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EIGENVALUES OF LAPLACIANS
WITH MIXED BOUNDARY CONDITIONS,
UNDER CONFORMAL MAPPING

RICHARD SNYDER LAUGESEN

1. Introduction

The prototypical result of this paper says, roughly, that if f(z) = Y_ ez a;z’ is
a conformal map of an annulus A onto a doubly connected plane domain 2 with
la;] = 1, then

i : i ! for all 1

> oralls > 1,
oA Q)’ = Aj(A)*
where A;(€2) is the j-th eigenvalue of the Laplacian on 2 under Dirichlet boundary
conditions on the outer boundary of $2 and Neumann conditions on the inner boundary,
and similarly for A;(A). That is, the zeta function of the Laplacian is at least as big
for Q as it is for the annulus A.

This introduction provides some historical context; then in Section 2 the results are
all stated precisely. For similar results but under purely Dirichlet boundary conditions,
see the earlier paper [13], written with C. Morpurgo. This present work draws heavily
on the arguments and intuition in [13], and is best read in conjunction with that paper.

The eigenvalues of the Laplacian have many physical interpretations, for example
as the frequencies of vibration of a membrane, as rates of decay for the heat (or mass
diffusion) equation, and as cut-off frequencies for waveguides. However, the eigen-
values of doubly connected regions can be calculated exactly only for a few special
regions, most notably for annuli, and while numerical methods are sophisticated and
successful [11], they can only estimate finitely many of the eigenvalues. This pa-
per will give sharp estimates involving all the eigenvalues. Incidentally, the mixed
boundary conditions employed in this paper have drawn increasing attention in recent
years (see for example [4], [17] and the references therein).

G. Pélya and G. Szegd [16] proved by conformal transplantation an upper bound
on the first eigenvalue of a simply connected plane domain under Dirichlet boundary
conditions: if f(z) is a conformal map of the open unit disk D onto a bounded, simply
connected plane domain Q2 and if | f/(0)| = 1, then A(2) < A;(D). In [13, Cor. 3],
the author and C. Morpurgo proved a direct analogue of this for doubly connected

Received August 26, 1996.
1991 Mathematics Subject Classification. Primary 35P15; Secondary 30C75, 58G2S.
Research partially supported by grants from the National Science Foundation.

© 1998 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

19



20 RICHARD SNYDER LAUGESEN

domains: A1(2) < A{(A), where now f(z) = Zjez ajzj is assumed to map the
annulus A conformally onto 2 with |a;| = 1. This paper proves the same result
but for eigenvalues of the Laplacian under mixed boundary conditions: Dirichlet
conditions on the outer boundaries of  and A and Neumann conditions on the inner

boundaries, or vice versa. In fact Corollary 2 shows that for functions ®(a) convex

and increasing,
- 1 & 1
] P , 1.1
; (A;(Q))ZZ (A;(A)) a-b

where n can be a positive integer or +00. Taking ®(a) = a’ gives a zeta function
inequality.

Also in this paper are eigenvalue inequalities and convexity results for doubly
connected regions on cylinders, cones and the hyperbolic punctured disk, and on
surfaces with curvature bounded above.

Section 3 contains open questions and conjectures relating to the trace of the heat
kernel.

My thanks go to Mark Ashbaugh, Navah Langmeyer and the referee for making
helpful suggestions, and to the Columbia University Mathematics Department for
hosting me during the summer of 1996.

2. Results

Take a bounded, doubly connected subdomain M of the complex plane and let w
be a positive function on M. Write dMp and d My for the two components of M.
Consider the following eigenvalue problem with mixed boundary conditions:

1 3
“AY =AYy inM, ¥ =0 ondMp, Evni =0 ondMy, (2.1)
w
where
82 92
A

denotes the Laplacian in the plane and dv/dn is the normal derivative of . We
name the boundary components d Mp and d My to remind ourselves that they support
Dirichlet and Neumann boundary conditions, respectively. Physically, one thinks of
the domain M as representing an inhomogeneous membrane that is fixed on dMp,
free on d My, and has mass density w and total mass

M|y = f wdpu,
M

where p is Lebesgue measure in the plane. The eigenvalues A give the squares of the
frequencies of this membrane’s modes of vibration.
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The following definitions describe the conditions we will want our domain M and
function w to satisfy; we will show later that these conditions ensure the eigenvalues
A = A(w) actually exist and possess the properties we will need.

Definition (“acceptable”). Let €2 be a bounded, doubly connected plane domain.
Name its two boundary components 32, and dQ2y. Call Q acceptable if 3Q2p
contains more than one point and 32y is a quasicircle.

Remember that a quasicircle is defined to be the image of a circle under a quasicon-
formal map of the complex plane, so that quasicircles are Jordan curves, in particular.
See F. W. Gehring’s lecture notes [6, Ch. 2] for many equivalent definitions of qua-
sicircles. Readers unfamiliar with quasicircles might prefer to assume that 9Qy is a
Jordan curve that can be locally represented as the graph of a Lipschitz continuous
function, for then it follows from a theorem of L. V. Ahlfors [6, p. 30] that 9Qy is a
quasicircle.

The preceding definition of “acceptable” implicitly depends on which boundary
component of d€2 was chosen to be called 3S2p and which one was chosen as 9Q2y.
For instance, if 2 = {|z] < 2} \ [—1, 1] then  is acceptable provided we choose
aQp =[—1, 1] and 92y = {|z| = 2}, but Q2 is not acceptable if we choose 9Q2p =
{lz] = 2} and 3Qy = [—1, 1]. This implicit dependence will not cause trouble, in
practice.

Definition (“admissible”). Let M be an acceptable domain with boundary com-
ponents dMp and My, and let w be a function on M. Call w admissible if two
conditions hold:

e aconformal map f(z) from M onto an acceptable domain 2 exists such that
dMp and 92 correspond under f, and dMy and 32y correspond under f;
and

e afunction h € L*(Q) exists with 4 > 0 a.e. and

w=(ho f)If 2.2)

In particular, if M is acceptable and w € L* (M) is positive a.e. then w is admissible.
Observe also that if w is admissible then w € L7, (M) and w > O a.e.

