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EIGENVALUES OF LAPLACIANS
WITH MIXED BOUNDARY CONDITIONS,

UNDER CONFORMAL MAPPING

RICHARD SNYDER LAUGESEN

I. Introduction

The prototypical result of this paper says, roughly, that if f(z) Yjz aJ zj is
a conformal map of an annulus A onto a doubly connected plane domain g2 with

lail 1, then

.j(f2), Zj(A)s
for all s > 1,

where j (’) is the j-th eigenvalue of the Laplacian on under Dirichlet boundary
conditions on the outer boundary of g2 and Neumann conditions on the inner boundary,
and similarly for ,ky (A). That is, the zeta function of the Laplacian is at least as big
for as it is for the annulus A.

This introduction provides some historical context; then in Section 2 the results are
all stated precisely. For similar results but underpurely Dirichlet boundary conditions,
see the earlier paper 13], written with C. Morpurgo. This present work draws heavily
on the arguments and intuition in 13], and is best read in conjunction with that paper.

The eigenvalues of the Laplacian have many physical interpretations, for example
as the frequencies of vibration of a membrane, as rates of decay for the heat (or mass
diffusion) equation, and as cut-off frequencies for waveguides. However, the eigen-
values of doubly connected regions can be calculated exactly only for a few special
regions, most notably for annuli, and while numerical methods are sophisticated and
successful [11 ], they can only estimate finitely many of the eigenvalues. This pa-
per will give sharp estimates involving all the eigenvalues. Incidentally, the mixed
boundary conditions employed in this paper have drawn increasing attention in recent
years (see for example [4], [17] and the references therein).

G. P61ya and G. Szeg6 [16] proved by conformal transplantation an upper bound
on the first eigenvalue of a simply connected plane domain under Dirichlet boundary
conditions: if f (z) is a conformal map of the open unit disk D onto a bounded, simply
connected plane domain f2 and if [f’(0)l 1, then .; (f2) < X(D). In [13, Cor. 3],
the author and C. Morpurgo proved a direct analogue of this for doubly connected
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20 RICHARD SNYDER LAUGESEN

domains: ,,1("2) __< ,k(A), where now f(z) ’jz aJ zj is assumed to map the
annulus A conformally onto [2 with la[ 1. This paper proves the same result
but for eigenvalues of the Laplacian under mixed boundary conditions: Dirichlet
conditions on the outer boundaries of f2 and A and Neumann conditions on the inner
boundaries, or vice versa. In fact Corollary 2 shows that for functions ,(a) convex
and increasing,

.= j= j(A)

where n can be a positive integer or +o. Taking (a) a gives a zeta function
inequality.

Also in this paper are eigenvalue inequalities and convexity results for doubly
connected regions on cylinders, cones and the hyperbolic punctured disk, and on
surfaces with curvature bounded above.

Section 3 contains open questions and conjectures relating to the trace of the heat
kernel.
My thanks go to Mark Ashbaugh, Navah Langmeyer and the referee for making

helpful suggestions, and to the Columbia University Mathematics Department for
hosting me during the summer of 1996.

2. Results

Take a bounded, doubly connected subdomain M of the complex plane and let w
be a positive function on M. Write 0Mo and 0Ms for the two components of 0M.
Consider the following eigenvalue problem with mixed boundary conditions:

Oz--Aap -.ap in M, ap 0 on OMD, 0 on OMlv, (2.1)
w 0n

where

02 02

Oy2

denotes the Laplacian in the plane and 0/0n is the normal derivative of . We
name the boundary components 0MD and 0MN to remind ourselves that they support
Dirichlet and Neumann boundary conditions, respectively. Physically, one thinks of
the domain M as representing an inhomogeneous membrane that is fixed on OMD,
free on 0MN, and has mass density w and total mass

:= fM wImlo d/z,

where/z is Lebesgue measure in the plane. The eigenvalues ,k give the squares of the
frequencies of this membrane’s modes of vibration.
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The following definitions describe the conditions we will want our domain M and
function w to satisfy; we will show later that these conditions ensure the eigenvalues. .(w) actually exist and possess the properties we will need.

Definition ("acceptable"). Let 2 be a bounded, doubly connected plane domain.
Name its two boundary components 0f2o and 0f2N. Call acceptable if 0o
contains more than one point and 0f2N is a quasicircle.

Remember that a quasicircle is defined to be the image ofa circle under a quasicon-
formal map of the complex plane, so that quasicircles are Jordan curves, in particular.
See F. W. Gehring’s lecture notes [6, Ch. 2] for many equivalent definitions of qua-
sicircles. Readers unfamiliar with quasicircles might prefer to assume that 0s is a
Jordan curve that can be locally represented as the graph of a Lipschitz continuous
function, for then it follows from a theorem of L. V. Ahlfors [6, p. 30] that Os is a
quasicircle.

The preceding definition of "acceptable" implicitly depends on which boundary
component of 0 was chosen to be called f2o and which one was chosen as
For instance, if f2 {Izl < 2} \ [-1, 1] then f2 is acceptable provided we choose
0f2o [-1, 1] and 0’N {Izl 2}, but f2 is not acceptable if we choose Of2o
{Izl 2} and O2N [--1, 1]. This implicit dependence will not cause trouble, in
practice.

Definition ("admissible"). Let M be an acceptable domain with boundary com-
ponents OMo and OMN, and let w be a function on M. Call w admissible if two
conditions hold:

a conformal map f(z) from M onto an acceptable domain f2 exists such that
OMD and O"O correspond under f, and OMN and Of2N correspond under f;
and
a function h L (f2) exists with h > 0 a.e. and

w (h o f)lf,[2. (2.2)

In particular, if M is acceptable and w L(M) is positive a.e. then w is admissible.
Observe also that if w is admissible then w Lto (M) and w > 0 a.e.

This paragraph describes some fundamental properties of the eigenvalues .j (w);
see Section 4 for the proofs. Let M be an acceptable, bounded, doubly connected
plane domain with boundary components 0Mo and 0Mv. Assume w is an admissible
function on M. Then the eigenvalue problem (2.1) has discrete spectrum {Zj(w)}
with 0 < )l(w) < 2(w) < 3(w) _<... o, and the eigenvalues are given by
Poincar6’s minimax principle in terms of the Rayleigh quotient:

fM IV12 dAt
)j (w) min max

L.i eLj\{0} fM /2w dlz
(2.3)
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where Lj ranges over all j-dimensional subspaces of the trial space nlmix (M), with

ix(M) := the closure in HI(M) of { HI(M) 71C(M) p 0

on a neighborhood of OMo }.

Here H (M) denotes the usual Sobolev space, often called WI’2(M). It is important
in this paper to observe that our trial space Hlmix (M) does not depend on w. Now, the
eigenfunctions j Hlmix (M) are continuous and satisfy the eigenvalue equation

weakly in Hmix (M), which means that

fM Vp Vj dtz Xj(w) fM pOjw dlz for all ape Hmix(M).

(The righthand integral does make sense, in view of (2.2) and Lemma 7 in Section 4.)
Furthermore, the first eigenfunction Pl is unique up to constant factors and is never
zero in M. Finally, the eigenvalue problem is conformally invariant in the sense that
if w is admissible (as in the above definition) with h L(f2) and w (h o f)lf’l2,
then kj(w) Zj(h) and the eigenfunctions pj on M and 4j on if2 are related by
j 4j o f. This conformal invariance is best understood by verifying that if

-A ,kh in , then in M we have

A(4 o f) [-Aq o f]lf’l 2 [(Zh) o fllf’l2 Xw( o f). (2.4)

We will not need these next remarks, but it is interesting that if OD is locally
Lipschitz then j is continuous up to OMD and it equals zero there, which is the
classical Dirichlet boundary condition. Also, if ?, is a C l-smooth subarc of OMN
and apj CZ(M W ?,) then the normal derivative of gtj vanishes on ?,, which is the
classical Neumann boundary condition.

Next, a lower bound of Weyl type,

Lj(w) > otj for all j >_ 1, (2.5)

holds for some ot 6 (0, 1) that depends on w; this also will be justified in Section 4.
(When w and OM are smooth, much more than (2.5) can be said [17] about the
asymptotics of .j.) Thus the zeta function j .j(w)-’ of the operator w-l A on
M is finite for s > 1. More general than the zeta function is the -functional

( )=, Z(W)
for convex increasing and n either a positive integer or +o. Obviously this gives
the zeta function when n +o and (a) a for fixed s > 1.

Next comes the basic extremal result for the -functional, in which the domain M
is actually an annulus A. The proof will be indicated in Section 5. Use the notation

f02-(z) :-- w(lzlei) dO/2zr for the average of w over the circle of radius Izl
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THEOREM 1. Let A := {z C: 0 < R0 < Izl < R < cxz} and call the two

boundary circles of this annulus OAD and OAN (in either order). Assume v and to

are admissible functions on A and take n to be either a positive integer or +cx. Let
dO(a) be convex and increasing for a > O, with dO(0) 0, dO()l(w) -I) > 0 and

f dO(l /a) da finite.
Assume v is radial and

2r

to(rei) dO > 2try(r) for almost all r (Ro, R). (2.6)

Then

dO > dO (2.7)
j--1 J (to) j’-I j (1))

with strict inequality unless fr w(reiO dO 2zrv(r)for almost all r 6 (Ro, R).
If in addition dO(a) is strictly convex, then (2.7) holds with strict inequality unless
w=va.e.

In particular, averaging the conformalfactor w over concentric circles decreases
the dO-functional, provided- is admissible also:

( ) ( )= (w) = (w)

Theorem and its proof can be generalized to annuli {R0 < Ix < R} in RN,
N>3.

Flat surfaces Besides the euclidean metric g, doubly connected plane domains
possess two other kinds of radial flat metric"

the cylinder metric Izl-2g, and the cone metric, R, , :/: 0.
2lZl2y-2g for fixed

See Section 2 of [13] for a discussion of the attributes of these metrics. Note that
when ?, the cone metric coincides with the euclidean metric.

In the corollary below,

)j(’2euclid j-th eigenvalue of the euclidean Laplacian A on

)j(g2.o,e) j-th eigenvalue of the conical Laplacian ,-21zl-2/2/x on

Jj(cylinder) j-th eigenvalue of the cylindrical Laplacian Izl2A on

That is, we take M f2 and w(z) 1, w(z) y21z12-2, or w(z) Iz1-2,
respectively, in (2.1), with Dirichlet boundary conditions on 0t2o and Neumann
conditions on 0N.
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We shall see in Section 5 how to derive the following corollary, which gives ex-
tremal results for -functionals of doubly connected domains, under mixed boundary
conditions.

COROLLARY 2. Let 0 < Ro < R < cx and suppose f(z) is a conformal map of
the annulus A A(Ro, R) onto the acceptable, bounded, doubly connected plane
domain 2. Suppose that the innerboundary components ofA and2 correspond under
f, that 0Ao and 0 f2o correspond under f, and that 0Av and 0f2N correspond under
f Take n to be either a positive integer or +x. Let (a) be convex and increasing
fora > O, with (0) Oand f (1/a)da finite.

(a) [Euclidean metrics.] If
(i) f has Laurent expansion f (z) Yj=-x aj zJ with Jail > 1, or

(ii) fr log [f’(rei)[ dO > Ofor some r (Ro, R), or

(iii) the euclidean area ofthe hole in f2 is greater than or equal to the area
rR ofthe hole in A,

and if ()l(euclid)-1) > O, then

j=l .j(euctid) j=l j(Aeuctid)

with strict inequality unless 2 is a translate of A.
(b) [Cone metrics.] Fix V 6 (0, 1). lfO

_
2 and the area (in the cone metric) of

the hole in g2 is greater than or equal to the area ,rR ofthe hole in A, and
if (.l(2cone)-l) > O, then

j= Xj ’cone j= ’J At’ne

with strict inequality unless f A.
(c) [Cylinder metrics.] If a separates the origin from the point at infinity and if

we have (.1 (cylinder) -l) > O, then

j
n

( ) ( )>di)
’J ij (Acylinder).= (’cylinder j=l

with strict inequality unless is a dilate of A.

For an annulus with the euclidean or cone metric, the eigenvalues can be com-
puted in terms of zeros of Bessel functions. For example, when we impose Dirichlet
conditions on the outer circle and Neumann conditions on the inner circle, the eigen-
functions have the form

rei - [Yv/(.v/’-R)Jv/(v/"r)- Jv/(/"R)Yv/(./r)][sin(vO)or cos(v0)]
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for v 0, 1,2 and where the eigenvalues ,k must be chosen to make the radial
derivative of the eigenfunction vanish when r R0. (Remember here that , for
the euclidean metric and ?, (0, 1) for the cone metric.)

For an annulus with the cylinder metric, the eigenvalues can be computed explicitly
even more easily. By means of the map rei - (cos 0, sin 0, log r), we may regard
the annulus as a cylinder of length L log R log R0 and radius sitting in R3,
and so we may use coordinates x3 (0, L) and 0 [0, 2zr] on A. Impose Dirichlet
conditions on {x3 0} and Neumann conditions on {x3 L }. The eigenfunctions of
the cylindrical Laplacian on A are then eivO sin((2 1)rrx3/2L) for v Z, >_ 1,
with eigenvalues v2 + (2 1)2zre/4L.

An upper bound on (euclid) of a kind somewhat different to that in Corollary 2
was found by L. E. Payne and H. F. Weinberger 14] (and see [2, p. 146] for further
generalizations). They used not conformal mapping but rather a transplantation de-
pending on the distance to the boundary, with their extremal domain being an annulus
having the same area and outer perimeter length as "euclid. It does not seem, however,
that their method applies to eigenvalues higher than the first.

For lower bounds on .1, under mixed boundary conditions, see [2, p. 114 ft.].

Surfaces with curvature bounded above The next goal is to develop an extremal
result for the -functional on doubly connected surfaces with curvature bounded
above, thus generalizing several of the results for flat doubly connected surfaces in
Corollary 2.

Before approaching the next result, the reader should review the definitions of
the hyperbolic/euclidean/spherical metric kg of constant curvature tc (as given before
Corollary 4 in 13]), the constant curvature "cone" metric cg (described before Corol-
lary 5 of [13]), and the total curvature coK (discussed before [13, Cor. 5]). Finally,
after reviewing all these definitions one observes that the next corollary applies in
particular to doubly connected domains in hyperbolic space, the plane or the sphere
(putting h k), or in cones formed from these spaces (putting h c). The extremal
domains in the corollary are geodesic annuli.

Write ’.j("hg) for the j-th eigenvalue of h-lA on 2 with Dirichlet boundary
conditions on 0f2o and Neumann conditions on Og2N; that is, take M f2 and
w h in (2.1).

COROLLARY 3. Fix tc R, ?’ (0, 1], and let 0 < Ro < R < cx. Suppose
f(z) is a conformal map ofthe annulus A A(Ro, R) onto the acceptable, bounded,
doubly connected plane domain f2, and let 7-[ denote the hole in f2. Suppose that
the inner boundary components ofA and g2 correspond under f, that OAo and
correspond under f, and that OAN and Og2N correspond under f

Assume hg is a metric on f2 U 7-( of the form (1.38) in [2], with h
+(f2 7-[., hg) < 2rr(1 y). When tc < O,and h > 0 a.e. in f2, and suppose o9

assume R < 1, and when tc > O, assume If2 t_J 7-[Ih < 2zr ?’/tc. Take n to be either
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a positive integer or +cx. Let (a) be convex and increasing for a > 0, with
(0) 0, (k (f2hg) -l) > Oand f (1/a)dafinite.
Ifthe area ofthe hole 17-/Ih is greater than or equal to the area [D(Ro)[c, then

j=l ,j("hg) j=l ,j(Acg)

with strict inequality unless ’hg is isometric a.e. via f(z) to Ace,.

This corollary is established in Section 5. Notice that when x 0, the corollary
implies the euclidean case (a)(iii) and the cone case (b) of Corollary 2.

The hyperbolicpunctured disk Corollary 2(c) presents a result for the eigenvalues
of the Laplacian on a cylinder. We now develop an analogue of this result for the
hyperbolic punctured disk (which is the hyperbolic analogue ofa cylinder, as discussed
in Section 2 of[13]). Fix tc < 0 and define

or(z) :-/l’X--r Izl2(log l/ll)’"Z’’2’
0 < Izl < 1.

Then trg describes a punctured disk ofconstant negative curvature x (since A log a
2xcr).

In the following corollary, derived in Section 5, the notation 2punct refers to the
domain 2 together with the metric trg of the punctured disk, and )j(f2punct) means
the j-th eigenvalue on of the Laplacian or-l A of the punctured disk, with Dirichlet
boundary conditions on 092o and Neumann conditions on O2N; that is, take M g2

and w cr in (2.1).

