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NORM INEQUALITIES FOR VECTOR VALUED
RANDOM SERIES

YORAM SAGHER AND NIANDI XIANG

1. Introduction

It is well known that Rademacher functions, r, (), which are defined by

1 0<t<1
ro(t) = | s n+ 1) =ro@), @) =ry2't), n>1,

-1 §_<_t<1

form a sequence of independent, symmetric and identically distributed random vari-
ables. Rademacher series ) r;(¢)u; where u; belong to a Banach space have been
investigated extensively; see [1], [5], [9], [12], [13].

An important result for Rademacher series is the Khinchin-Kahane inequality: for
any 0 < g < p < oo, there exists constant b(p, g) such that for any N > 1,

N
E ri—1Uj
j=1

holds in any Banach space.

This inequality holds for a large class of zero-mean random variables; see [2],
[4], [5], [8], [14]. We extend the inequality to a class of nonzero-mean random
variables and we show that a constant vector can be added to both sides of the
inequality. The latter enables us to study vector valued versions of the Burkholder
local distribution estimates which Stein used in the proof of his celebrated theorem
on limits of sequences of operators [13]. In a subsequent paper we will give a vector
valued version of Stein’s theorem [13] by using this local distribution estimate.

We prove vector valued local norm inequalities in L? as well as in some Orlicz
spaces for certain independent random variables which satisfy the Khinchin-Kahane
inequality. We show that the local behavior of the tail series is the same as the global
behavior of the series itself.

N

E rj_luj

Jj=l1

<b(p,q)
p

q

2. An extension of the Khinchin-Kahane inequality

Throughout the paper, for a sequence of independent random variables {X;}, we
will denote X = {X;}.

Received May 25, 1995
1991 Mathematics Subject Classification. Primary 60E15, 60G50.

© 1996 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

535



536 YORAM SAGHER AND NIANDI XIANG

For a given sequence X and Banach space B, if

N N
uO+ZXjuf u0+ZXjuj
=1 =

where 0 < g < p < oo, N > 1 arbitrary, b(q, p) = b(q, p, B) and arbitrary
uo, u; € B, then we say X satisfies the Khinchin-Kahane inequality in B. By a result
in [6], see also Theorem 5 below, if (1) holds for one ¢ € (0, p) then it holds for
every g € (0, p).

The treatment of this inequality in general Banach space in the literature is mainly
for zero mean random variables and uy = 0; see [5], [7], [8], [14]. We show that the
inequality (1) holds for a class of nonzero mean random variables.

<b(g.p) ey

p q

DEFINITION 1. Let (£2, Z, W) be a measure space, and B be a Banach space.
Let (F g, II Ilr) be a normed subspace of the space of strongly measurable functions

on (2,3, p):
Fl? ={f| f: Q > B, f measurable, ||f|F < oo}.

Denote by f, the distribution function of || f || s:
fel@) = p{w: | f(w)llp > a}, Vo >0.

If f € Fg, and f.(a) = gi(@), Yo > 0, implies g € F§ and || f|Ir = |gllF, then
we say that (F3L, || ||r) is a rearrangement invariant Banach space.

The principle of contraction, proved in the next lemma, is proved in [5], [12] for
L? spaces with ug = 0.

LEMMA 1. Let (F ff, Il lF) be a rearrangement invariant Banach space. Let
X be a sequence of independent symmetric random variables such that Xju €
(Fl?,ll lr),Yu € B. Let A; € R,j = 0,1,...,N. Then forany N > 1 and
any vectors {u;,0 < j < N},

N

)\.Qu() + ZAijuj
j=1

ug + Xju;

N
< mlfdx(l)»jD
F j—

j=1 F

Proof. Wemayassume |A;| <1,j=0,1,..., N. Let V; be a Bernoulli random
variable which is independent of (X1,..., Xy). Define V; = VpX;,1 < j < N.
Then (Vy, Vi, ..., Vy) is a sequence of independent symmetric random variables.
Since

N
MoVouo + ) A VoXu;

j=1

N
Aoug + ZAijuj

j=1

£}

N
Z AjViu;
j=0
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and since, if §; = *1, the sums Z,N:o A;Vjuj and Z,)'V=o 0;1;V;u; are equidistributed,
it suffices to consider0 < A; <1, j=0,...,N

The technique we use below is due to Kahane [S]. Let us first consider the case
that A; is eitherOor 1,0 < j < N. Define ; = 2A; — 1, j = 0,1, ..., N; thus
0, = £1.

