then there exists a constant C depending only on $||g||_{V_3}$ such that

$$\|u(t)\|_{V_3} \le C$$

where u(t) is the solution of KPI at time t.

This theorem globalizes the local solutions of Ukai, since H^3 is contained in V_3 . Multiplying the *KPI* equation $u_t + uu_x + u_{xxx} = D^{-1}u_{yy}$ by u, integrating over Π^2 and recognizing perfect derivatives reveals

(5)
$$\partial_t \int_{\Pi^2} u^2(t) \, dx \, dy = 0.$$

This gives $||u(t)||_{V_0} = ||u(t)||_{L^2} = ||g||_{L^2} \le C$. Rewrite *KPI* as

(6)
$$u_t = D^{-1}u_{yy} - u_{xxx} - uu_x$$

and multiply by $(D^{-2}u_{yy} - u_{xx} - \frac{1}{2}u^2)$. Integrating over Π^2 leads to

(7)
$$\partial_t \int_{\Pi^2} \left((u_x(t))^2 + (D^{-1}u_y(t))^2 - \frac{1}{3}u^3(t) \right) dx \, dy = 0.$$

Therefore, if it could be shown for some $\gamma \ge 0$ and $0 \le \delta < 2$ that

(8)
$$\|u\|_{L^3}^3 \leq C \|u\|_{L^2}^{\gamma} (\|u_x\|_{L^2}^2 + \|D^{-1}u_y\|_{L^2}^2)^{\frac{\delta}{2}}$$

then it would follow that

(9)
$$\int_{\Pi^2} \left((u_x(t))^2 + (D^{-1}u_y(t))^2 \right) \, dx \, dy \leq C.$$

Together with the L^2 conservation this would imply

(10)
$$||u(t)||_{V_1} \leq C.$$

In fact, the L^3 estimate is true for $\gamma = \delta = \frac{3}{2}$ as will be shown shortly. A similar argument applied to the next two (nontrivial) conservation laws for the *KPI* flow will show $||u(t)||_{V_2}$ and $||u(t)||_{V_3}$ remain bounded for all time. A stronger result for the KdV equation was proven by Lax in [3]. The rest of the paper is organized as follows: Two a priori Sobolev-type estimates for L^p norms in terms of V_m norms are proven. These estimates contain the L^3 estimate above. The conserved densities for the *KP* equations are presented and then $||u(t)||_{V_2}$ and $||u(t)||_{V_3}$ are proven to be bounded for all time. Finally some remarks concerning the limitations of this approach and higher order regularity results are made.

JAMES E. COLLIANDER

2. A priori estimates

The L^p norm is compared to the V_m norms in the following two estimates.

ESTIMATE 1. The following estimate holds for $2 \le p < 6$:

(11)
$$\|u\|_{L^{p}} \leq C \|u\|_{V_{0}}^{-1/2+3/p} \|u\|_{V_{1}}^{3/2-3/p}.$$

Proof. Let $q \in [1, 2)$ and set $w(m, n) = \max(|m|, \frac{|n|}{|m|})$. The definition of V_0 allows us to assume $|m| \neq 0$ so that $w^2(m, n) \leq m^2 + \frac{n^2}{m^2}$ and $w \geq 1$. For all R > 0 define $T_R = \{(m, n) \in \mathbb{Z}^2 : w(m, n) \leq R\}$ and $S_R = \mathbb{Z}^2 - T_R$. Let $A^2 = \sum_{(m,n)\in\mathbb{Z}^2} |a_{mn}|^2$ and $B^2 = \sum_{(m,n)\in\mathbb{Z}^2} w^2(m, n) |a_{mn}|^2$. Hölder's inequality and $|T_R| \leq CR^3$ imply

(12)
$$\sum_{T_R} |a_{mn}|^q \le C R^{\frac{3(2-q)}{2}} A^q.$$

Hölder gives

(13)
$$\sum_{S_R} |a_{mn}|^q \leq \left(\sum_{S_R} (w(m,n))^{\frac{2q}{q-2}}\right)^{\frac{2-q}{2}} B^q.$$

The cardinality of the level set $\{(m, n): w(m, n) = t\}$ is Ct^2 .

(14)
$$\sum_{S_R} (w(m,n))^{\frac{2q}{q-2}} = \sum_{t=R}^{\infty} t^{\frac{2q}{q-2}} t^2$$

(15)
$$= \int_{R}^{\infty} t^{\frac{4q-4}{q-2}} dt$$
$$= CR^{\frac{5q-6}{q-2}},$$

provided $\frac{6}{5} < q < 2$.