COROLLARY 4. Fix tc < 0 and let 0 < Ro < R < 1. Suppose f(z) is a conformal
map of the annulus A A(Ro, R) onto the acceptable, doubly connected plane
domain 2, with the closure of f2 being contained in the punctured disk D(1) \ {0}.
Suppose that the inner boundary components of A and correspond under f, that
OAD and OD correspond under f, and that OAN and O2N correspond under f
Take n to be either a positive integer or +cx. Let (a) be convex and increasingfor
a > O, with (0) O, ()l(f2pun.t)-) > Oand f (1/a)dafinite.

Ifthe area (in the punctured disk metric) of the hole in f2 is greater than or equal
to the area 2zr/(lxl log 1/Ro) ofthe hole in A, then

2
,j(-punct) j(Apunct)’= j=l

with strict inequality unless f2 A.
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Convexity of the -functional of the eigenvalues The next theorem establishes
convexity of the -functional with respect to w, on a compact N-dimensional Rie-
mannian manifold with boundary, for N > 2. For technical convenience, we assume
the boundary is smooth.

Let M be a regular subdomain of an N-dimensional manifold M, so that the
boundary OM is smooth and the closure M := M tO OM is compact. Divide OM
into two disjoint pieces, OMo and OMN, with OMo non-empty and open in OM.
Let g be a Riemannian metric on M and take w to be a positive smooth function
on M. Under Dirichlet boundary conditions on OMo and Neumann conditions on
OMN, the operator w-1Ag on M is negative and has a discrete spectrum {-kj(w)},
with 0 < ,kl(W) < ,k2(w) < .3(w) <"’-- xz. The eigenvalues are given by the
minimax principle

Zj (w) min max
Lj pLj\{O} fM lp2110 dV

where Lj ranges over all j-dimensional subspaces of

nlmix(mg) :--- the closure in Hl(mg) of { 6 Hl(Mg) f3 C(M) 0

on a neighborhood of OMD}.

Here H (Mg) denotes the usual Sobolev space, often called wl’2(Mg). The eigen-
functions apj Hlmix(Mg) are smooth on M, with the eigenvalue equation --Agj
,kj(w)wpj holding pointwise in M and also weakly in Hlmix(Mg). Furthermore,
the first eigenfunction Pl is unique up to constant factors and is never zero in M.
(For the preceding facts, argue as in [3, pp. 53-61, 71] and [7, pp. 213, 214].)
For some ot 6 (0, 1) that depends on w, j(l/)) >_. otj2/N for all j > 1, since
j(w) >_ Ilwllj(1) and ,kj(1) is bounded below by the j-th eigenvalue of Ag
on M with purely Neumann boundary conditions, which in turn is comparable to
j2/N for large j by Weyl’s asymptotic law [5, pp. 9, 172]; this implies Zj(w) > aj2/u
for all j because we also know Z (w) > 0.

THEOREM 5. Take m to be a positive integer and let q (0, 1). Then

is convex as afunctional of 11oq

for positive weightfunctions w Coo(M), and

is convex as afunctional oflog w.

In both cases, the convexity is strict except when applied to multiples ofafixed w.
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When q we can say more. Take n to be either a positive integer or +o. Let
P(a) be convexand increasingfora > O, with (0) Oandf ep(1/a2IN) dafinite.
Then the alP-functional

j=l

is convex as a functional ofthe weightfunction w 6 C (M), w > O. If in addition
dp(a) is strictly convex, then the -functional is strictly convex as afunctional of w.

See Section 5 for the proof of the theorem. The requirement that f (1/a2/lv) da
be finite just serves to ensure that the -functional is finite-valued.

In particular, the theorem shows that for fixed s > N/2, the zeta function

ki(w)-s is a strictly convex functional of w (Requiring s > N/2 ensures
the zeta function is finite, since . (w) >_ aj/v.) When N 2 and M is two dimen-
sional, the operator w- Ag equals the Laplace-Beltrami operator Ag of the metric
wg on M. Hence in two dimensions under mixed boundary conditions, the zeta
function of the Laplace-Beltrami operator Ag on M is a strictly convex functional
of the conformal factor w.

The statements in Theorem 5 about the convexity of the -functional (q 1)
were proved in the purely Dirichlet case (i.e., for 0Mv empty) in 13, Th.8], and the
sub-case where M is a plane domain and (a) a was proved much earlier by P61ya
and Schiffer 15, p. 289].

Convexity with respect to wq might be helpful for isoperimetric variational prob-
lems. For example, one might consider a two-dimensional surface M with metric g
and then vary the conformal factor w in such a way that w/2 varies linearly, which
implies that lengths of curves in M (such as OM) must vary linearly in response.
Theorem 5 with q 1/2 then tells us that the square root of the sum of the first
m reciprocal eigenvalues must vary convexly, and so in particular in order to find a
global minimum we need only find a critical point. Convexity with respect to log w
might also be useful since log w enters into the definition of Gauss curvature.

Lastly, the convexity of [-j .j (w)- l]q with respect to wq, proved in Theorem 5 for

q 6 (0, 1], implies the convexity of [j .j(ll/q)-]q with respect to the complex-
valued function ot C(), I1 :/: 0, simply because [(or + i)/21 l/q <_ [(11 +
11)/2] /q. A natural setting for this result is when N 2, q 1/2, and a(z) is
analytic. P61ya and Schiffer [15, p. 303] proved the cases q 1/2 and q of
this "analytic convexity", but their proof does not seem to generalize to arbitrary
q a (0, 1]. Note that one can similarly complexify the convexity of log(j ,kj-)
with respect to log w.

Surfaces without mass constraints The next theorem concems 2-dimensional
surfaces, again, and differs in character from the other results in this paper: there is
no constraint whatsoever on where the mass of the membrane may be concentrated,
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there is certainly no curvature constraint, and there is no analogous theorem for the
case of purely Dirichlet boundary conditions. The key tool in the proof will be the
rather special form of the eigenfunctions for the mixed eigenvalue problem on the
homogeneous cylinder.

ONIn the theorem,/,j (f2hg) denotes the j-th eigenvalue ofh-l A on f2 under Dirichlet
boundary conditions on one component 1-’l of 0 and Neumann conditions on the
other component 1"2. That is, we take M , Mo 1-’, O M/v 1-’9. and to h

Noin (2.1). Similarly, ,kj (f2hg) denotes the j-th eigenvalue of h-lA under Neumann
conditions on F and Dirichlet conditions on I’2. Since both F and 1"2 are assumed
in the theorem to be quasicircles, is an acceptable domain for both the eigenvalue

ON ("2hg) and NO ("2hg) exist and have the propertiesproblems, and so indeed both ,kj )j
described around (2.3).

THEOREM 6. Let O < Ro < R < cxz and suppose f(z) is a conformal map ofthe
annulus A A Ro, R) onto a bounded, doubly connectedplane domain 2, with both
components of Of being quasicircles. Take n to be either a positive integer or
Let (a) be convex and increasing for a > O, with (0) 0 and f (l/a)da
finite.

Assume h L (f2) with h > 0 a.e. Then

(2.8)

(2.9)

If also (a) is strictly convex, then (2.9) holds with strict inequality unless "2hg is
isometric a.e. to the homogeneous cylinder in R of length log(R/R0), radius and
total mass Iflh.

The conclusion (2.9) of the theorem can be made to look more symmetrical if one
uses ,jDN (Acylinder) jND (Acylinder). these eigenvalues are known to have the form
m2+ (2e 2zr 2 /4L2 see the discussion after Corollary 2). Note also that by a simple
re-scaling, the quantity (l f2 Ih/[A [cylinder /."N (Acylinder) appearing in (2.9) equals the
reciprocal of the j-th eigenvalue of A with the metric (l21h/IAl.ylinder)lZl-2g, and
A with this metric represents the homogeneous cylinder imbedded in R of length
log(R/Ro), radius and total mass Iflh.

The case (a) a ofTheorem 6 was stated by J. Hersch [8, p. 32], and we follow
his ideas when we prove the theorem in Section 6. The statement in the theorem
about strict inequality is new.
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Hersch’s paper contains several other interesting results on eigenvalues (of simply
connected regions) with mixed boundary conditions, and some but not all (cf. [8, 6])
of these results can be extended to the -functional. This is left to the reader. Some
additional results are in [9, 3].

3. Open questions

Recall that the functional Yj e-zjt is called the trace ofthe heat kernel in mathe-
matics, and the partitionfunction in physics, where it also has importance. Then ask:
do the extremal results for the -functional in Theorem and Corollaries 2, 3 and 4
hold for the trace of the heat kernel? In particular, is it true that (in the notation of
Corollary 2(a))

e--t’kj(euclid) e-t)j(Aeuclid) for all > 0? (3.1)

Note that (a) e-t/a is convex only for a < t/2, when a > 0, and thus Corol-
lary 2(a) proves (3.1) only when > 2/,kl (). The trace conjecture (3.1) does hold as

,1, 0, though, since either g2 is a translate of A or else (by the proof of Corollary 2(a))
f2 has greater euclidean area than A, while

y e-t;j(feu’’’id) IK2leuclid + O(t-1/2)
j=

4r
ast $0

(assuming 0f2 is smooth). Similar statements hold for the analogues of Theorem
and Corollaries 2(b)(c), 3 and 4 for the trace of the heat kernel, for large and as

,1, 0. For references to known extremal results for the zeta function and determinant
of the Laplacian and the trace of the heat kernel (on various manifolds), see Section 3
of [12] or [13].

The analogue of the convexity result in Theorem 5 isfalse for the trace of the heat
kernel, for small time, as we now show. Let M be a doubly connected plane domain
with smooth boundary components 0Mo and 0MN, let g be the euclidean metric and
take to to be a positive smooth function on M. Write .j(w) for the j-th eigenvalue
of to-i A, as in (2.3). Then by putting f in [4, Th.7.2] we have the asymptotic
expansion

-e_tXj(w) IMlo -!-IOMg[o- IOMDIw
j-’-I

4zrt 8/-’7 + O(1) as $ 0, (3.2)

where

IOMDIo fa v/w(z) Idzl
MD

and IOMNIo := fo /w(Z) Idzl
MN
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denote the lengths of the boundary components of M in the metric wg. Plainly the
first term of the asymptotic expansion is linear in w, since [Ml0 fM tO dlz, but
the second term need be neither convex nor concave in tO, since both OMo Io and
[OMNIo are concave in w. Thus it is false that the trace of the heat kernel must be
convex in the weight function w, for small t. For large the trace is convex in w as
a consequence of Theorem 5; see above. Notice that for purely Dirichlet boundary
conditions it remains reasonable to hope that the trace of the heat kernel is convex
in tO for all t, since IOMNIo 0 in that case and the two leading terms of (3.2) are
hence convex in tO.

4. Fundamental properties

In this section we justify the claims made near the beginning of Section 2 about
the fundamental properties of the eigenvalues .j (tO) and their eigenfunctions.

Assume M is an acceptable, bounded, doubly connected plane domain with bound-
ary components OMo and OMv. Suppose tO is an admissible function on M. We
have that f (z) maps M conformally onto an acceptable domain 2, as in the definition
of admissibility in Section 2, with tO (h o f)lf’l2 where h L() and h > 0
a.e. Since f2 is doubly connected, its complement in the Riemann sphere has two
components. Call these components 29 and f2v, where 0 g2o C f29 and 0 f2N C f2v.

Since f2 is acceptable, 02A is a quasicircle. Let U be a disk containing 2 and let
f2 := U (q (f2 U f2). Then f2 is a bounded plane domain with boundary consisting
of one or two quasicircles, since if f2 is bounded then 02 0f2v and if g2 i...s
unbounded then 0f2 OU U 02v. A theorem ofP. W. Jones [10, Th.4] shows that
is a Sobolev extension domain, which means the following. Given an open square Q
containing the closure of , a bounded linear operator E" H () Hd (Q) exists
with Eq 4 pointwise in 2 and with

fo [(E)2 + IV(E4,)Iz] d < C f [z + iV,C,l::Z] d (4.1)

for all 4 6 nl(), where C C(, Q) > 0. Note that Hmix(f2) C nl(), just
by extending functions in nlmix ("2) to equal zero on f2. Thus functions in Hlmix
extend pointwise to functions in H (Q), with the Sobolev norm increasing by only
a bounded factor, and since Hd (Q) imbeds compactly into L2(Q) (see Part IV (4)
of[1, p. 144]withj =0, k =2, rn 1, n =2, p =2, q 2), we conclude that
nlmix() imbeds compactly into L2().

To justify the claims about ,kj(w) in the third paragraph of Section 2, one first
considers the eigenvalue problem for .j(h) on f2, adapting the standard arguments
(cf. [3, pp. 53, 55 ff.] and [7, pp. 212-214]) to apply to the Rayleigh quotient

f IVI2 d/z

f q2h d/z
) Hlmix("2).
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This yields existence of the eigenvalues ,j(h) and eigenfunctions j
C(f2), with -Aj )j(h)hj weakly in Hlmix(2) and 0 < ,kl(h) < ,2(h) <
,k3(h) < x. In particular the first eigenfunction never changes sign and the
first eigenvalue is simple, that is, 2,1 (h) < ,2 (h). Hence the first eigenfunction ql is
unique up to constant multiples. Poincar6’s minimax principle (2.3) holds for Lj(h)
with trial space nlmix (’) by [2, p. 97] or [3, p. 61 ]. Note that these standard arguments
are where we use the boundedness and positivity of h, for we want fa b2h d# to be
positive and finite when q 6 L2(fl), q 0. We also use in these arguments the fact
that Hmix(2) imbeds compactly into L2(f2).

The following argument shows that ) (h) > 0. For suppose instead that , (h) 0.
Then Vtl 0 a.e. and so 41 6 Hlmix(f2) is a non-zero constant, say tl 1.
(This ought to be impossible, since we think that ql equals zero on 0f2o, and the
succeeding argument simply makes this precise without assuming any smoothness
of 02o.) Since the constant function belongs to Hlmix(2), a sequence {r/j} of
functions in H (2) V1 C() exists with each r/j equalling zero near 0f2o and with

Oj converging to in H (f2). Extend Oj by defining Oj "= 0 on f2. We can assume
that 1 CX(RE) and that ]1 equals on a neighborhood of f2v. After replacing
r/j by r/ + (1 Ol)rlj for j > 2, we can also assume that Oj 6 C(ll2) and that a
fixed neighborhood of f2% exists on which every r/j equals 1. Next, since t.J f2v is
simply connected and 0 (t_Jf2) 0f2o contains more than one point by hypothesis,
the Riemann mapping theorem provides a conformal map F of the unit disk D onto

t3 %. Then Oj F is a smooth function with compact support in D and so it can be
used as a trial function for lir (O), the first eigenvalue of the euclidean Laplacian on
D with purely Dirichlet boundary conditions. Also, r/j F on F-1 (v). Thus

0 < Z?ir(D) <__ fD IV(r/j o F)I2

fD(rlj o F)2 d/z

fo lV(oj o F)lEdlz

fa lvrljl2 du
--+0 as j -- o,

/z(F-I (2,))

since r/j -- in Hlmix (f2). This contradiction implies that l (h) > 0, as we wished
to show.

Finally, the claims about .j (w) in the third paragraph of Section 2 hold simply by
conformally transplanting from f2 to M; that is, one actually defines Zj(w) := .j(h)
andpj := jof. Certainlyj is continuous, andsince j Hmix(f2)of Hmix(M)
by Lemma 7 below, a simple change of variable shows that -Aj .j(w)wj
weakly in Hlmix(M). Further, the minimax principle (2.3) holds just by changing
variable with f in the minimax principle for .j(h). Lastly, (2.3) shows that Lj(w) is
independent of the conformal map f by which the admissibility of w is established.
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We must still establish the lemma required in the preceding paragraph, which says
that conformal maps between acceptable domains leave the trial space Hmix invariant.

LEMMA 7. Suppose M and f2 are acceptable, bounded, doubly connected plane
domains. If f (z) maps M conformally onto f2 with OMo and f2o corresponding
under f and OMN and ON corresponding under f, then Hmix(f2) (3 f Hlmix(M).

ProofofLemma 7. It suffices to prove the inclusion Hlmix(M) C Hmix(f2) (3 f,
since the roles of M and f2 can then be interchanged.

Let u 6 Hmi (M), with u equalling the limit in H (M) of some sequence of test
functions r/j 6 HI(M) (3 C(M), each of which equals zero on some neighborhood
of 0Mo. By an approximation argument, we can assume each rlj is bounded. Then
r/j o f- L2() ("1C() and this function equals zero on a neighborhood of 8faO.
Further, rlj (3 f-l Hmix(f2) since ffa IV(r/j o f-l)]2 dbt fM IVr/j 12 d/z < oo, and
so

rlj (3 f-l rl (3 f-l)2 d/z <
kl (Q)

IV(r/J (3 f-I r/e o f-l)12 d/z

1(’2)
IV(oj r/e)l 2 d/z -+ 0

as j, e --+ cx, where ,k (f2) > 0 denotes the eigenvalue . (h) that was considered
in the first part of this section, with h 1. Thus {Oj (3 f-t} is a Cauchy sequence
in H (f2) consisting of smooth functions that equal zero on some neighborhood of
Of2O, and so r/j (3 f- converges in H (f2) to some function fi Hlmi (). By passing
to subsequences, we can assume further that
a.e. in f2. Thus u fi (3 f a.e. in M, and so nlmix (M) C nlmix ("2) (3 f, which proves
the lemma.

To conclude this section, we justify the lower bound ,kj (w) > otj of Weyl type, in
(2.5). We need only establish this for all large j, since ,t (w) > 0. From the Sobolev
extension property (4.1) we see that if b H () then

f IVI2 d# fQ IV(E)I2 d/

f"2 d# C fQ(Eqb)2 dlz

Recalling the minimax principle (2.3), we therefore deduce that

f Ivq12 d/z
o(w) =)vj(h) min max

L; eL;\{01 fa b2h Lj C Hlmix(’),
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f IV12d> min max
Ilhll . .\10 f t2

(falV12d"> min max
IIh I1 L., L.,X{O fa 2 am

Ilhlll( IDir:j (Q)-

Lj C nlmix("),

1), Lj C H(Q),

where ir(Q) denotes the j-th eigenvalue of the euclidean Laplacian on Q under
purely Dirichlet boundary conditions. Since ir(Q) is comparable to j, for large j,
we deduce that .j (w) > aj for large j, which was our goal.

5. Proof of Theorems 1, 5 and Corollaries 2, 3, 4

Proofof Theorem The proof of Theorem goes exactly like the proof of 13,
Th. for the case of purely Dirichlet boundary conditions, withjust the following two
changes. Instead of M we use A, and instead of the space Hd (M) of trial functions,
we use the space Hmix (A).

Proofs of Corollaries 2, 3 and 4 Corollaries 2, 3, 4 are proved exactly like
Corollaries 3, 5, 6 (respectively) in [13], where the author and C. Morpurgo dealt
with purely Dirichlet boundary conditions; Of course, during the proofs one should
apply Theorem of this paper instead of Theorem of 13], and one should invoke
the definition of "admissible" from this paper rather than the (different) definition
in [13].

Note that in Corollaries 2, 3 and 4, it is a hypothesis that the circle of radius R0
corresponds under f to the inner boundary component of f2. Thus one need not
arrange this correspondence during the proof, which was done in [13] by means of
the self-map z -> RoR/z of the annulus. (This self-map does not preserve mixed
boundary conditions on the annulus, and so we must avoid using it in this paper.)

Proofof Theorem 5 The manifold M and the metric g are fixed in this theorem.
Let m be a positive integer. We write

m

S(w) "=

j=l J

for the sum of reciprocal eigenvalues, and we also write V := Vg for the gradient,
A :-- Ag for the Laplace-Beltrami operator, and dV := dVg for the volume element,
in the metric g.
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The variational characterization [2, pp. 99-100] of the sum of reciprocal eigenval-
ues for-Ap .to is that

S(w) sup wdV, (5.1)
1 ,.1’=

where 1Itm }, is required to be a collection of rn linearly independent functions
in the Sobolev space nlmix(Mg) with fM g(Vi, Vj) dV 8ij.

To prove the first part of the theorem, we take q (0, 1) and let u and v be
positive smooth functions on . Fix a (0, 1) and put w "= [tuq -I- (1 t)l)q] l/q,
so that wq tuq + (1 t)vq. Let l l[fm Hlmix (Mg) be linearly independent
eigenfunctions of w-lA on M that satisfy

fM TwdV
and g(Vl[ti, Vlpj) dV ij,

mso that S(w) ,j=, fM fW dV. Writing "= y’j=, j > > 0, we have

S(113)q-- (fMlrll)dV)
q

(fMlr[tgq-[-(1-t)vq]l/qdw)q
I[tquq -1-(1 -t)quq

lie

<_ [Itquq[ll/q -[-[1(1- t)ql)ql[1/q (5.2)

<_ tS(u)q + (1 t)S(v)q

by the variational characterization (5.1); since 1/q > 1, Minkowski’s inequality at
(5.2) is strict unless u is a positive multiple of v. This proves that S(w)q is a convex
functional of wq, with the convexity being strict except when applied to multiples of
a fixed w.

Next, redefine w "= l V l-t, SO that log w log u + (1 t) log v. With lrj and
p defined as before, with respect to this new w we have

_< log apu d pv d (5.3)

log f qudV+(1- t)log f apvdV

< log S(u) + (1 t) log S(v)
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by the variational characterization (5.1), and Htilder’s inequality at (5.3) is strict
unless u is a positive multiple of v. This proves that log S(w) is a convex func-
tional of log w, with the convexity being strict except when applied to multiples of
a fixed w. In fact the convexity of log S(w) with respect to log w is the limiting
case as q -- 0 of the convexity of S(w)q with respect to wq, because letting q 0
in

S([tuq + (1 t)l)q)] l/q) <_ ItS(u)q -+- (1 t)S(l))q] l/q

gives

S(utv l-t) < S(u)t S(u) l-t,

which is equivalent to

log S(exp[t log u + (1 t) log v]) < log S(u) + (1 t) log S(v).

To prove the claims in Theorem 5 about convexity of the -functional, proceed
exactly as in the proof of 13, Th.8] for the case of purely Dirichlet boundary con-
ditions, except instead of using the space Hd (Mg) of trial functions, use the space
Hlmix(Me,).

6. Proof of Theorem 6

Let L log(R/Ro), so that IAIcylinder 2rcL. We begin by collecting facts
about the eigenvalues and eigenfunctions of the annulus. Observe to start with that
the eigenvalues {,kv (Acylinder)" j 1, 2, 3 can be computed by separation of
variables to be {)ve v2 + (2 1)2zr2/4L2" v e Z, e > 1}, with corresponding
normalized eigenfunctions

sin vO,
veN (rei) "= V/2/(rLZe) sin[(2e-1)zr(logr/Ro)/2L]x 1//r,

COS VO

if V>0 }if V=0
ifv <0

Then {pN} is a linearly independent set in the trial space

HDN(A) := the closure in HI(A) of {ap e HI(A) fq C(A) p 0

on a neighborhood of Il}

and it satisfies the orthonormality condition
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We proceed similarly for the eigenvalue problem with the boundary conditions swapped:
since {o(Acylinder) {)We }, we have normalized eigenfunctions

sinv0, if v>0 }cvNgO(rei) V/2/(zrL.ve)cos[(2e- l)zr(logr/Ro)/2L]x 1/,,/, ifv =0
cosy0, if v<0

with corresponding eigenvalues .ve, and {!ltNDe is a linearly independent set in the
trial space HD(A) with the orthonormality condition

A
V!/%t{D. V!/%,Ne,D d#

For each rn > 1, let 1 (rn) be a set of rn distinct elements from {(v, g)" v 6 Z, g >
with the property that the numbers )We for (v, ) 6 I (m) are a permutation of the

DNeigenvalues ,kj (Acytinaer) for j m.

We complete the preliminaries by putting w (h o f)[f,[2 and observing that w
DN NDis admissible for the eigenvalue problems defining .j (A0g) and )vj (A0g). Then,

by the observations about conformal invariance before (2.4),
DN DN ND ND.j (’hg)-)vj (Awg) and .j (’hg)’--j (Awg).

We will need the following variational characterization for the sum of the first
rn reciprocal eigenvalues. The characterization follows from the minimax principle
(2.3) (as is proved in [2, pp. 99-100]), and it says that

m m L 1/).j21 0N sup jl w d#
.j (Awg) {p, p,,,} .=

where {pl Pm is required to be a collection of rn linearly independent functions
in HgN(A), with fa V!/ti" Vj d# 6ij. By using the functions llrvDN as trial func-
tions in this variational characterization and by arguing similarly with the boundary
conditions interchanged, we obtain

m

)Vj (Awg) ND
.= )vj (awg)

fAlltDN2 fA ND> 7 ve wd#+ 11/%e 12wd# (6.1)
2
(,g)l(m) (v,e)l(m)

fa [sin2[(2g- 1)r(logr/Ro)/2L]
(v,e)El(m)

+ COS2[(2e- l)zr(logr/Ro)/2L]]
sin2vO, ifv >0 ]/2, if v 0 w(rei) rdrdO
cos2v0, if v<0
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2 / sin2 vO,

fa /
1/2,Z IAlcvlinder.ve(v,e)l(m) cos2

if v>0 }ifv =0 w(rei)rdrdO.
ifv<0

Now repeat this computation, except replacing l(m) by {(-v, )" (v, ) 6 l(m)};
adding the two inequalities gives

m,()j (Awg)

fA{sin2 V0 +cos2vO}w(reiO)rdrdOZ IAlcvtinder)ve(v,e)l(m)

(v,g)l(m)

IA]w/]Alcylinder
Ave.

IK2lh/lAlcylinderDN
.j (Acylinder)

(6.2)

for each rn 1,2, 3 Incidentally, the proof up to this point follows the lines
indicated (though not spelled out) by Hersch [8, pp. 27, 32].
Now inequality (2.9) follows from (6.2) by the majorization method of Hardy,

Littlewood and P61ya [13, Prop. 10]. Inequality (2.8), of course, relies only on the
convexity of .

Assume for the rest of this proof that is strictly convex, and suppose that (2.9)
holds with equality. Then the strict convexity of allows us to invoke a result due
to Schur, a result given as equality case (v) of 13, Prop. 10]. This gives

1( 1)lK2[h/lAlcytinder__lK2lh/lAlcytinder (6.3)- zN(awg) + D(Awg) )N(acylinder) )01

Hence equality holds at (6.1) with rn 1, meaning that

)U (Awg) fA IVN 12
fA INI2wdI

and )D(Ag fa IVlo[2 HAt
fa IOl2wd

Thus lrlN is a ,)N (Aog)-eigenfunction, so that

A1/tlN 0lz1-2

weakly in HoN (A), and hence

.0 Iz[ -2

xN(Awg)
a.e., similarly W

)D(Awg)
aoeo
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Adding the last two equalities and then using (6.3) yields that for almost all z,

( 1)._21Zl_2121h/ialcylinder"2W(Z) Z0lzl -= ,V(Aug + )O(mtg
That is, w(z) Izl-2121h/IAIcyinder a.e., which is the mass density function on A
representing the homogeneous cylinder imbedded in R oflength L, radius and total
mass 121h. Since f2hg is isometric via f(z) to Aog, we deduce that g2hg is isometric
a.e. to the cylinder.
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