Since Z;Lo 6;Vju; is equidistributed with Z,N:o Vju;, we have

N N N
> AV D Viui+ Y 6 Viu
j=0 Jj=0 j=0

F F
1 N 1 N N
=3 Y Vi +t3 Y6V =[YViu
j=0 F j=0 Foo1J=0 F
N N
= V0u0+ZVoXjuj = u0+ZXju,-
j=1 F j=1 F

IfO<i <1,j=0,1,...,N,let
o0

A=) 2Nk Ap=0,1
k=1

Denoting Xo = 1, we have Z}LO MXjup =Y g0, 27% Z,N=o AjxXju;. Hence by the
first part of the proof,

N 00 N N
=0 F k=1 j=0 Jj=0

For a sequence of random variables X = {X;} with EX; = m;, we will let
Z; =X;—mjand Z = {Z;} throughout the paper.

O

=
F

F

THEOREM 1. Let B be a Banach space. For p > 0, if X satisfies the Khinchin-
Kahane inequality then so does Z. Conversely, for p > 1, if Z satisfies the Khinchin-
Kahane inequality with ug = 0 then X satisfies the inequality for any ug € B.

Proof. Assume that X satisfies (1). Fixan N > 1 and up,u; € B. Letv =
ZJILI mju;. Then

N
ug + Z Zjuj
i=1

N
up —U+ZXjuj
j=1

p p

IA

N
Up— v+

b(q, p) Xjuj

Jj=1
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up +

= b(q, p)

N
Zju,

j=1 q

Assume that Z satisfies (1) with ugp = 0. Let us first show that the symmetrization
X* of X satisfies (1). Let {XJ’.} be an independent copy of {X;}. Let X; =X; — X;,
Z]’. = X]/. —m;. Then X7 = Z;. It suffices to show the inequality for one g € (1, p).
Since (1o + ZJILI Zjuj, ug+ Z,{il Ziu; — Z,I'V=1 Zuj) is a two-term martingale,
we have, forall 1 <r < p and any ug € B,

N N N
u0+E Ziuj| < u0+ZZjuj = u0+ZX;uj
j=1 , j=1 , i=1 ,
Also since
N N
luoll < {uo+ Y Zjuj| < |uo+ Y Zjuy| .
j=1 1 j=1 q
we get

N
< lluoll +2{ > Zju;
j=l1

N
uo + Z Xiuj
j=1

14 p
N N
< luo+ Y Zju;| +2b(q.p)|Y_ Zju;
j=1 q j=1 q
N N
< luo+ ) Xju;| +2b(q.p) | Y Xju;
j=1 q Jj=1 q
N
< (14+2b(g, p)) o+ Y_ Xju;|
j=1

q

where in the last inequality we apply Lemma 1. By the previous argument we have

N N
u0+ZXjuj < |uot+v+ ) Xju,
j=l P Jj=1 P
N
< (1+2b(q, p) |uo+v+ ) _ Xju;
j=1 q
N N
< (L+2b(g. p) | fuo+ Y X + D Zju
j=1 j=1

q q
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N N
< (1+2b(q, p) | [uo+ D Xjus| + | Xu
j=1 g li=l q
N
= (14+2b(q, p)) | o+ Y _ Xju;
j=1 q
N N
+ uo+ZXjuj—<u0+ZX]’-uj)
j=1 j=1 q
N
< 3(1 +2b(q, p)) ||uo + Xju; O
j=1

THEOREM 2. Let B be a Banach space and X* be the symmetrization of X. For
p > 1, if X satisfies the Khinchin-Kahane inequality then so does X°*. Conversely,
for p > 1, if X* satisfies the Khinchin-Kahane inequality then so does X .

Proof. Assume that X satisfies (1). By Theorem 1, Z also satisfies (1), and so
for 0 < g < 1, we have

N
ug + Z Ziu;
Jj=1

N N
uy + Z Ziuj — / Z Zj(w"uj du(w’)
j=1 j=1

/

bi(q. 1)

q q
q q

IA

du(w')

N N
uo + Z Zjuj - Z Zj(w')uj
j=1 j=l1

/

ug +

q
q
q

du(w’)

IA

N N
ug + Z Ziuj — Z Z,-(w’)uj
=1 =1

q

1

IA

bi(g, 1)

N
s
Xjuj

j=1
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Since for p > 1, b(q, 1) < b(q, p),

N N N
u0+ZXj-uj < uo—i—ZZjuj + ZZJ’-uj
j=1 » j=1 , = »
N N N
< MO+ZZJ'“]' + ZX‘;uj <3 u0+ZZjuj
j=1 » j=1 » j=1 p
N N
< 3b(q. p) |luo+ D Zjuj| <3b%(q.p) |uo+ Y Xju;
j=1 j=

q

The proof of the other part is contained in the proof of Theorem 1. O
Let us recall [7], [8]:

DEFINITION 2. Let Y be an L? (i) random variable defined on (2, )_, v) and B
a Banach space. If for some 0 < g < p < 00, there is a constant ¢ = cq,(B) such
that

fluo +cYurllp < lluo + Yuilly

holds for any u; in B, j = 0, 1, then we say Y is a hypercontractive random variable,
andwrite Y € HC(p, q, ¢, B).

It is well known, see [8], that a sequence of independent symmetric hypercontrac-
tive random variables satisfies (1) with ug = 0. In the next theorem we show that (1)
holds without the condition that Y; are symmetric.

THEOREM 3. Let B be a Banach space. Let {X;} be independent and Z; €
HC(p,q,c;j, B) with p > 1, and ¢ = inf{c;} > 0. Then X satisfies the Khinchin-
Kahane inequality.

Proof. Since Z; € HC(p, q, cj, B), we have, by Lemma 1, for0 < g < 1,

/

q
du(w)

uﬁgzj(w)u,
S
<1 (/

q
du(w)

N N
wo+ 3 Z;(wyu; — f 3,2y duw)
j=1 j=1

N

N
uo + Z Zj(w)u; — chZj(w’)uj
=

j=1

q
du(w’) ) dp(w)
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IA

I(/

N
ug + Z Z;uj
j=1

N N
wo+ Y Zj(wu;j — Y Zj(w)u;
Jj=1 Jj=1

q
du(w") ) du(w)

N
uy + Z X;uj
j=1

We also have from the proof of Theorem 1, that the same inequality holds for 1 <
q < p. Applying Lemma 1, we thus get

q q
q q

N N
cug + ¢ Xjuj < luoll + chXJ‘.uj
j=1 » j=1 »
N N
= lluoll + w0+ Y ¢;Zju; — {uo + ) ¢; Zju;
j=1 j=1 »
N N
< |luoll + 2 |\ uo + c;iZiuj| =<3 |luo+ ciZju;
j=1 » =1 »
N N
<3 u0+ZZjuj <3 u0+ZX;uj
j=1 q j=l1 q
Letv = Z,N=1 mju;. First, assume that 0 < g < 1. Then
N N
uo—l-ZXjuj < lup+v+ Xj’-uj
j=1 ’ J=1 ,
N
< 3¢ ug+v+ X;uj
j=1 .
{ N q N g\ V4
< 3¢} uo+ZXjuj + ZZjuj
i=1 p j=1 7
N q N g\ V4
< 3C_l u0+ZXjuj + ZX]s.uj
=1 = ‘
N q
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N N a \ V4
+ uo+ZXjuj — (uo—f-ZX;uj)
Jj=1 Jj=1 q
] N
< 35 ol u0+ZXjuj
j=1 4
If g > 1, the above proof gives
N N
uo+ZXjuj < 9¢~! u0+ZXjuj Od
=1 » j=1 g

Since any L? random variable X ; with mean zero is hypercontractive in any Hilbert
space (see [7]), applying Theorem 3 to the independent sequence X, we have:

COROLLARY 1. Let B be a Hilbert space. Then any sequence of independent L?
random variables satisfies the Khinchin-Kahane inequality in B.

We extend a result of Kwapien and Szulga on the connection between the Khinchin-
Kahane inequality and the hypercontractivity.

THEOREM 4. Let B be a Banach space and X be i.i.d. random variables. Let
X* be the symmetrization of X. Then for p > 1, X satisfies the Khinchin-Kahane
inequality iff X} € HC(p, qo, ¢, B),Vj = 1 for any qo € (1, p).

Proof. From Theorem 3, if X; € HC(p,qo,c,B),Yj > 1, then {X;} satisfies
(1). By Theorem 2, {X;} satisfies (1). Conversely, by Theorem 2, if X satisfies (1),
then so does X*. The latter, by a theorem of Kwapien and Szulga [8], is equivalent
to X'} € HC(p, qo,c, B) forany gqp € (1, p). O

3. Distribution estimates
Let us recall the Marcinkiewicz—Paley—Zygmund property [6].

DEFINITION 3.  Let B be a Banach space. Let X be a sequence of independent
random variables. If for some 0 < p < 00 there exist positive constants ¢ =
a(p, B, X), B, = B(p, B, X) such that for any N > 0 and any vectors {u;} C B, we
have the inequality

N
ug + ZXjuj
=

ww: lug+ X;(wujl > Bp > o

’

N

j=1 p

then we say X has the M P Z(p, B) property, and write X € MPZ(p, B).
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The following result is proved in [6].

THEOREM 5. Let B be a Banach space. If X satisfies the Khinchin-Kahane
inequality for some 0 < q < pthen X € MPZ(p,B). If X € MPZ(p, B) then X
satisfies the Khinchin-Kahane inequality for all0 < q < p:

. N
Bt ug+ Y Xjujll < luo+ Y Xju; )
j=1

N

Jj=1

p q

LEMMA 2. IfX € MPZ(p, B),theny_ 2 | Xju, convergesa.e.inBiff 3 72, X;u;
converges in LP (u).

Proof. For a proof that L? convergence of a series of vector valued independent
random variables implies its a.e. convergence, see [4] for example. To show the
converse, we apply the M P Z(p, B) property and get forany N > Oand any {u;} C B,

N N
DX (wu > Xj(wu
j=l1 j=1

If the series does not converge in L”, then there exists an € > 0 and an increasing
sequence of integers Ny, such that

udw:

E,Bp > a.

p

Nit1
> Xju| >e k=12,
Jj=Ni+1 P
This implies
Nit1
piw: | D Xjw| = Byt o, k=1,2,
Jj=Ni+1
Let us define
Ni1
Ac=1w: | D X;wu;| = Bpet k=1,2,....
j=Ne+1

Then at all w € (2, Upe; Ax., the series diverges. Since

M[ Ak]ZOI,
i i

D}
C:e

1

~
I

we have a contradiction. O
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‘We therefore have:

THEOREM 6. If X € MPZ(p, B) and u; € B, then for every 0 < q < p, there
is a constant B(q, p) = B(q, p, B, X) such that ifzf’il X;u; converges a.e., then

< B(gq,p) |uo+ ) Xju;

o0

00
ug + ZXjuj
Jj=1

p = q

THEOREM 7. Let X € MPZ(p, B) and uj € B. If 32, Xju; converges to zero
a.e. on a set of measure greater than 1 — o, where « is the constant appearing in the
MPZ(p, B) property, thenu; =0, j > 1.

Proof. 1f “ >, Xju; “,, 4 0, then, since X € MPZ(p, B),

a contradiction. Thus we have || Z;’?__l X;(w)ujll, =0. Let X} ’s be the symmetriza-
tions of X;’s. Since 32| X;(w)u; = 0 a.e., we also have

o0

Z Xjuj

j=1

>0}2a,

o0
X'}(w)uj =0 ae.
j=1

By the Paul Lévy inequality, for any ¢ > 0,

u Iw: sup ||X‘;(w)uj|| > t] <2u [w:
1<j

o0
> X5 wu;| > t] =0.
j=1

This shows that Xju; = 0 a.e. which implies thatu; =0,j > 1. 0O

The Stein property, a local version of the MPZ property, was originally defined in
the scalar case by Burkholder in [3]. We give a somewhat different definition in the
vector valued case:

DEFINITION 4.  Let B be a Banach space. Let X be a sequence of independent ran-
domvariables. If for some p > O there exist positive constants ¢ = a(p, B, X), B =
B(p, B, X) such that for any E € ) _, u(E) > 0, there is an n = n(E) such that for
any N > n and any u; € B,

N N
4 Z Xjuj

Jj=n+1

uiweE: flug+ ) Xjuj| =B > o u(E),

Jj=1 »

then we say X has the p-Stein property (in B) and write X € S(p, B).
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With exactly the same proof as that in [3], we obtain:

THEOREM 8 [3]. Let B be a Banach space. Then X € S(p, B) iff there exists a
positive constant 8 = B(p, B, X) such that for any E € Y _, w(E) > 0, there is an
n = n(E) such that for any N > n and any {u;} C B,

N N
Uy + Z Xjuj

j=n+1

esssup,,cg Xj(wu;| = B

j=l1 p

THEOREM 9. If X € MPZ(p,B)forp > land EX; = 0,j > 1, then X €
S(p, B). Moreover, if Zfil Xju; converges a.e. for some vectors {u;} C B, then
VE € Y, u(E) > 0, In = n(E) such that

o0
Z Xju,

Jj=n+1

wiweE: {ug+ Xj(w)u;jl > B > o - u(E).

o0

j=1 p

Proof. Since X satisfies the Khinchin-Kahane inequality, by Theorem 2, the
symmetrization X* of X also satisfies the Khinchin-Kahane inequality, which implies
that the X°* € M PZ(p, B). Thus, there are some constants 8’ and «’ such that for
any N > 0,

N
wdw: |(ug + >p >ao' > 0.

Xj(w)uj

N
uo + Z X;uj
=1

The following argument is similar to one used by Burkholder in [3].

Let A € Y and u(A) > 0. Let F,, = o(X1,...X,), Foo = 0 (Fy,n > 1). Let
U = E(xa|Fx) and V, = E(x4lF,). Choose 0 < 8 < § - &' - u(A). Then there
exists an n such that

Jj=1 »

E\U —-V,| <.
Define

N
B =3 w: Z Xjuj

/
.
j=n+1

N
uo + Z X;(w)u;
j=1

p
By independence,

' N
<ﬂ; Z Xjuj

j=n+1

N
vw) + Y X;(w)u;

Jj=n+1

E(xplF)(w) =pn { w:

14
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where v(w’) = ug + Z;;l X;j(w"u; and w’ € Q. Since

ZXu,

Jj=n+1

2

Hn <—

v(w") + Z X;(w)u;

j=n+1

p

ZXuJ
)4

Jj=n+1

ZXMJ

Jj=n+1

<__

’

v(w') + Z X, (w)u;

Jj=n+1

uw{w:

<_

v(w) + Z X/ (w)u}

Jj=n+1

N
< ulw: Z Xj(wyu|l < p' Z Xju;

Jj=n+1 Jj=n+1

P

N
< piw: ZX(w)u, <p ZX;uj <l—-d,

j=n+1 j=n+1

we have E(xg|F,)(w') < +/T — o’. Therefore

uw(ANB) = EU - xp) < E(V,-xp)+38
E[V, E(xglF)1+8 < E(Vy) - vVT—a' +38
(EU +8) - VT—a' +8 < u(A) - V1 — o 4 26.

a’ o(/ a/
M(A)'(l - —5) +u(4) - = uA)- (1 - I)'

Thus we can take o = “7/, B= % and get

Il

IA

A

N
uiwe A: u0+ZXj(w)uj > B Z Xu, > au(A).
j=1 j=n+1
Finally,
uwiwe A: uo+ZX(w)uJ < B Z Xju;
j=n+1

q

< ﬁhm

Uuo + Z X;(w)u;

j=1

ZXuJ

Jj=n+1

|

< ,u[weA lim
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N N
= | timinf {w e A: fuo+ Y Xy | < B Y Xy
j=I Jj=n+1 q
N N
< lm}vinf,u we A |lug+ ‘ Xj(wu;|| < p Z Xju,
j=] j=n+l q
< (1—a) u(A). =

Repeating the proof of Theorem 7, we have:

THEOREM 10. Let B be a Banach space. Let X € S(p,B) and uj € B. If
ug + ZJO_'; \ Xju; converges to zero on any subset A € ) of positive measure, then
all but finitely many u; are zero.

4. Local L”-norm inequalities

We show that behavior of the tail series of sequences of independent random
variables on subset £ € Fo, mimics their global behavior.
Let E € Y, u(E) > 0. We let

1 ) 1/p
P = —_— d .
170 = (g5 [ 117 )

THEOREM 11. Let X € MPZ(p,B). ThenV0 < n < 1,V¥0 < € < p and
VE € Foo, W(E) > 0,3n = n(E, €, n, p) such that forall0 < q < p — e,

lluo + Z;in-H Xju; “iz
llwo + 327241 Xjuilizy

—1’577.

Proof. Defines = 163, s’ = ;’fg. Forgiven E € F, thereexistn = n(E, €, n, p)
and E, € F, such that
u!*(E,AE) < w(E) -n- Bl - (14 Bhay~".

Let f, = lluo + Y72, 4, Xju;ll. By (2), we have

1/s'
[ stdn < wie,an) ( [ f,:i-"du)
E,AE Q

W (ELAE fulld < w7 (EaAE)(Bpa /)™ | full2.

IA

IA
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Since B, < 1, we have B, 7' (1 + Bia) < B, ' (1 + o) and so

(ﬁ/;fjdu—/;f,?du‘ < ‘%E)-/Ef;' u—ﬁ | fidn ’
’ ()
< ﬁ EnAEf,;idu+Ef—Z§)§—) fﬂf,:’du
< [———“%LP‘;"EA)E) Brra! —————“%L";"EA)E)] Ll
< %‘bﬁ_’i’ By%a™! (1+ Bla) I ull]
< nlfll. =

COROLLARY 2. Let X € MPZ(p,B). Then V0 < € < p,VE € Foo, u(E) >
0,3n =n(E, €, p) such that forall0 < q < p — €,

uo+ZXuj uo+inuj

Jj=n+1 Jj=n+1

0
< ug + Z Xjuj

3
S —_—
2 Jj=n+1

L? q
E La LE

A similar argument shows:

THEOREM 12. Let X € MPZ(p, B) for all 0 < p < oo. There are constants
a, = a(p, B),b, = b(p, B) such that VE € F,, p(E) > 0,3n = n(E) such that
forall ) < p < oo,

00
Uy + Z Xjuj

Jj=n+1

o0
up + Z Xju;

Jj=n+1

)
ug + Z X,-uj

Jj=n+l

ap <

<bp

P P
L Lr L

The last result and (2) prove:

COROLLARY 3 [11]. Let X € MPZ(p,B) for all 0 < p < oo. There are
constants ¢, = c¢(p, B),dp, = d(p, B) such that VE € F, W(E) > 0,3n = n(E)
such that for all 0 < p < oo,

00
Uo + Z Xjuj

j=n+1

Cp =<

<d,

00
ug + Z Xjuj

Jj=n+1

0
Uo + Z Xjuj

Jj=n+1

2 14 2
LE LE LE
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5. Some Orlicz-norm inequalities

We now consider some Orlicz spaces. Recall the definition of the norm in an Orlicz
space L?: Let ¢ be a Young function defined on [0, c0), and let f be a measurable
function on a measure space (€2, Y_, ). Then

||f||1,¢=inf[)»>0: ‘/;2¢<-I—ij)du< 1}.

In what follows, we denote by LY« the Orlicz space with respect to the Young function:
Vo) =exp(t/®) -1, 0 <a <1.
We consider sequences X such that forsome0 <« < 1,all p > 2andany N > 1,
N
Z X j u j
j=1

< B(p,B) , B(p,B)=0(p". 3

2

N
Xjuj
—

J

p

THEOREM 13.  Let X satisfy condition (3), and {uj,0 < j < oo} be vectors in B.
If ch__’l Xjuj converges a.e., then Zfil Xjuj converges in LV=. Moreover, there are
constants A, = A(a, X), By = B(«, X) such that

0 00 0
u0+ZXjuj uo+ZXjuj u0+ZXjuj
j=1 j=1 j=1

Proof. By Lemma 2, we have [lug + 372, X;u;|| € L% Letd = |ug +
Z}’il Xjujll>. The proof of the inequality is along the same lines as the proof in

[15] for o = % We may assume that in (3), B(p, B) < r p® for some r > 0. Set
vo=r"'a% (2e)~%. Taking p = k/a,k = 1,2, ...in (3), we have

/a
f ( lluo + 3°72, Xjuj”)
eXp| | Yo
Q d

Ay < B,

LV«

=
2

2

o~ ko —kjo |
Zyo d_/aE/

k=0

IA

& & 1 X1k
Yooty ==Y i
k=0 : k=0 :

Hence

00
Uuo + ZXjuj
j=1

1
< —d=ra® (2e"
Yo

’

2

o0
uo + ZXjuj
j=1

and the L? convergence of 372, X;u; implies its convergence in L¥=. O

LYo
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Similarly one can also prove:

THEOREM 14. Let X satisfy condition (3). Assume thatexp(CIlel/"‘) e L'(w),vC >
0, j = 1. Let {u;} be vectors in B. Ifzjf'il Xju;j converges a.e., then for all C > 0,

1/a

exp| C e L' (w).

00
ug + ZXjuj
Jj=1

We can also prove a local version of the Orlicz norm inequalities. Let

, 1 L1
“f”l‘dé =1nf{)\,>0: m E¢<T) du < 1}

THEOREM 15. Let X satisfies condition (3). There are constants C, = C (¢, X),
D, = D(a, X) such that for {u;} C B, szfil Xju; converges a.e., then for any
E € Foo, wW(E) > 0,3In = n(E, @), such that

00 00
ug + E Xjuj ug + Z Xjuj
Jj=n+1 Jj=n+1

o0
Co = < Dyq |luo + Z Xjuj

j=n+l

L‘éﬂ LVa Lzu

Proof. In view of Theorem 13 and Theorem 12, it suffices to prove that there are
constants C, = C'(«, X), D, = D'(«, X) such that for any E € Fo, u(E) > 0,
dn = n(E, a) such that

00
ug + E Xjuj
Jj=n+1

00
up + _;_ Xjuj
Jj=n+1

o0
Uug + E Xjuj
Jj=n+1

!’ /
c, < <D,

2 1Z 2
Ly L Ly

Let diy1 = “uo + 2 Xju, ”2 , k > 1. We have shown that

1
lluwo + 372 Xjuill\
/exp ()’0 0+ Dtk Xjlj i <2,

dis1

For E € Fy,3n = n(E) and E, € F, such that both Theorem 12 and

u'>(E,AE)

<1
w(E)

hold, which implies
1 wp(Ey)
<

2 wE)




VECTOR VALUED RANDOM SERIES

Thus, applying Holder’s inequality, we get
1/
V[ luwo+ X2, Xl ™
Yo du

1
reIAE

1/
_ /exp Ll ot Bl Xiwl) T
T u(E) Jg, 2\" dny1

1/
1 U o+ 3520 Xull\
+ exp | 5\ Yo dup

dn+1

w(E) Jp\E, g1

IA

1
wEn ool L (, o + 325200 Xjg 1) ™ du
N A 0

(E) 2 Ay

172

1/
u(E\ E,) /exp o o+ T2 Xyl ‘
w(E) 0 dpt1

< 3V2.

Let us denote y = (%)"‘ %0-

1/
1 /exp y lluo + 372,11 Xjujl ! du
H(E) Jg dyy

B 1/a
1 / lluo + 372,11 Xjujll |
< (— [ exp|3 dw'’?
w(E) Jp P (y dr

w(E) Jg 2 ity

_ e
1 1 lwo + Yo ,t Xiusll
=(——= ] exp| = (yo ZJ_ o dw)'? < 2.

Applying Theorem 12, we get that for n > n(E),

00 00
ug + Z Xjuj < by ||ugp+ Z Xjuj
Jj=n+1 2 Jj=n+1 12
E
Thus
00 00
—1
uo + E Xju; < by up + E Xju;
j=n+1 v j=n+1
Jj=n+ LEa Jj=n Li‘

551
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