Combining these estimates gives

(16)
$$\|a_{mn}\|_{l^q}^q = \sum_{S_R} |a_{mn}|^q + \sum_{T_R} |a_{mn}|^q$$

(17)
$$\leq CR^{\frac{6-5q}{2}}B^{q} + CR^{\frac{3(2-q)}{2}}A^{q}.$$

Minimizing over R leads to selecting $R = \frac{B}{A}$ which yields

(18)
$$\|a_{mn}\|_{l^{q}} \leq C \|a_{mn}\|_{l^{2}}^{\frac{5q-6}{2q}} \|w(m,n)a_{mn}\|_{l^{2}}^{\frac{6-3q}{2q}}.$$

Hausdorff-Young, Parseval and $w(m, n)^2 \le m^2 + \frac{n^2}{m^2}$ imply

(19)
$$\|u\|_{L^{q'}(\Pi^2)} \leq C \|u\|_{V_0}^{\frac{6-q'}{2q'}} \|u\|_{V_1}^{\frac{3q'-6}{2q'}}$$

for $2 \le q' < 6$. Using $\frac{1}{q} + \frac{1}{q'} = 1$ and renaming q' = p establishes Estimate 1.

Remark. Refining the preceding a bit using the Littlewood-Paley square function theorem yields (11) for p = 6 as well.

Redefining w as $w(m, n) = \max(m^2, \frac{n^2}{m^2})$ and mimicking the proof of Estimate 1 establishes:

ESTIMATE 2. The following estimate holds for $2 \le p \le \infty$:

(20)
$$\|u\|_{L^p} \leq C \|u\|_{V_0}^{\frac{8}{3p+2}} \|u\|_{V_2}^{\frac{3p-6}{3p+2}}.$$

3. Conserved densities

A linear change of variables converts the KP equations to the form

(21)
$$u_t - 6uu_x - u_{xxx} = -3\alpha^2 D^{-1} u_{yy}.$$

where $\alpha^2 = \pm 1$. The minus now corresponds to *KPI*. In this context the conservation laws for the *KP* equations may be described as follows, see the appendix in [4]. Define $L = (\partial_x + \alpha D^{-1} \partial_y)$. The recursion

$$(22) v_0 = u$$

(23)
$$v_n = L v_{n-1} + \sum_{m=0}^{n-2} v_{n-2-m} v_m$$

defines a sequence of expressions $v_n[u]$. The (nontrivial) conservation laws for the *KP* flow for n = 0, 1, 2, ... are

(24)
$$\partial_t \int_{\Pi^2} v_{2n}[u] \, dx \, dy = 0.$$

The choice n = 1 leads to the L^2 conservation and n = 2 gives the conservation law involving $||u||_{V_1}$ and $||u||_{L^3}^3$. Different constants arise due to the alternate form of *KPI* used here. Calculating v_6 directly from the recursion shows that

(25)
$$\int_{\Pi^2} \left[(u_{xx})^2 - 10\alpha^2 (u_y)^2 + 5\alpha^4 (D^{-2}u_{yy})^2 + 5u^4 - 6u(u_x)^2 \right]$$

(26)
$$+ 6\alpha^2 u^2 (D^{-2} u_{yy}) + 4\alpha^2 u (D^{-1} u_y)^2 dx dy$$

is a conserved quantity. Since $\alpha^2 = -1$ the first three terms of the integrand are equivalent to $\|u\|_{V_2}^2$. Estimates 1 and 2 can be used to control the last four terms:

(27)
$$\|u\|_{L^4}^4 \le C \|u\|_{V_0}^1 \|u\|_{V_1}^3 \le C$$

(28)
$$\int u(u_x)^2 \le \|u\|_{V_0} \|u_x\|_{L^4}^2 \le C \|u\|_{V_1}^{\frac{1}{2}} \|u\|_{V_2}^{\frac{3}{2}} \le C \|u\|_{V_2}^{2-\eta}$$

(29)
$$\int u^2 (D^{-2} u_{yy}) \le \|u\|_{L^4}^2 \|D^{-2} u_{yy}\|_{L^2} \le C \|u\|_{V_2}$$

(30)
$$\int u(D^{-1}u_y)^2 \le \|u\|_{L^2} \|D^{-1}u_y\|_{L^4}^2 \le C \|u\|_{V_1}^{\frac{1}{2}} \|u\|_{V_2}^{\frac{3}{2}} \le C \|u\|_{V_2}^{2-\eta}$$

for some $\eta \ge 0$. Using these estimates and the conservation law gives

$$\|u(t)\|_{V_2} \le C$$

where *C* depends upon $||g||_{V_0}$, $||g||_{V_1}$, $||g||_{V_2}$.

The recursion, recognition of perfect derivatives and integrations by parts may be used to show that the terms appearing in $\int_{\Pi^2} v_8[u] dx dy$ are (up to constant multiples) $||u||_{V_3}^2$ and

(32)
$$(K^3u)(u)(Ku), (K^2u)^2(u), (K^2u)(u^3), (K^2u)(Ku)^2,$$

$$(33) (Ku)2(u2), (u5), (K(u2))2, (K3u)(K(u2)), (K(u2))(u)(Ku),$$

where K = L or $K = (-\partial_x + \alpha D^{-1}\partial_y)$. Terms above not containing $K(u^2)$ may be estimated using Hölder's inequality and Estimates 1 and 2 in a manner analogous to the V_6 terms. Cauchy-Schwarz and the following may be used to estimate the remaining terms.