This paragraph describes some fundamental properties of the eigenvalues A; (w);
see Section 4 for the proofs. Let M be an acceptable, bounded, doubly connected
plane domain with boundary components d M, and 9 M. Assume w is an admissible
function on M. Then the eigenvalue problem (2.1) has discrete spectrum {A;(w)}
with 0 < A (w) < Ax(w) < A3(w) < --- — 00, and the eigenvalues are given by
Poincaré’s minimax principle in terms of the Rayleigh quotient:

V|2 d
Aj(w) = min max fM' yIdu

T Tl 2.3
L veL o) [y, Yrwdu @
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where L; ranges over all j-dimensional subspaces of the trial space H,, (M), with

H,:,ix(M) := the closure in H! (M) of {y € H'(M) N C®(M): y =0
on a neighborhood of dMp}.

Here H'(M) denotes the usual Sobolev space, often called W!2(M). It is important
in this paper to observe that our trial space H\. (M) does not depend on w. Now, the
eigenfunctions ¥; € H\, (M) are continuous and satisfy the eigenvalue equation

—-A?/fj = A,j(w)wl/fj
weakly in H); (M), which means that

f V¢ - Vy;dp = xj(w)f vywdu  forally € HY, (M).
M M

(The righthand integral does make sense, in view of (2.2) and Lemma 7 in Section 4.)
Furthermore, the first eigenfunction v, is unique up to constant factors and is never
zero in M. Finally, the eigenvalue problem is conformally invariant in the sense that
if w is admissible (as in the above definition) with s € L*°(Q) and w = (ho f)| f'|?,
then A;j(w) = A;(h) and the eigenfunctions ¥; on M and ¢; on Q are related by
Y¥; = ¢; o f. This conformal invariance is best understood by verifying that if
—A¢ = Ah¢ in 2, then in M we have

— Ao f)=[-A¢o flf'* = [(Ah) o F1If'1* = rw(p o ). (2.4

We will not need these next remarks, but it is interesting that if dQ2p is locally
Lipschitz then v; is continuous up to dMp and it equals zero there, which is the
classical Dirichlet boundary condition. Also, if y is a C'-smooth subarc of dMy
and ¢; € C?(M U y) then the normal derivative of v; vanishes on y, which is the
classical Neumann boundary condition.

Next, a lower bound of Wey]l type,

Ajw)>aj  forall j > 1, @2.5)

holds for some o € (0, 1) that depends on w; this also will be justified in Section 4.
(When w and dM are smooth, much more than (2.5) can be said [17] about the
asymptotics of A;.) Thus the zeta function Zfil A;j(w)~* of the operator w™'A on
M is finite for s > 1. More general than the zeta function is the ®-functional

2 1
o :
,Z:. (Aj(w))

for convex increasing & and n either a positive integer or +00. Obviously this gives
the zeta function when n = +00 and ®(a) = a’ for fixed s > 1.

Next comes the basic extremal result for the ®-functional, in which the domain M
is actually an annulus A. The proof will be indicated in Section 5. Use the notation
w(z) = f02 " w(|z|e'®) d6 /27 for the average of w over the circle of radius |z|.
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THEOREM 1. Let A ;= {z € C: 0 < Ry < |z]| < R < o¢} and call the two
boundary circles of this annulus dAp and d Ay (in either order). Assume v and w
are admissible functions on A and take n to be either a positive integer or +-0c. Let
®(a) be convex and increasing for a > 0, with ®(0) = 0, d(A;(w)™") > 0 and
[i' ®(1/a) da finite.

Assume v is radial and

2
/ w(re®)dd > 2mv(r)  for almost allr € (Ry, R). (2.6)
0

n n l
s (Mw)) Zq’(mv)) @7

with strict inequality unless fO" w(re'?)dd = 2mv(r) for almost all r € (Ry, R).
If in addition ®(a) is strictly convex, then (2.7) holds with strict inequality unless
w=vae.

In particular, averaging the conformal factor w over concentric circles decreases
the ®-functional, provided W is admissible also:

n ] n 1
0] {0 .
2, (A,-(w))z,; (x,-@))

Theorem 1 and its proof can be generalized to annuli {Ry < |x| < R} in RV,
N > 3.

Then

Flat surfaces Besides the euclidean metric g, doubly connected plane domains
possess two other kinds of radial flat metric:

the cylinder metric |z|~2g, and the cone metric y?|z|*~2g for fixed
yeR, y#0.

See Section 2 of [13] for a discussion of the attributes of these metrics. Note that
when y = 1 the cone metric coincides with the euclidean metric.
In the corollary below,

Aj(Reuctia) = Jj-th eigenvalue of the euclidean Laplacian A on €2,
A;(Q2cone) = j-th eigenvalue of the conical Laplacian y ~2|z|~2"*2A on €,
Aj (Syiinder) = j-th eigenvalue of the cylindrical Laplacian |z|?A on Q.

That is, we take M = Q and w(z) = 1, w(z) = y?z)*72, or w(z) = |z|72,

respectively, in (2.1), with Dirichlet boundary conditions on 9€2p and Neumann
conditions on 92y .
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We shall see in Section 5 how to derive the following corollary, which gives ex-
tremal results for ®-functionals of doubly connected domains, under mixed boundary
conditions.

COROLLARY 2. Let0 < Ry < R < oo and suppose f(z) is a conformal map of
the annulus A = A(Ry, R) onto the acceptable, bounded, doubly connected plane
domain Q2. Suppose that the inner boundary components of A and 2 correspond under
fsthat dAp and 02 correspond under f,and that d Ay and 92y correspond under
f. Take n to be either a positive integer or +00. Let ®(a) be convex and increasing
fora > 0, with ®(0) = 0 and [;" ®(1/a) da finite.

(a) [Euclidean metrics.] If
(i) f has Laurent expansion f(z) = ZJ__OO ajzj with |a;] > 1, or

(ii) fo log | f'(re®)|d6 > 0 for some r € (Ry, R), or

(iii) the euclidean area of the hole in Q2 is greater than or equal to the area
JTR% of the hole in A,

and ifq)()‘-l(geuclid)_l) > 0, then

“ 1 1 1
Sl ——— ) > b —
; ()»j (Qeuclid)) - Z"{ ()»j (Aeuclid))

with strict inequality unless Q2 is a translate of A.

(b) [Cone metrics.] Fixy € (0, 1). If0 & Q and the area (m the cone metric) of
the hole in 2 is greater than or equal to the area y R0 of the hole in A, and
lfq)(xl(gcone) l) > 0 then

< 1 - 1
S| —— S| ——
2 (A,(Qm))z,; (A,-(Aw,,e))

with strict inequality unless Q@ = A.
(c) [Cylinder metrics.] If 2 separates the origin from the point at infinity and if
we have ® (A (Q2eytinder)™") > 0, then

< 1
E @ z & ————
()‘- (Qcylmder)) j=1 (A'j(Acylinder))

with strict inequality unless 2 is a dilate of A.

For an annulus with the euclidean or cone metric, the eigenvalues can be com-
puted in terms of zeros of Bessel functions. For example, when we impose Dirichlet
conditions on the outer circle and Neumann conditions on the inner circle, the eigen-
functions have the form

re'® v [V, (WARY) )y (VAFY) = Jy) (WARY) Y, (¥/ArY)][sin(v6) or cos(v6)]
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forv =0, 1,2,... and where the eigenvalues A must be chosen to make the radial
derivative of the eigenfunction vanish when r = R;. (Remember here that y = 1 for
the euclidean metric and y € (0, 1) for the cone metric.)

For an annulus with the cylinder metric, the eigenvalues can be computed explicitly
even more easily. By means of the map re’’ > (cos#, sin6, logr), we may regard
the annulus as a cylinder of length L = log R — log Ry and radius 1 sitting in R3,
and so we may use coordinates x3 € (0, L) and 6 € [0, 2] on A. Impose Dirichlet
conditions on {x3 = 0} and Neumann conditions on {x3 = L}. The eigenfunctions of
the cylindrical Laplacian on A are then /"% sin((2¢ — 1) x3/2L) forv € Z, £ > 1,
with eigenvalues v? + (2¢ — 1)?72/4L2.

An upper bound on A (§2.,.i4) Of a kind somewhat different to that in Corollary 2
was found by L. E. Payne and H. F. Weinberger [14] (and see [2, p. 146] for further
generalizations). They used not conformal mapping but rather a transplantation de-
pending on the distance to the boundary, with their extremal domain being an annulus
having the same area and outer perimeter length as €2,,.;4. It does not seem, however,
that their method applies to eigenvalues higher than the first.

For lower bounds on A, under mixed boundary conditions, see [2, p. 114 ff.].

Surfaces with curvature bounded above The next goal is to develop an extremal
result for the &-functional on doubly connected surfaces with curvature bounded
above, thus generalizing several of the results for flat doubly connected surfaces in
Corollary 2.

Before approaching the next result, the reader should review the definitions of
the hyperbolic/euclidean/spherical metric kg of constant curvature « (as given before
Corollary 4 in [13]), the constant curvature “cone” metric cg (described before Corol-
lary 5 of [13]), and the total curvature w, (discussed before [13, Cor. 5]). Finally,
after reviewing all these definitions one observes that the next corollary applies in
particular to doubly connected domains €2 in hyperbolic space, the plane or the sphere
(putting & = k), or in cones formed from these spaces (putting 2 = c). The extremal
domains in the corollary are geodesic annuli.

Write A;(S2,) for the j-th eigenvalue of 2~'A on Q with Dirichlet boundary
conditions on 3Q2p and Neumann conditions on dQ2y; that is, take M = Q and
w = hin (2.1).

COROLLARY 3. Fixxk € R,y € (0,1], and let 0 < Ry < R < o0. Suppose
f(2) is a conformal map of the annulus A = A(Ry, R) onto the acceptable, bounded,
doubly connected plane domain 2, and let H denote the hole in Q. Suppose that
the inner boundary components of A and Q2 correspond under f, that dAp and d2p
correspond under f, and that dAy and 32y correspond under f.

Assume hg is a metric on QU H of the form (1.38) in [2], with h € L*®(R2)
and h > 0 a.e. in @, and suppose v (2 U H,hg) < 2x(1 — y). When k < 0,
assume R < 1, and when k > 0, assume |2 U H|, < 2my /. Take n to be either
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a positive integer or +00. Let ®(a) be convex and increasing for a > 0, with

©(0) =0, P(A1(Qg)™") > 0and ;" ®(1/a) da finite.
If the area of the hole |H |y is greater than or equal to the area |D(Ry)|., then

n 1 n 1
® @
,'2:‘1 (M(th)) - ; (M(Acg))

with strict inequality unless Qg is isometric a.e. via f(z) to Ag.

This corollary is established in Section 5. Notice that when k¥ = 0, the corollary
implies the euclidean case (a)(iii) and the cone case (b) of Corollary 2.

The hyperbolic punctured disk  Corollary 2(c) presents a result for the eigenvalues
of the Laplacian on a cylinder. We now develop an analogue of this result for the
hyperbolic punctured disk (which is the hyperbolic analogue of a cylinder, as discussed
in Section 2 of [13]). Fix « < 0 and define

1

1
7@ = o )

0<lz] < 1.

Then o g describes a punctured disk of constant negative curvature « (since —A logo =
2k0).

In the following corollary, derived in Section 5, the notation p,,.; refers to the
domain 2 together with the metric o g of the punctured disk, and A;(2p,,c/) means
the j-th eigenvalue on 2 of the Laplacian o ~! A of the punctured disk, with Dirichlet
boundary conditions on 92 and Neumann conditions on dS2y; that is, take M = Q
and w = o in (2.1).

COROLLARY 4. Fixx < OandletO < Ry < R < 1. Suppose f(2) is a conformal
map of the annulus A = A(Ry, R) onto the acceptable, doubly connected plane
domain 2, with the closure of 2 being contained in the punctured disk D(1) \ {0}.
Suppose that the inner boundary components of A and Q2 correspond under f, that
dAp and 0S2p correspond under f, and that d Ay and 3S2y correspond under f.
Take n to be either a positive integer or +00. Let ®(a) be convex and increasing for
a > 0, with ®(0) = 0, D (A1 (Rpuncr)™") > 0 and ;' ®(1/a) da finite.

If the area (in the punctured disk metric) of the hole in 2 is greater than or equal
to the area 2n /(|| log 1/ Ro) of the hole in A, then

u 1
Z ® (A (qunu)) ; ® ()‘-j(Apunct)>

with strict inequality unless Q = A.
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Convexity of the ®-functional of the eigenvalues The next theorem establishes
convexity of the ®-functional with respect to w, on a compact N-dimensional Rie-
mannian manifold with boundary, for N > 2. For technical convenience, we assume
the boundary is smooth. -

Let M be a regular subdomain of an N-dimensional manifold M, so that the
boundary dM is smooth and the closure M := M U dM is compact. Divide dM
into two disjoint pieces, dMp and dMy, with dMp non-empty and open in IM.
Let g be a Riemannian metric on M and take w to be a positive smooth function
on M. Under Dirichlet boundary conditions on d M and Neumann conditions on
dMy, the operator w™! A, on M is negative and has a discrete spectrum {—;(w)},
with 0 < Aj(w) < Ay(w) < Az(w) < --- — oo. The eigenvalues are given by the
minimax principle

Vv, ) dV,
Aj(w) = min max fM 8( ng V) dVe s
L veL\oy [, ¥ wdV,

where L; ranges over all j-dimensional subspaces of

H). (M) := the closure in H'(M,) of { € H'(My) N C®°(M): ¢ =0
on a neighborhood of dMp}.

Here H'!(M,) denotes the usual Sobolev space, often called W'2(M,). The eigen-
functions y; € H), (M,) are smooth on M, with the eigenvalue equation —A,y; =
A;(w)wy; holding pointwise in M and also weakly in H. (M,). Furthermore,
the first eigenfunction v, is unique up to constant factors and is never zero in M.
(For the preceding facts, argue as in [3, pp. 53-61, 71] and [7, pp. 213, 214].)
For some o € (0, 1) that depends on w, A;j(w) > aj¥" for all j > 1, since
Aj(w) > ||w||g°'Aj(1) and X;(1) is bounded below by the j-th eigenvalue of A,
on M with purely Neumann boundary conditions, which in turn is comparable to
j*N for large j by Weyl’s asymptotic law [5, pp. 9, 172]; this implies A; (w) > aj*¥
for all j because we also know A;(w) > 0.

THEOREM 5. Take m to be a positive integer and let q € (0, 1). Then
m q
(Z Aj (w)_') is convex as a functional of w?
j=I
for positive weight functions w € C*®(M), and
m
log (Z Aj (w)_l) is convex as a functional of log w.

j=1

In both cases, the convexity is strict except when applied to multiples of a fixed w.
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When q = 1 we can say more. Take n to be either a positive integer or +00. Let
@ (a) be convex and increasing fora > 0, with ®(0) = Oand ;' ®(1/a*") da finite.

Then the ®-functional
& 1
> (5w)
j=1 A’J (w)

is convex as a functional of the weight function w € C®*(M), w > 0. If in addition
®(a) is strictly convex, then the ®-functional is strictly convex as a functional of w.

See Section 5 for the proof of the theorem. The requirement that [' ®(1/a*V)da
be finite just serves to ensure that the ®-functional is finite-valued.

In particular, the theorem shows that for fixed s > N/2, the zeta function

jf'f’__] Aj(w)™* is a strictly convex functional of w. (Requiring s > N/2 ensures
the zeta function is finite, since A;(w) > «;j*V.) When N = 2 and M is two dimen-
sional, the operator w~! A, equals the Laplace-Beltrami operator A,,, of the metric
wg on M. Hence in two dimensions under mixed boundary conditions, the zeta
function of the Laplace-Beltrami operator A,, on M is a strictly convex functional
of the conformal factor w.

The statements in Theorem 5 about the convexity of the ®-functional (g = 1)
were proved in the purely Dirichlet case (i.e., for My empty) in [13, Th.8], and the
sub-case where M is a plane domain and ® (@) = a was proved much earlier by Pélya
and Schiffer [15, p. 289].

Convexity with respect to w? might be helpful for isoperimetric variational prob-
lems. For example, one might consider a two—dimensional surface M with metric g
and then vary the conformal factor w in such a way that w'/? varies linearly, which
implies that lengths of curves in M (such as 9M) must vary linearly in response.
Theorem 5 with ¢ = 1/2 then tells us that the square root of the sum of the first
m reciprocal eigenvalues must vary convexly, and so in particular in order to find a
global minimum we need only find a critical point. Convexity with respect to log w
might also be useful since log w enters into the definition of Gauss curvature.

Lastly, the convexity of [} j A (w)” 119 with respect to w9, proved in Theorem 5 for
q € (0, 1], implies the convexity of [3_; Aj(la|/9)=117 with respect to the complex-
valued function @ € C®(M), || # 0, simply because |(« + 8)/2|"4 < [(la| +
181)/21/4. A natural setting for this result is when N = 2,q = 1/2, and a(z) is
analytic. P6lya and Schiffer [15, p. 303] proved the cases g = 1/2and g = 1 of
this “analytic convexity”, but their proof does not seem to generalize to arbitrary
q € (0, 1]. Note that one can similarly complexify the convexity of log(Zj AJT")
with respect to log w.

Surfaces without mass constraints The next theorem concerns 2-dimensional
surfaces, again, and differs in character from the other results in this paper: there is
no constraint whatsoever on where the mass of the membrane may be concentrated,
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there is certainly no curvature constraint, and there is no analogous theorem for the
case of purely Dirichlet boundary conditions. The key tool in the proof will be the
rather special form of the eigenfunctions for the mixed eigenvalue problem on the
homogeneous cylinder.

In the theorem, A" (€2, ) denotes the j-th eigenvalue of =" A on Q under Dirichlet
boundary conditions on one component I'; of €2 and Neumann conditions on the
other component I',. That is, we take M = Q,0Mp =T',0My =T andw = h
in (2.1). Similarly, A?’ D(Q4e) denotes the j-th eigenvalue of A~! A under Neumann
conditions on I'; and Dirichlet conditions on I';. Since both I'y and I'"; are assumed
in the theorem to be quasicircles, 2 is an acceptable domain for both the eigenvalue
problems, and so indeed both A?N (S,) and Ay D(S24,) exist and have the properties
described around (2.3).

THEOREM 6. Let0 < Ry < R < oo and suppose f(z) is a conformal map of the
annulus A = A(Ry, R) onto a bounded, doubly connected plane domain 2, with both
components of 3S2 being quasicircles. Take n to be either a positive integer or +00.
Let ®(a) be convex and increasing for a > 0, with $(0) = 0 and f ]" ®(1/a)da
finite.

Assume h € L*(2) with h > 0 a.e. Then

1 1 1 1
72 cI’()J?N(sz,,g)) *3 ; q’(xyl’(szhg))

Jj=1 J

1
2.8
; ( <)»DN(th) A?’D(th))) (2.8)
lth/lAlcylinder
P\ N Arsrinaer) ) 2.9
j; (A‘?N(ACylinder)) 2.9

If also ®(a) is strictly convex, then (2.9) holds with strict inequality unless Qg is
isometric a.e. to the homogeneous cylinder in R? of length log(R/Ry), radius 1 and
total mass |Q2|y,.

IV

v

The conclusion (2.9) of the theorem can be made to look more symmetrical if one
uses A? N (Acytinger) = )J}’ D(Acytinger); these eigenvalues are known to have the form
m2+(2€—1)?m2 /4L? (see the discussion after Corollary 2). Note also that by a simple
re-scaling, the quantity (|| /| Alcyiinder) /27N (Acylinder) appearing in (2.9) equals the
reciprocal of the j-th eigenvalue of A with the metric (|2, /IAIL.y,i,,de,)lzl‘zg, and
A with this metric represents the homogeneous cylinder imbedded in R? of length
log(R/Ry), radius 1 and total mass [€2].

The case ¢ (a) = a of Theorem 6 was stated by J. Hersch [8, p. 32], and we follow
his ideas when we prove the theorem in Section 6. The statement in the theorem
about strict inequality is new.
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Hersch’s paper contains several other interesting results on eigenvalues (of simply
connected regions) with mixed boundary conditions, and some but not all (cf. [8, §6])
of these results can be extended to the ®-functional. This is left to the reader. Some
additional results are in [9, §3].

3. Open questions

Recall that the functional 3, e~ is called the trace of the heat kernel in mathe-
matics, and the partition function in physics, where it also has importance. Then ask:
do the extremal results for the ®-functional in Theorem 1 and Corollaries 2, 3 and 4
hold for the trace of the heat kernel? In particular, is it true that (in the notation of
Corollary 2(a))

o0

o0
Z e~ 1% Qeuciia) > Z o~ (Aeuctia) forallt > 0?2 3.1

~.

Note that ®(a) = e~!/? is convex only for a < t/2, when a > 0, and thus Corol-
lary 2(a) proves (3.1) only when ¢ > 2/ (2). The trace conjecture (3.1) does hold as
t | 0, though, since either 2 is a translate of A or else (by the proof of Corollary 2(a))
2 has greater euclidean area than A, while

o AR |Q|eucltd 1/2
Ze—t  (Qewetia) — = +0@"'? ast | 0
Tt

~.

(assuming 92 is smooth). Similar statements hold for the analogues of Theorem 1
and Corollaries 2(b)(c), 3 and 4 for the trace of the heat kernel, for large ¢ and as
t | 0. For references to known extremal results for the zeta function and determinant
of the Laplacian and the trace of the heat kernel (on various manifolds), see Section 3
of [12] or [13].

The analogue of the convexity result in Theorem 5 is false for the trace of the heat
kernel, for small time, as we now show. Let M be a doubly connected plane domain
with smooth boundary components d M and 0 My, let g be the euclidean metric and
take w to be a positive smooth function on M. Write A j(w) for the j-th eigenvalue
of w™'A, as in (2.3). Then by putting f = 1 in [4, Th.7.2] we have the asymptotic
expansion

ie ) _ lle [0Mp|w — 10Mply
=1 i 8/mt

where

|0Mplw :=/; Vw(z) |dz| and [OMy |y = /;M Vw(z)ldz|
Mp N

+0(1) ast |0, (3.2)
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denote the lengths of the boundary components of M in the metric wg. Plainly the
first term of the asymptotic expansion is linear in w, since M|, = |, u Wdu, but
the second term need be neither convex nor concave in w, since both |dMp|,, and
|0My|,, are concave in w. Thus it is false that the trace of the heat kernel must be
convex in the weight function w, for small z. For large ¢ the trace is convex in w as
a consequence of Theorem 5; see above. Notice that for purely Dirichlet boundary
conditions it remains reasonable to hope that the trace of the heat kernel is convex
in w for all ¢, since |0My|,, = O in that case and the two leading terms of (3.2) are
hence convex in w.

4. Fundamental properties

In this section we justify the claims made near the beginning of Section 2 about
the fundamental properties of the eigenvalues A;(w) and their eigenfunctions.

Assume M is an acceptable, bounded, doubly connected plane domain with bound-
ary components dMp and 0My. Suppose w is an admissible function on M. We
have that f(z) maps M conformally onto an acceptable domain €2, as in the definition
of admissibility in Section 2, with w = (h o f)|f'|*> where h € L*°(Q) and h > 0
a.e. Since R is doubly connected, its complement in the Riemann sphere has two
components. Call these components ¢, and 2%,, where 9Q2p C ¢, and BQN C QY.

Since €2 is acceptable, 9Qy is a quas1c1rcle Let U be a disk containing © and let
Q=UNEQUE %). Then Q is a bounded plane domain with boundary consisting
of one or two quasicircles, since if Qf, is bounded then 38 = 8Qy and if Qf is
unbounded then 82 = U U I N- A theorem of P. W. Jones [10, Th.4] shows that 9)
is a Sobolev extension domain, which means the following. Given an open square Q
containing the closure of Q a bounded linear operator E: H! (Q) - Ho (Q) exists
with E¢ = ¢ pointwise in € and with

/Q [(E¢) + IV(E®)I] du < C fé [6% + 1V6P] du @.1)

forall ¢ € H! (Q) where C C (Q Q) > 0. Note that H m,X(SZ) Cc H! (Q) just
by extending functions in H). () to equal zero on Q,. Thus functions in H!, ()
extend pointwise to functions in H0 (Q), with the Sobolev norm increasing by only
a bounded factor, and since H{(Q) imbeds compactly into L2(Q) (see Part IV (4)
of[l p. 144] with j =0,k =2,m = 1,n =2, p = 2, q = 2), we conclude that
m,x (2) imbeds compactly into L2(Q).

To justify the claims about A;(w) in the third paragraph of Section 2, one first

considers the eigenvalue problem for A;(h) on €, adapting the standard arguments

(cf. [3, pp. 53, 55 ff.] and [7, pp. 212-214]) to apply to the Rayleigh quotient

Jo|VoPdu

o P € .
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This yields existence of the eigenvalues A; (k) and eigenfunctions ¢; € H,). () N
C(2), with —A¢; = A;j(h)h¢; weakly in H,}“.x () and 0 < M) < Mh) <
Az(h) < --- — oo. In particular the first eigenfunction never changes sign and the
first eigenvalue is simple, that is, A;(h) < A,(k). Hence the first eigenfunction ¢, is
unique up to constant multiples. Poincaré’s minimax principle (2.3) holds for A;(h)
with trial space H.; () by [2, p.97] or [3, p. 61]. Note that these standard arguments
are where we use the boundedness and positivity of &, for we want fQ ¢*hdu to be
positive and finite when ¢ € L2(R2), ¢ # 0. We also use in these arguments the fact
that H!. (£2) imbeds compactly into L2(2).

The following argument shows that A (#) > 0. For suppose instead that 1., (h) = 0.
Then V¢; = 0 a.e. and so ¢; € H"'”. ,(8) is a non-zero constant, say ¢; = 1.
(This ought to be impossible, since we think that ¢; equals zero on dQ2p, and the
succeeding argument simply makes this precise without assuming any smoothness
of 9Qp.) Since the constant function 1 belongs to H); (), a sequence {n;} of
functions in H!(£2) N C*°(Q) exists with each n ; equalling zero near d2p and with
n; converging to 1in H'(S2). Extend n; by defining n; := 0 on £¢,. We can assume
that 7; € C®(R?) and that 7; equals 1 on a neighborhood of Q. After replacing
n; by m + (1 — ny)n; for j > 2, we can also assume that 7, € C*(R?) and that a
fixed neighborhood of Qf, exists on which every 7; equals 1. Next, since Q U Q is
simply connected and 3(2UQ,) = 9dS2p contains more than one point by hypothesis,
the Riemann mapping theorem provides a conformal map F of the unit disk D onto
QUQY,. Then n; o F is a smooth function with compact support in D and so it can be
used as a trial function for )»f” "(D), the first eigenvalue of the euclidean Laplacian on
D with purely Dirichlet boundary conditions. Also,nj o F =1on F -1 (2%). Thus

0<AD"(D) < fD IV(ﬂjOF)lzdﬂ
! = [pmjoF)Ydu

- [pIV(j o F)*du
w(F~1(25))

Jo IV 12 dp .
= e 50 as j — 0o,
w(F1(925,)) J

since n; — 1in H,}”.x (2). This contradiction implies that A;(h) > 0, as we wished
to show.

Finally, the claims about A; (w) in the third paragraph of Section 2 hold simply by
conformally transplanting from € to M; that is, one actually defines A;(w) := A;(h)
and ¥; := ¢;o f. Certainly y; is continuous, andsince y; € H,. (Q)of = H). (M)
by Lemma 7 below, a simple change of variable shows that —Av; = A;j(w)wy;
weakly in H,}". (M). Further, the minimax principle (2.3) holds just by changing
variable with f in the minimax principle for A;(h). Lastly, (2.3) shows that A;(w) is
independent of the conformal map f by which the admissibility of w is established.
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We must still establish the lemma required in the preceding paragraph, which says
that conformal maps between acceptable domains leave the trial space H), invariant.

LEMMA 7. Suppose M and Q are acceptable, bounded, doubly connected plane
domains. If f(z) maps M conformally onto Q2 with dMp and 9Q2p correspondmg
under f and dMy and 92y corresponding under f, then m,x(Q) of = M).

le

Proof of Lemma 7. It suffices to prove the inclusion H!, (M) C H}. () o f,
since the roles of M and 2 can then be interchanged.

Letu € H,j,,X(M), with u equalling the limit in H'(M) of some sequence of test
functions n; € H'(M) N C*®(M), each of which equals zero on some neighborhood
of dMp. By an approximation argument, we can assume each 7; is bounded. Then
njof e L2(§2) N C*(£2) and this function equals zero on a neighborhood of 92 .
Further, nj o f~' € H), () since [, |[V(n; o f~)*du = f,, 1Vn;|*dp < oo, and
SO

IA

_ _ 1 _ _
/;Z(Ujof —neo f7H*du m[lv(ﬂjof '—meo fH1Pdu

_ x.m)f Yy - noldu — 0

as j, £ — oo, where 1{(2) > 0 denotes the eigenvalue A;(h) that was considered
in the first part of this section, with 7 = 1. Thus {n; o f~'} is a Cauchy sequence
in H'(S2) consisting of smooth functions that equal zero on some neighborhood of
0Qp,andson;o f ~I converges in H'(2) to some function i € m,X(Q) By passmg
to subsequences, we can assume further that n; — u a.e. in M and n; o fl—>i
ae.inQ. Thusu =iio f ae.in M,andso H!, (M) C H}, (Q) o f, which proves
the lemma. O

To conclude this section, we justify the lower bound A;(w) > «j of Weyl type, in
(2.5). We need only establish this for all large j, since A, (w) > 0. From the Sobolev
extension property (4.1) we see that if ¢ € H'(Q) then

S5Vl du lfQIV(Erb)Izdu B
fso?du — C  [y(E¢)du

Recalling the minimax principle (2.3), we therefore deduce that

fQ |V¢|2 dp 1
Aj(w) = A;(h) = HE%Q?@, @hdn Lj C H,;, (%),
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1 JalVoIr du 1
> ——min max “——, Ly c H., (%),
= Nl Ly ssL\O) [y ¢*dp mix (§2)
! 1 [ IVoIPdu
= min i -1 , L. C Hl ’
Ml L ¢6L,\IO}(C [, 9% du j C Hy(Q)

1
— ADlr )
lhlloo ( @-

where A})i "(Q) denotes the j-th eigenvalue of the euclidean Laplacian on Q under

purely Dirichlet boundary conditions. Since Af’ ir(Q) is comparable to j, for large j,
we deduce that A;(w) > aj for large j, which was our goal.

5. Proof of Theorems 1, 5 and Corollaries 2, 3, 4

Proof of Theorem 1 The proof of Theorem 1 goes exactly like the proof of [13,
Th.1] for the case of purely Dirichlet boundary conditions, with just the following two
changes. Instead of M we use A, and instead of the space HO' (M) of trial functions,
we use the space H!. (A).

Proofs of Corollaries 2, 3 and 4 Corollaries 2, 3, 4 are proved exactly like
Corollaries 3, 5, 6 (respectively) in [13], where the author and C. Morpurgo dealt
with purely Dirichlet boundary conditions. Of course, during the proofs one should
apply Theorem 1 of rhis paper instead of Theorem 1 of [13], and one should invoke
the definition of “admissible” from this paper rather than the (different) definition
in [13].

Note that in Corollaries 2, 3 and 4, it is a hypothesis that the circle of radius Ry
corresponds under f to the inner boundary component of €. Thus one need not
arrange this correspondence during the proof, which was done in [13] by means of
the self-map z — RoR/z of the annulus. (This self-map does not preserve mixed
boundary conditions on the annulus, and so we must avoid using it in this paper.)

Proof of Theorem 5  The manifold M and the metric g are fixed in this theorem.
Let m be a positive integer. We write

m

S(w) : Z

for the sum of reciprocal eigenvalues, and we also write V := V, for the gradient,
A := A, for the Laplace-Beltrami operator, and dV := dV, for the volume element,
in the metric g.
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The variational characterization [2, pp. 99—100] of the sum of reciprocal eigenval-
ues for —AYy = Aw1 is that

S(w) = sup Z/ yiwdV, 5.1
] ..... \//m j 1
where {{, ..., ¥n},is required to be a collection of m linearly independent functions

in the Sobolev space H m,x (M,) with fM gV, Vi) dV = §;;.

To prove the first part of the theorem, we take ¢ € (0, 1) and let u and v be
positive smooth functions on M. Fix ¢ € (0, 1) and put w = [tud + (1 —1)v1]"9,
sothat w? = tu? + (1 —t)v?. Let ¥y, ..., ¥, € m,x(M ) be linearly independent
eigenfunctions of w~!' A on M that satisfy
S 8V, VY dV

Sy ¥iwdv

so that S(w) = Y7, f,, ¥ wdV. Writing ¢ := 37| ¥7 > ¢ > 0, we have

m q q
Sw)? = (Z/ szw‘“’) = (/ Ylu? + (1 — 1?14 dV)
j=1"M M

= [rvfu? + A -0y,

Aj(w) = and f g(V¥i, Vi) dV = §;;,
M

< Joyour],, + [ -nurel,, G2
q q
= t(f WudV) +(1 -1 ([ 1/fvdV)
M M
< S 4+ (1 -)Sw)?

by the variational characterization (5.1); since 1/g > 1, Minkowski’s inequality at
(5.2) is strict unless u is a positive multiple of v. This proves that S(w)? is a convex
functional of w?, with the convexity being strict except when applied to multiples of
a fixed w.

Next, redefine w := u'v'™, so that logw = tlogu + (1 — t) log v. With ; and
Y defined as before, with respect to this new w we have

log S(w) = log (Z / l//j2de> = log / Wu) (Yv)' = dv
j=1 M M

t 1—t
log {(/ wudV) (/ «/de) ] (5.3)
M M

= tlogf YyudV + (1 —t)log/ YyvdV
M M
tlog S(u) + (1 — ) log S(v)

IA

IA
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by the variational characterization (5.1), and Hoélder’s inequality at (5.3) is strict
unless u is a positive multiple of v. This proves that log S(w) is a convex func-
tional of log w, with the convexity being strict except when applied to multiples of
a fixed w. In fact the convexity of log S(w) with respect to log w is the limiting
case as ¢ — 0 of the convexity of S(w)? with respect to w?, because letting g — 0
in

SIru? + (1 — DY) < [1S@)? + (1 - HSw)?]"
gives
S@'v'™) < S S,

which is equivalent to
log S(exp[tlogu + (1 —t)logv]) < tlog S(u) + (1 — 1) log S(v).

To prove the claims in Theorem 5 about convexity of the ®-functional, proceed
exactly as in the proof of [13, Th.8] for the case of purely Dirichlet boundary con-
ditions, except instead of using the space Hj (M) of trial functions, use the space
H,; (My).

6. Proof of Theorem 6

Let L = log(R/Rp), so that |A|cyiinder = 2 L. We begin by collecting facts
about the eigenvalues and eigenfunctions of the annulus. Observe to start with that
the eigenvalues {A?N (Acytinder): j = 1,2,3, ...} can be computed by separation of
variables to be {A,, = V2 + (2¢ — 1)?712/4L* v € Z, £ > 1}, with corresponding
normalized eigenfunctions

. sinvg, ifv>0
UEN(re'?) := \/2/(m LAye) sin[(2€—1)m (logr/Ro)/2L1x{ 1/4/2, ifv=0
cosvl, ifv<O

Then {y'5"} is a linearly independent set in the trial space

H} y(A) := the closure in H'(A) of {y € H'(A)NC®(A): ¥ =0
on a neighborhood of I';}

and it satisfies the orthonormality condition

f VYL Vel du = 8,8
A
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We proceed similarly for the eigenvalue problem with the boundary conditions swapped:
since {)J}' D(Acyiinger)} = {Ave}, we have normalized eigenfunctions

‘ sinvg, ifv>0
UhP(re'®) := \/2/(w LAy) cos[(2¢—1)m(logr/Ro)/2L1x { 1/+/2, ifv=0

cosvd, ifv<O

with corresponding eigenvalues A,¢, and {{/ Y} is a linearly independent set in the
trial space Hy ,(A) with the orthonormality condition

f VNP vyl dp = 8,8
A

For each m > 1, let I (m) be a set of m distinct elements from {(v, £): v € Z, £ > 1}
with the property that the numbers A,, for (v, £) € I(m) are a permutation of the
eigenvalues )»?N (Acytinder) for j=1,...,m

We complete the preliminaries by putting w = (h o f)|f’|> and observing that w
is admissible for the eigenvalue problems defining )»f’” (Ayg) and )J;' D(Ayg). Then,
by the observations about conformal invariance before (2.4),

WV (g) = A2V (Aug)  and  AYP(Qug) = AP (Ayy).

We will need the following variational characterization for the sum of the first
m reciprocal eigenvalues. The characterization follows from the minimax principle
(2.3) (as is proved in [2, pp. 99-100]), and it says that

N TV SUP f Yiwdp,
j; }\?N(Awg) { 'ﬁm) JX; !
where {{/, ..., ¥,,} is required to be a collection of m linearly independent functions

in H},\ (A), with [, Vi - Vy; du = §;;. By using the functions ¥ " as trial func-
tions in this variational characterization and by arguing similarly with the boundary
conditions interchanged, we obtain

m 1 m 1
Z ADN(Awg) Z * AP (Aug)
1
> 1 /lw “Pwdp+ 3 fwf Pwdp 6.1)
(v el(m) (v el(m)
= > / [sin?[(2¢ — D) (logr/Ro)/2L]
w.ietom TLAve Ja

+ cos’[(2¢ — Dr(logr/Ro)/2L]]
sinvf, ifv>0 .
x{ 1/2, ifv=0 } w(re®)rdrdé
cos?vd, ifv <0
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5 sin?vg, ifv>0 .
= Y ————f 12, ifv=0 {w(re®)rdrds.
A

w.breTomy | AlestinderAoe cos2vl, ifv<0

Now repeat this computation, except replacing I (m) by {(—v, £): (v,€) € I(m)};
adding the two inequalities gives

= 1
; (ADN(A.,,g) A’,VD(Awg))

1

T in® 6 -+ cost Bl rra
(v, 0)el (m) lAlcylinder)«ue A

IAIw/lAlc_vlinder

w,0)el(m) Ave
Q A C r
— Z I Ih/l l vlinde (62)
(Acvllnder)
foreach m = 1,2, 3,.... Incidentally, the proof up to this point follows the lines

indicated (though not spelled out) by Hersch [8, pp. 27, 32].

Now inequality (2.9) follows from (6.2) by the majorization method of Hardy,
Littlewood and Pélya [13, Prop.10]. Inequality (2.8), of course, relies only on the
convexity of &.

Assume for the rest of this proof that ® is strictly convex, and suppose that (2.9)
holds with equality. Then the strict convexity of ® allows us to invoke a result due
to Schur, a result given as equality case (v) of [13, Prop.10]. This gives

l ( 1 + 1 ) _ lQ|h/‘A|cylinder _ |Q|h/|A‘cy1inder
A'L|)N(Awg) )V[;lD(Awg) )V?N(Acylinder) A'()l '

Hence equality holds at (6.1) with m = 1, meaning that

SV Pdp
Sa N Pwdp

6.3)

Sa VY PP du

AN (A = EV AR
b [ WP Pwdu

and  AYP(Aye) =

Thus ¥ is a AYV (A,,)-eigenfunction, so that

—A'lf(ﬂN — )»01|Z|“2 DN
TN (A,) AN

I'[/01

weakly in H! pn (A), and hence

_—Amlzl"z a.e.; similarly w-————)‘mm_2
MV (Awg) P (Aug)
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Adding the last two equalities and then using (6.3) yields that for almost all z,
1 1
DN + D
AT (Awg) A7 (Awg)
That is, w(z) = |z]72|Rx/ |Alcytinder a.€., which is the mass density function on A
representing the homogeneous cylinder imbedded in R? of length L, radius 1 and total

mass |2],,. Since 2, is isometric via f(z) to Ay, we deduce that €, is isometric
a.e. to the cylinder.

2w(z) = )"Ollzl‘2 ( ) = 2|Z|_2l9|h/|A|cylinder~
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