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SOBOLEV AND HOLDER ESTIMATES FOR 3
ON BOUNDED CONVEX DOMAINS IN C?

DEYUN WU

1. Introduction

The regularity of the Cauchy-Riemann operator 9 is a very important problem in
both PDE’s and Several Complex Variables. Numerous results have been proved by
many mathematicians. Here we only list two recent results concerning d on convex
domains.

In 1991, Polking [12] proved the following L” estimates.

THEOREM 1. Let D = {z € C? | p(z) < 0} be a bounded convex domain with
C? boundary 3 D. Then there exists an integral solution operator T for d on D such
that

ITfllLepy < CPIfLrpy

foralll < p < +4o0.
In 1992, Range [13] proved the following Holder estimates.

THEOREM 2. Let D = {z € C? | p(z) < 0} be convex with C™ boundary. Then
there exists an integral solution operator T: C o ,(D) —> C(D) for 0 such that

T flla.py < C@Iflla, )

forall f withdf =0andalla > 0.

Without loss of generality, we will assume that f is a (0,1) form f = fid&, +
fzdgz. A (0, 1) form is in W*P(D), AL(D), if its coefficients are in W*?(D),
A% (D), respectively. For definitions and propeérties of the Sobolev and Holder spaces
wer(D) and AL (D), see [1], [17].
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372 DEYUN WU

In this paper, we prove the following results.

THEOREM 3. Assume D = {z € C? | p(z) < 0} is a bounded convex domain
with smooth boundary 3 D. Then there exists an integral solution operator T for 3
on D such that if f € WP (D), then

NT fllwerpy < Clet, YIS lwer(p)

foralla >0, 1 < p < 4o00.

THEOREM 4. Assume D = {z € C? | Pp(2) < 0} is defined as above. Then there
exists an integral solution operator T for d on D such that if f € Ay(D), then

ITf Az < Cla P fllaz)

foralla > 0, and 1 < p < 4o00.

Following the proof of Theorem 4, we can prove a similar result for the Cauchy
tangential operator d, on 9 D.

THEOREM 5. Let D C C? be a bounded convex domain with smooth boundary.
Suppose a (0, 1) form f satisfies the compatibility condition

ffA¢=0

for any (2,0) form ¢ which is 3-closed in D and continuous up to 3D. Then there
exists an integral solution operator S for 3, on d D such that if f € AL (dD), then

NSF N azany < Cles PF Az any

foralla > 0,and 1 < p < 4o00.

Remarks. (1) If p > 2, Fornaess-Sibony [8] gave many examples to show that
there is no L” estimate for 3 on general pseudoconvex domains.

(2) Chaumat-Chollet [5] proved Holder A, estimates fora > 1, « ¢ N, on convex
domains in C? with C? boundary.

(3) Sibony [7] provided a counter-example which shows that the A, estimate is
not true for general pseudoconvex domains.

(4) In Theorem 3, the k = O case is the L” estimate which was proved in [12].

(5) In Theorem 4, the « > 0, p = +00 case is the A, estimate which was proved
in [S] and [13].

(6) For some concepts, formulations, and results for 3, see [91, [16], [101, [3],
[15].

This paper is presented as follows: In §1, we give two recent results about the
regularity for 9 and state the main theorems. In §2, we prove the Sobolev estimates.
In §3, examples will be given to show that there is no “gain” in the Sobolev estimates
for the canonical solution. In §4, we prove the Holder estimates for 9.
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2. Proof of Theorem 3

Assume D = {z € C? | p(z) < 0} is a bounded convex domain with smooth
boundary dD and |dp| = 1 on dD. Let o denote the Lebesgue measure, ¢ denote a
positive constant which may vary from line to line.

We choose a smooth defining function p for D, such that in a neighborhood U of
aD,

(2) = —dist(z, D), zeUND
PRI=N dist(z, aD), zeU\D.
Define
d)()(é, Z) = q)(gs Z)“‘P(‘E)»
_ % _ o .
&, 2) = 3%, & Z|)+a€2(§2 22).

By the convexity of D, it is well known (cf. [9], [13]) that
Red(£,2) > clp(2)l, z€ D, £ €dD, (1

|Do(€, )| > c|pE)| + 1p()] + ImP (., 2)]), & ze DNU. 2)
The following lemma was proved in [5] and [12].
LEMMA 1. Let (&), z9) € 0D x 0D such that ® (&, z9) = 0. Then there exist

neighborhoods W of & and V of zo, such that for each z € 'V, there exists a C" local
coordinate system & — t'9(&) = (), tp, 13, t4) on W with the following properties:

14 = —p(§)
n = Im®(, 2) B _ 3)
V=1t —ity=p2)&, —721) — p1 ()&, — )

[t (&) — 19N ~ |E — &) 4)

forall &, &' € W, with the constant in (4) independent of z € V.

Let T be Henkin’s solution operator for 3. Then

Tf(z)=Hf(@)+Kf(2)

where K f is given by integrating f against the Bochner-Martinelli kernel over D,
and

EE -2 - £E -7)

€ —zP® (&, 2)

Hf(z) =c/f($)A d&y A dé;.
oD
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It is easy to prove that if f € W!'"(D), 1 < p < oo, then

IKfllwrrpy < Cpll fllwrrp)-

We first want to prove the W'” estimates for 7f which can be reduced to estimate
Hf.
By Stokes’ Theorem, we rewrite (cf. Polking [12])

x@&)A ¢, 2)

t(s,z)%(s,n) d&i ndea,

Hf(z)=c | f(€) A : (
/

where T(§,2) = |§ — 2> + p(§)p(2), A1(§,2) = O(I§ —z]), x isa C™ function in
C? such that x = 1 in D%, suppx C D% C Ds C U, and Ds = {z: dist(z, dD) < 8}
is a tube neighborhood of d D.

It is easy to show that

©(6,2) = c(l§ — 2P + 1p@®1 + 1p@I), § ze DNU. )
In order to prove VHf(z) € L”(D), 1 < p < 0o, we need Schur’s lemma (cf. [12]).
LEMMA 2. Assume a kernel k(&, z) is defined in D x D and an operator K is

defined by Kf (z) = [ k(§,2) f(§)do (§). Suppose for every 0 < & < 1, there exists
D

C. such that

A

/|P(§)|_S|k(§»2)|d0(§) < Celp@|™  forall z € D,
D

A

/!p(Z)I_EIk(E,Z)IdU(Z) < Celp®I™"  forall § € D.
D

Then for | < p < oo, there exists C,, such that ||Kf|lprpy < Cpll fllerm)-

2.1. The case k = 1. A simple computation yields

G, 2) G2(§,2) Gi(£,2)
12(5,2)P0(§,2) T2, )DPIE, D) TE DPIE, 2)

VHf(z) = ¢ Df(‘s”)(

+ lower order singular terms) do (&),



SOBOLEV AND HOLDER ESTIMATES 375

where G;(€,2) = O(|¢§ —z}/), j = 1,2,3 and the G;’s that appear in different
places may not be the same. We need to estimate the three type terms:

GI(E’ Z)

1 = —_—  —d ,

1@ .Af@%%an¢aan o)
Ga(E.2)

L(z) = —_— s

22) /1) f(s)rz(é,z)d%(é,z) o)
G](%',Z) dU(S).

L) = _—
3(2) l)f(g)t(é,z)d)?)(‘g’,z)

LEMMA 3. Estimating I3 can be reduced to estimating an I, type integral.

In order to estimate /3, by the compactness of D and a partition of unity argument,
it suffices to estimate the following integral

/ x1(&)G (&, 2)
pow T, )PYE, 2)

Here, suppx; € W, and z € V, where W, V are neighborhoods chosen as in
Lemma 1. Notice that the vector fields

dp 0 dp 0

agl 8&1 852 8&2
are tangential to the level sets of dD. Also, Tt3 = | + O(|§ — z|). After making the
coordinate change (3), we have

do(§)

1
|T®g| = |[TRe®y| + 1 + O(Jt]) = 3

Using the fact that 513 =
the T direction, we have

G,z
/ £ x1(6)Gi(§, 2) do (&)
DOW

(€, )P(E, 2)
x1&)G(E@), 2)
= T ) —————————do(t)
~/|I|<('. 14>0 f(s( )) t(€~Z)¢(2)(€.Z) 6(

Go(g(1), 2)
+ t)) —— do ().
/m«a >0 FE® (€, 2)PL(E, 2) o®

As in Polking [12] , the first term is bounded by || Df||.rpy < Cpll fllwrr(py. The
second term can be reduced to an [, type integral, and the lemma follows.
The same proof shows that estimating I, can be reduced to estimating an /; type

integral.

—%(TCD())" T (E:;) and integrating by parts with respect to
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Gi(§.2)

K60 = B e o)

In order to estimate
f|p<s>r'°'|k<s,z>‘da(s),
D

it suffices to estimate

1=:f Xilp @)k, )] do (@)
DNwW

with suppyx; C W.
By the estimates (1), (4), (5), and the coordinate change (3), we have

I < c[ 4
f<e. 1,20 ([t + 0@ D33 + ta + |0 (2)])

do ().

Lett = |p(2)|s. Then

sy ¢
I < clp(z) _”] 4
@) 520 Us| + D33 +s4+ 1)
= Clp(2)|™".

do (s)

By the compactness of D and the partition of unity, we see that

o) k&, ) do(§) < Celp()|™, z€ D.
D

By a symmetric argument, we have

f (@)™ k€, 2)| do(z) < Celp)™, & € D.
D
Therefore, in the k = 1 case, Theorem 3 follows by Schur’s lemma.

2.2. The case k > 2. As in Range [13], we introduce the Seeley extension
operator E: C(D) —> Co(D*), where D* = DU U. By Adams [1] (Theorem 4.28,
p‘ 89)7

NEfllwrrczy < Clk, P lwtrnys 1 <p<+oo.

In the representation formula

f=0.T\f +Taf, f € Cy.,, (D),
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weletg, = f, go =0 f, and Eg, = g4 0ondD. Then

quq=/ quAQq_|(W)—fquKq_|, g=12
aDx1 D

Here, T} = T is Henkin’s solution operator.

Let R = U \ (C?\ D). For fixed z € D, as in [14], we apply Stokes’ Theorem on
R x I:

T = — f B(ES) A (W) + / Ef AQ(W") — / Ef A Ko,
Rx1 R D*

Taf = —/ 5(E5f)/\§2|(W')+5z/
Rx1

EJf AQo(W") —/ E3df AK|.
Rx1 D*

Notice that £2o(W") is holomorphic in z.
We rewrite

f=09,Tf+T,S9f,

where
T8, =f (Edg, — 0Eg,) A S24_1(W) —f Eg,ANK,1, q=1,2.
RxI D*

Thus T} f is also a solution for du=f.Let Q(f) = Edf —dEf. Then

Gi.2)

/ 0UNE A TS

=: IIi(f)+ L(f).

d&| A dE, —f Ef AK
D*

Notice that
Iz(f)=—/ Ef/\Ko=—/ Ef A Ko
D* C?

is a convolution integral. By Stein [18], it is in wkr(D), VkeN, | < p < oo.
We will prove by induction that I;(f) € wkr (D), k > 2.
If k = 2, we need to prove that I;(f) € W27(D). A computation gives that

G, 2) Ga(§,2) G3(£,2)
& —zP®3  |& — 2|92 & — 7|50

V2I(f) = fR Q(f)(&)/\( ) d&, A dEy.

Similarly, as before, we can show that Vfl 1(f) € L7 (D) with the folowing estimates

IV2L(D) ey < CI QO Elwirpy < Coll fllwrny.-

So, I1(f) € W>(D).
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Now suppose that

Gn(vf 2)

I(f) = f FO A

d&| N d&
maps W7 (D) —s WP (D) such that o (O lwerpy < Clky P fllwrr(py-

Let us consider g € WX+!-7(D) such that Q(g) = 0 on D. We want to prove that
VIi(g) € W*P(D). By a computation as before,

_ Gl(éa Z) GZ(é’ Z)
Vi) = fRQ(g)@)A(m—zw + |s—z|4<1>) d&, A dE,

Gi,2)

— [ Dowen A T d e
(¢,2)

fQ( &) A léz L 46 de

2 Ji(g) + L2 (9).

By the inductive assumption, J;(g) € W*?(D).
Since Q(g) = 0 on D, we can rewrite

G )
) = [(©@© - 0@ @) A L2ED d nde
R & —z|*P
G, 2)
= /; D(Q(@)(z+6(,2) A m d&| AN d&,

for some A(£,7) = O(|& — z|). Ja(g) is again in W5P (D). Therefore VI (g) €
wkr(D),ie., I,(g) € W-P(D), and

11 (g)lleLn([)) < Ck, ID Q@ wr-1rpy < Clk, PIIgNwe+1r(py-
This implies that I;(f) € W*?(D), and hence T'f € Wk-r(D). In order to prove
that 7) f € W*?(D), notice that

Tf—TPf = fR Ef A S0(W"),

where
dp A ddp
c——.
D2
By the compactness of R and the partition of unity, it suffices to prove that

QW' =

Mof = f Ef A x®)R0(W")
RNW

is in W5P, where suppx C W.
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By computations and integration by parts, we have

. B dp A ddp
V (MOf) - /];nw Ef/\Xl('S) ¢)k+2
) aa
- | S DIES) A ) 2L o
R

ﬁWj

where x|, x» have support in W. The last term is in L? by the following lemma
which can be proved by Schur’s lemma again.

LEMMA 4. If Tof = [paw ¢2 do(§),then Ty: L? — L?, foralll < p <
+00.

Therefore we conclude that T; f € W*P(D), and the proof of Theorem 3 is
complete for the integer case.

2.3. Non-integer case. ltiseasy to prove thatif f € W*?(D), 0 <a <1, 1 <
p < oo, then [|K fllwerpy < Cpll f lwer(p). Therefore, we need to prove the W*?
estimates for 7 f which can be reduced to estimating H f.

Inordertoprove Hf(z) € W*?(D), the following lemma (cf. Bonami-Sibony [4])
is needed.

LEMMAS. Let1 < p <oo, a > 0.If f € C'(D) such that

f Vf1P o dg < oo, ©)

D

Then f € WP (D).
Remark. Condition (6) is equivalent to |V f| p!!~® e L?.

As before,

Gi(§,2) N Ga(§,2) Gi(¢,2)
t2(E, 2)Po(€,2) T2, DPYE. ) T(E DDPE, 2)

VHf(z) = ¢ f(S)(
/

+ lower order singular terms) do (&),

We need to estimate the three types of terms: I;(z), (), I3(z). The I5(z) is the
worst term.
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By the compactness of D and a partition of unit, for 0 < a < 1, we have

/ LfE)lp)'
in<enzo0 (1 +p@) (13| + 14 + p(2))?
= /Ir|<c,r4zo CETETETETEtdl
(ItI+/o(z))(lt3t‘|‘+t4+;O(z))2ﬁ“x
/|r|<c.r420 A (el + p(z))(‘T:I(t-)F 1+ p(2))?

By Polking [12], we know that

10" L(D)|pay <

do(t)

IA

f [fE)NpE)™ do(t)
lt)<c,t4>0

IA

G, 2
T = _—— d
08(2) /an $O e Heren Y

maps L” to L? for 1 < p < oo. Therefore our goal is to prove the following lemma.
LEMMA 6. If0 <a < % f e WeP(D), then p(§) “f(§) e L", 1 < p < oo.
Remark. For the p = 2 case, one can find a proof in Lion-Magenes’ book [11].
In order to prove the above lemma, Hardy’s inequalities are required.

LEMMA 7 (HARDY’S INEQUALITY). Assume | < p < 400 and q is the conjugate
exponent to p. Let

1 [ o
Tf(x)= ;/ f(y)dy, Sg(x) =/ ;g(y)dy-
0 X

Then

ITfller < 550f e,
ISglle < JEllglee.

LEMMA 8 (MORE HARDY’S INEQUALITY). Assume 1 < p < +o0o, r > 0,and h
is a non-negative measurable function on (0, 0o). Then

00 X 14 00
/ x! [/ h(y)dy] dx (—E)p/ xP" " Vh(x)P dx,
0 0 r 0
[e¢] oo 14 o0
/ X [/ h(y)dy] dx (3)"f X" (P dx.
0 x r 0

One can find proofs in Folland’s book [6].

IA

IA
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LEMMA 9. Assume D is a bounded domain with smooth boundary. If0 < a < %,
then

u— p %u

is a continuous mapping of W*? (D) —> L7 (D). The same is true for D = R, with
p(x) = xp.

With the help of local maps, we need to verify that
lx, “ellr@y < cll@llwerwe) D

for g € CRT) = r (cg°(R )) ={f: f=ulp, ueCP®}.
Let
o(x) = p(x’, x), x > 0.
Then
px) = v(x) —w(x),

1 X
v(x) —/ (p(x) — @(§)) dé,

/ Lo ae.

In fact, v(x) — 0, w(x) — 0as x — oo, since ¢ has a compact support in R’} .
Note that

w(x)

] X
v'(x) = ¢'(x) - ;/ (px) — @(§)) d&,
0
1 [
w'(x) = —=v(x) = ——5/ (p(x) — p(&)) d&.
X X 0

Therefore, ¢’(x) = v'(x) — w'(x), and hence ¢(x) = v(x) — w(x). The inequality
(7) follows from the inequalities

lx, “vC @) < clloliwermy), (3)

‘IX,:“IU(X)”L,»(]RD <cllell Wer(RY) - 9)

Notice that

i, = f (', D)IP d’
\/ Rn i

x) — (&) dE dx (by Holder’s inequality)
Rr— I
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1 r [
L fR L f l0(x) — p(&)|" dEdx’
/ low) — p(@I7, de;

we have

o0
||x,,‘°‘v(x)l|’L’,,(R1) = / x~P|l|?, dx
0

< fo mor=! (/ o) — 0@, ds) dx
_ f dt / @) — I, dx

=] dsf €+ 07 llpE +0 — 9@}, di

IA

/0 por! fo lpGE +1) = 9(@II7, dt di

14
llell wer(R)

This proves inequality (8).
The inequality (9) follows from the following estimate.

Claim. |x; wx) L@y < Cpllxy “ v gy)-

In fact,

||xn_aw(x)||Lr'(R'jr)

dx) dx
f - / )

[ ) oo

Rn—

Therefore, if | —ap > 0, ie. a < %, then

f _“”(f —Iv(S)Idé) dx

00 1 14
= f x{1—em-l (f glv(s)l d&) dx (by the second inequality in Lemma 8)
0 x
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p P 00 1
< ( ) / x1=P| —y(x)|P dx
1 —ap 0 X
r e8]
) / x7Plv(x)|" dx.
0

B p _ »
o o
"xn U)(X)llL!’(]]{’_"_) < ( 1 —ap ) ”xn v('x)"L”(]R:‘)'

A
N
=
Q
B~

The proof of Lemma 9 is complete.

As a consegence of Lemma 9 , we have proved Theorem 3 for0 < o < 1/p.

By [1], if « is not an integer, the Sobolev space W*” is the Besov space B*:”. By
an interpolation theorem for Besov spaces [2], Theorem 3 is true for all non-integer
o. Therefore Theorem 3 is proved.

Remark. When « is not an integer, the Sobolev space W*” is different from the
Besov space B“'”. This is why we prove Theorem 3 in integer and non-integer cases.

3. Examples

The following example shows that there is no “gain” in L’ estimates for the
canonical solution of the d-equation in a convex domain.

EXAMPLE I. Let0 < o < +00. We convexify the domain
!
Q= [z eC% 7P +e BF < l}

to get a bounded convex domain D such that D = Q if |z;| > % and D is strictly
convex except on the circle C = {(e“’, 0): 0<6 <2m}.

Forany 2 < p < 400, thereisa d-closed f € L”(D), but f ¢ LY(D)forq > p,
such that the canonical solution to du = f is in L”(D), but notin L(D) for g > p.

For1 < p < 400, let

Ax(z2)zZ
f@) = (x(z1z2) B2,

(=207 (log )"

where log(1 — z;) can be taken as the principal branch 1_n D, x € C*(C) such that
x=0in{lz—1]| > %}, x=lin{lz—1| < %}. Hence 9 x has a compact support in
3 <lz—1] <4}
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Rewrite as

0 971) 7
F@) = 0x(z1)/971) 22 Az + x(z1) oy

! _z,)% (IOg |—]z.)p (1 —zl)% (log |_lz")p
= fidz, + fodz,.

Clearly, f is 9-closed. The first term is uniformly bounded, but the second term is
not.

Claim 1. f e L?(D).

By the above observation, we only need to consider the second term in f. By the
polar coordinate change 1 — z; = pe'®, we have

do(zy)

A

/|f2|de(Z) <c
D

Izyl<t

p
et |1 =242 ‘log =

3 dp
o
o)

IA

Therefore, f € L”(D).

Claim?2. f ¢ Li(D)forq > p.
In fact,

Bq

P

[lleqdo(z) :f x7(z1) do(2)
b D

1
1—2z;

1= 2117 [log

v

c/
lzil<Llzi=11<$, Im(1=z)|< ¢ IRe(1—2))|
do(zy)

Bq

r (log T:llzT’)%

(Choose an integer k > 2. Then 1 — |z;| < |1 — z;] < 2(1 — |z(]).)

X

|
1-zy

29
=z 7 ‘log

> ¢ /
lzil<llzi—1l<§. Im(1-z})|< [Re(1—z))|
do(zy)
x i p
= z,17 llog 2—|" (log ——)"
1 812 g =]
1
3 d
> ¢ —p—, € > 0 very small.
0 2/

p7
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The last integral is divergent since -2,% — 1 — e > 1if e is sufficiently small. Thus,
f ¢ LYD) forg > p.
Notice that

v(z1,22) = x(z1)22 ,,

(1 -z))7 (log )"

is a solution for du = f.
The same proofs as before show that v € L7 (D), butv ¢ LY(D) forq > p.

Claim 3. v is the canonical solution for du = f.
In fact, assume % is holomorphic and in L*(D). By the mean value theorem,

<h,v> = /hvdo(thz)
D

_ / x(zdo(zy) : f (2. 22) do (22)

[
=\ 1 r
Nezg<t (1 =21)7 (log = ) leal<(log —L)~#

-1z 12
= 0.

Therefore, v is the canonical solution for 9 in this domain D.

EXAMPLE 2. Take D as in Example 1. Forany 2 < p < +o0, there is f €
XV"”(D), af =0, f ¢ W'9(D) for g > p, such that the canonical solution to
du = f isin WP (D), but not in W'9(D) for g > p.

Let

3(x(21)72)
[;.’
(120 (log 1)

where x is the same as in Example 1. It is easy to see that f € L"(D).

Since 4L, gg i, ;’—Zfz areallin L” (D), then f € W'7(D). Also, f ¢ W"9(D),
q > p.

By the mean value theorem again,

f@) = B>2,

x(z1)z2

(=27 (log 1)

v(z) = 7

is the canonical solution to du = f.
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The same proofs as in Example | show that v € w-r(D), but v ¢ w'4(D) for
g > p. This implies that v ¢ W'*%-7(D), since by the Sobolev imbedding theorem
[,

4p
4 —48p

WP (D) —> W''(D), r= > p,
for small § > 0.

Therefore, on a convex domain, the canonical solution for d has no “gain” in the
Sobolev estimates.

4. Holder estimates for 9

In order to get A} estimates, we need some classical lemmas. The first one is the
Hardy-Littlewood lemma.

LEMMA 10. Let0 < o < 1, Dy = {z € D: dist(z, D) > 8}. Ifu € C'(D)
satisfies

lgrad ullon,y < M8~ 1 < p < +oo

uniformly in 8, then u € Ay (D) and lullar(py < ¢M for some constant ¢ > 0.

For p = 400 case, one can find a proof in [9]. For general p, we can prove it
similarly.
The second one is Minkowski’s inequality for integrals (cf. [17]).

LEMMA I1. Forany | < p < +oo, if f € LP(D; x D5), then

P 5 :
(f dy) sf( If(x,.v)l”d.v) dx.
D> D) Dy

Asin the computation in § 3, in order to estimate ||V H f || »(n,), Wwe need to estimate
the three types of terms: 1,(z), I2(z), I3(z). The I3(z) is the worst term.

Here we give a proof for the 0 < o < 1 case. For the « > 1 case, we can use the
Seeley extension as in §3 to prove it. We omit the details.

By the compactness of D and the partition of unity, estimating I3(z) it can be
reduced to estimating ||J (2)|| L»(vap,), Where

fx,y)ydx
D,

x18)G 1§, 2)
J(z) = KBTI
@ /lmwf ® e e 0@

with V, W, x, taken as before.
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After making the coordinate change (3), we can write £ = g(¢, z) and

J(z) = / f(gt, 2))k(t,z)do(t)
Ifl<c.ta>0

Il

f [£(g(t, ) — f(gltr, 12, 0, ta, D)t 2) dor (1)
|t <c.t4=>0

+ / fgt, 1,0, 14, 2))k(t, 2) do (1)
lt<c.ta>0
J1(2) + L (2).

By the usual Minkowski’s inequality, we have

1@ lewvopy < (f |J.<z)a")"+(/ |12(Z)|”>p-
VND;s VND;

= .i| + jz.

A

By the estimates (2), (4), (5) and Minkowski’s Inequality for integrals, we get

Ji=c / ( f 1£(g(t,2) — f(g(t1, 12,0, t4,z))l"d0(z)) ’
|t <c.t4>0 VND;

y do (1)
(It1 4+ 8) (13| + 14 + 8)3
[t3]%
< cllfliar f do (1)
Hlinzon t<caz0 (1] + 8)(It3] + 14 + 8)3
<

~1

C||f||/\[,’(D) st

After integration by parts with respect to t3, we can show that
B <l flianam 8™, Vg =>0.

Direct computations show that

A

(D Lrvany < C“f”/\{j(l))a_ﬂs
1@ rwvany < el fllaza 87,
which give Hf (z) € AL (D) by Lemma 10. It is easy to prove that K f (z) € Ak (D).
Therefore Tf(z) € AL (D) and with estimates
ITfIazan < el Flazion,

foralla > 0, 1 < p < 4o00. This proves Theorem 4.
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