LEMMA 1. The following estimate holds

(34)
$$\|K(u^2)\|_{L^2} \leq C \left[\|u\|_{L^4} \|u_x\|_{L^4} + \|u\|_{L^{2p}} \|u_y\|_{L^{2p'}} \right]$$

where $p^{-1} + p'^{-1} = 1$.

Consequently, choosing p' so that 2 < 2p' < 6, using Estimates 1, 2 and $||u(t)||_{V_m} \le C$ for m = 0, 1, 2 gives, for some $\eta > 0$,

(35)
$$\|K(u^2)\|_{L^2} \le C + C \|u(t)\|_{V_3}^{1-\eta}.$$

Proof of Lemma 1.

$$(36) \|K(u^2)\|_{L^2}^2 \leq C \left[\int_{\Pi^2} (u^2)(u_x^2) \, dx \, dy + \alpha \int_{\Pi^2} (D^{-1}(uu_y))^2 \, dx \, dy \right] \\ \leq C \|u\|_{L^4}^2 \|u_x\|_{L^4}^2 + C \int_{\Pi^2} (D^{-1}(uu_y))^2 \, dx \, dy$$

$$(37) \int_{\Pi^{2}} (D^{-1}(uu_{y}))^{2} dx dy = \int_{\Pi^{2}} \left(\int_{0}^{x} uu_{y} ds \right)^{2} dx dy$$
$$\leq \int_{\Pi^{2}} \left(\int_{0}^{1} u^{2} ds \right) \left(\int_{0}^{1} u_{y}^{2} ds \right) dx dy$$
$$\leq \left(\int_{\Pi} \left(\int_{0}^{1} u^{2} ds \right)^{p} dy \right)^{\frac{1}{p}} \left(\int_{\Pi} \left(\int_{0}^{1} u_{y}^{2} ds \right)^{p'} dy \right)^{\frac{1}{p'}}$$

where Π has been identified with [0, 1). Then Minkowski's inequality implies

(38)
$$\int_{\Pi^2} (D^{-1}(uu_y))^2 \, dx \, dy \le \|u\|_{L^{2p}}^2 \|u_y\|_{L^{2p'}}^2$$

which, upon combining terms, completes the proof of the lemma.

The estimates of the $v_8[u]$ terms combine to imply

(39)
$$||u(t)||_{V_3} \le C$$

where C depends upon $||g||_{V_3}$. This completes the proof of the theorem.

4. Remarks

It seems likely that, by analogy with the result proven for KdV in [3], the conservations law $\int_{\Pi^2} v_{2n}[u] dx dy$ will imply $||u(t)||_{V_{n-1}} \leq C$ showing that regularity of the initial data is preserved by the *KPI* flow. The difficulties encountered while handling the $v_8[u]$ terms, however (in particular the need to handle the $K(u^2)$ terms separately), forecast problems with an inductive argument like that presented by Lax. Part of the problem here is that *L* does not satisfy the product rule due to the presence of D^{-1} .

The local well-posedness theory of Ukai establishes uniqueness using the standard Gronwall argument. This requires an L^{∞} estimate on u_x . Then Estimate 2 explains why the local theory takes place in V_3 . This dependence on higher conservation laws prevents the study of perturbations of *KPI*, and also precludes studying the evolution of data g with fractional smoothness. Perhaps a fix-point argument as used in [1] for *KPII* can overcome both of these difficulties at once.

REFERENCES

- J. BOURGAIN, On the Cauchy Problem for the Kadomtsev-Petviashvili Equation, Geom. Functional Anal., 3 (1993), 315–341.
- [2] B. B. KADOMTSEV and V. I. PETVIASHVILI, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl. 15 (1970), 539–545.
- [3] P. LAX, Periodic solutions of the KdV equation, Comm. Pure Appl. Math. 28 (1975), 141-188.
- [4] S. NOVIKOV, S. V. MANAKOV, L. D. PITAEVSKII, and V. E. ZAKHAROV, Theory of solitons: The inverse scattering method, Consultants Bureau, New York, 1984.

JAMES E. COLLIANDER

- [5] J. C. SAUT, Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Univ. Math. J. 42 (1993), 1011–1026.
- [6] M. SCHWARZ, JR., Periodic solutions of Kadomtsev-Petviashvili, Adv. Math. 66 (1987), 217–233.
- [7] S. UKAI, "On the Cauchy problem for the *KP* equation" in *Recent Topics in Nonlinear PDE IV*, Lecture Notes Numer. Appl. Anal., vol. 10, Kinokuniya Book Store, Tokyo, 1989, pp. 179–184.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS