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SOBOLEV AND HOLDER ESTIMATES FOR 0
ON BOUNDED CONVEX DOMAINS IN C

DEYUN WU

1. Introduction

The regularity of the Cauchy-Riemann operator 0 is a very important problem in
both PDE’s and Several Complex Variables. Numerous results have been proved by
many mathematicians. Here we only list two recent results concerning 0 on convex
domains.

In 1991, Polking [12] proved the following Lp estimates.

THEOREM 1. Let D {z E C2 p(z) < 0} be a bounded convex domain with
C2 boundary 0 D. Then there exists an integral solution operator Tfor- on D such
that

]]TfIIL,,(D) C(p)llfllL,,(D)

for all < p < +x.

In 1992, Range 13] proved the following HOlder estimates.

THEOREM 2. Let D {z E C2 p(z) < 0} be convex with C boundary. Then
there exists an integral solution operator T" C(o,)(D) --+ C(D) for 0 such that

IIT.fII^(D) <_ C()I[f[IA(D)

for all f with Of 0 and all > O.

Without loss of generality, we will assume that f is a (0,1) form f fd +
.f2d-2. A (0, 1) form is in W’P(D), AP(D), if its coefficients are in W’P(D),

p (D), respectively. For definitions and proporties of the Sobolev and HOlder spaces
W’P(D) and AP(D), see [1], [17].
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In this paper, we prove the following results.

THEOREM 3. Assume D {z C2 p(z) < 0} is a bounded convex domain
with smooth boundary 0 D. Then there exists an integral solution operator T for O
on D such that f .f W’P(D), then

IIT.fllw,.,,tz <_ C(o, P)ll.fllw.,’to

.for allot >0, < p < +oo.

THEOREM 4. Assume D {z C.2 p(z) < 0} is defined as above. Then there
exists an integral solution operator T.for- on D such that f .f A (D), then

IlZ.fllAg(o) <_ C(o, P)ll.fll^g(o)

.for all ot > O, and <_ p <_ +oo.

Following the proof of Theorem 4, we can prove a similar result for the Cauchy
tangential operator 0k on 0D.

THEOREM 5. Let D C C.- be a bounded convex domain with smooth boundary.
Suppose a (0, 1).form f satisfies the compatibility condition

.f Ao--O
D

.for any (2, O).form 99 which is O-closed in D and continuous up to 0 D. Then there
exists an integral solution operator Sfor- on OD such that f f A(O D), then

IISflIA[;(OD) C(c, P)II.flIA’S(D)
.for all ot > O, and < p < +x.

Remarks. (1) If p > 2, Fornaess-Sibony [8] gave many examples to show that
there is no Lp estimate for 0 on general pseudoconvex domains.

(2) Chaumat-Chollet [5] proved HOlder A estimates for o > 1, ot N, on convex
domains in C2 with C2 boundary.

(3) Sibony [7] provided a counter-example which shows that the A estimate is
not true for general pseudoconvex domains.

(4) In Theorem 3, the k 0 case is the LP estimate which was proved in 12].
(5) In Theorem 4, the ot > 0, p +oo case is the A estimate which was proved

in [5] and [13].
(6) For some concepts, formulations, and results for 0k, see [9], [16], [101, [3],

[51.
This paper is presented as follows" In 1, we give two recent results about the

regularity for 0 and state the main theorems. In 2, we prove the Sobolev estimates.
In 3, examples will be given to show that there is no "gain" in the Sobolev estimates
for the canonical solution. In 4, we prove the HOlder estimates for 0.
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2. Proof of Theorem 3

Assume D {z E C2 p(z) < 0} is a bounded convex domain with smooth
boundary 0D and Idpl on 0D. Let r denote the Lebesgue measure, c denote a
positive constant which may vary from line to line.
We choose a smooth defining function p for D, such that in a neighborhood U of

OD,

-dist(z, 0D), z E U r3 D
p(z)

+dist(z, O D), z U \ D.

Define

0p cgp
(, z) =-,_( z) + ==(2 z.2).

By the convexity of D, it is well known (cf. [9], [13]) that

Recb(,z) > clp(z)l, z D, OD, (l)

I’o(, z)l >_ c(Ip()l + Ip(z)l + IIm(, z)l), , z D U.

The following lemma was proved in [5] and [12].

(2)

LEMMA 1. Let (0, zo) O D x OD such that (0, zo) O. Then there exist
neighborhoods W ofo and V q[zo, such thatfor each z V, there exists a C local
coordinate system t(z)() (t, t2, t3, t4) on W with thefollowing properties:

t4 =-p(se)
t3 Im(se, z)
77 t ire P2(Z)(-gt g.) p(z)(-2

It(:)(se) t<)(se’)l I ’1

(3)

(4)

all , ’ W, with the constant in (4) independent of z V.

Let T be Henkin’s solution operator for O. Then

T.f (z) Hf(.) + Kf(z)

where Kf is given by integrating f against the Bochner-Martinelli kernel over D,
and

Hf(z) c f(se) A
a,. 5772

aD

dse A d2.
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It is easy to prove that if f WI’p(D), < p < cxz, then

IIKflIw,.,,D) Cpllfllw,.,,D).

We first want to prove the W ’P estimates for Tf which can be reduced to estimate

Hf.
By Stokes’ Theorem, we rewrite (cf. Polking [12])

f ( X()A(’z) ) d/d2,

D

where r(, z) 1 zl 2 + p()p(z), A(, z) O(1 z]), X is a C function in
C2 such that X in D, suppx C D_ C D C U, and D {z: dist(z, OD) < 6}
is a tube neighborhood of 0 D.
It is easy to show that

r(, z) c(l zl 2 + Ip()l 2 -+- Ip(z)12), , z N U. (5)

In order to prove VH.f(z) LP(D), < p < cxz, weneedSchur’slemma(cf. [12]).

LEMMA 2. Assume a kernel k(, z) is defined in D x D and an operator K is

defined by Kf(z) f k(, z).f () do.(). Supposefor every 0 < s < 1, there exists
D

C such that

lp()l-lk(,z)ldr() Clp(z)l

D

lp(z)l-lk(,z)ldr(z) <_ Clp()l

D

for all z D,

for all D.

Thenfor < p < cxz, there exists Cp such that IIK.flIL,,(D) CpllfllL,,(D).

2.1. The case k 1. A simple computation yields

f9 ( GI(, z) G2(, z)
VHf(z) c f() Z’2( .i(-, Z)

-[-
l"2(, Z)(1)(2)(, Z)

-[-

+ lower order singular terms) do (),

G(,z)
r(, z)(P)(, z)
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where Gj(, z) O(l zlJ), j 1,2, 3 and the Gj’s that appear in different
places may not be the same. We need to estimate the three type terms"

LEMMA 3. Estimating 13 can be reduced to estimating an 12 type integral.

In order to estimate 13, by the compactness of D and a partition of unity argument,
it suffices to estimate the following integral

.f() dr ()
XI()GI (, z)

Here, suppx c W, and z 6 V, where W, V are neighborhoods chosen as in
Lemma 1. Notice that the vector fields

Op 0 Op 0 )T Im
0 0- 020q"2

are tangential to the level sets of O D. Also, Tt3 + O(l zl). After making the
coordinate change (3), we have

ITS01- ITRe01 + -4- O(Itl) >_ .
Using the fact that

the T direction, we have
2 (T(p0) T and integrating by parts with respect to

dot(t)

d(r(t).

As in Polking [12] the first term is bounded by IIDflIL,,(zg _< Ct, llfllw..,,o. The
second term can be reduced to an I_ type integral, and the lemma follows.

The same proof shows that estimating 12 can be reduced to estimating an I type
integral.
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Let

In order to estimate

it suffices to estimate

k(, z)
G(,z)

"r2(, Z)O(, Z)

I fw x, Ip()l-lk(, z)l da()

with suppx c W.
By the estimates (1), (4), (5), and the coordinate change (3), we have

t-l<c
I<,. ,,>_0 (Itl-t-Ip(z)l)3(t3 -t- t4 + Ip(z)l)

da(t).

Let Ip(z)ls. Then

I < clP(z)l- Js/>_0 ([sI-]- 1)3($3 -]- $4 --[- l)

Clp(z)l -,.
da(s)

By the compactness of D and the partition of unity, we see that

Ip()l-lk(, z.)l do-() C,lp(z)l -, z D.

By a symmetric argument, we have

lp(z)l-lk(, z)l da(z) < Clp()l-, D.

Therefore, in the k case, Theorem 3 follows by Schur’s lemma.

2.2. The case k >_ 2. As in Range [13], we introduce the Seeley extension
operator E" C() Co(D#), where D# DO U. By Adams [1] (Theorem 4.28,
p. 89),

IIEfllw,.,,c) C(k, P)II.flIw’.,’D), <p<+oo.

In the representation formula

.f O-T.f q- TzO f, .f C (-)(0,1)
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we let g f, g2 0 f, and Egq gq on 0 D. Then

Tqgq fD! Egq A q-l(lv) fDgq A Kq-I’ q 1,2.

Here, T T is Henkin’s solution operator.
Let R U \ (C2 \ D). For fixed z 6 D, as in [14], we apply Stokes’ Theorem on

RI"

Notice that "o(Wr) is holomorphic in z.
We rewrite

f Oz.T(f + TOf,
where

Tgq fRl(E-gq --Egq) A q-l (l) fD# Egq A Kq_l, q-- 1,2.

Thus T*f is also a solution for Ou f Let Q(f) EOf OEf Then

G(es,z)
des /xdes2 fo Ef /x KoT’ f Q(f)(es /x I- ---zl2

ll(f) + 12(f).

Notice that

12(f)--fo# Ef m Ko fc2 Ef A Ko

is a convolution integral. By Stein [18], it is in W"P(D),
We will prove by induction that I (f) W’’p (D), k > 2.
If k 2, we need to prove that l(f) W2’p(D). A computation gives that

2 fR ( G(,z)gz. l,(f) Q(f)() A
[ z

+ G2(:, z) G3(, z) ) dse /x d2.+ i16
Similarly, as before, we can show that Vz2. I (f) G LP(D) with the folowing estimates

2[[VzlI(f)IIL"{D) < CpllO(f)(es)llw,.,,o) <_ Cpllfllw2.,,{o).

So, I (f) W2’p(D).
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Now suppose that

G I(se, z)
d’ A d’2lo(f) f(’) A

I Zl2

maps wk’p(D) Wk’P(D) such that [[Io(f)[[W.,,tD) <_ C(k, P)l[f[[w.,’(o).
Let us consider g c= Wk+l,p (D) such that Q(g) 0 on D. We want to prove that

VI (g) 6 Wk’P(D). By a computation as before,

f (G(es,z) G2(, z) )Vl,(g) Q(g)(s)/x I-- 7i@2 + I--).lg-* d,/x d2

G(, z)
d A d2D(Q(g)(s /x

] glzdi)
G2(, Z)

dl A d2+ Q(g)(j) A
I zl4(I)

JI (g) + J2(g).

By the inductive assumption, Jl(g) G wk’p(D).
Since Q(g) =_ 0 on D, we can rewrite

Jz(g) J2(Q(g)(es)- Q(g)(z)) /x

D(Q(g))(z + O(s, z)) A

for some 0(, z) 0(1 zl). J2(g) is again in wk’p(D). Therefore VII(g)
W,p (D), i.e., Ii (g) Wk+’p (D), and

Illl(g)llw*+,.,,(o) < C(k, p)llDa(g)llw,-,.,,(o) <_ C(k, P)IIglIw’+’.,’(D).

This implies that l(f) wk’P(D), and hence T*f Wk’P(D). In order to prove
that Tf Wk’P(D), notice that

Tlf T(.f E.f A "O(Wr),

where

"o(Wr) C
Op A OOp

dp2

By the compactness of R and the partition of unity, it suffices to prove that

Mo.f fenw Ef A X()’o(Wr)

is in Wk’p, where suppx C W.
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By computations and integration by parts, we have

vk(Mof) fRW Ef A XI (:) 019k+2/ aap

Z Dj (Ef) A X2()
j=l

where X, X2 have support in W. The last term is in Lp by the following lemma
which can be proved by Schur’s lemma again.

If Tof :--ftenw-do-(), then To" Lp LP, for all < p <

Therefore we conclude that Tf E wk’p(D), and the proof of Theorem 3 is
complete for the integer case.

2.3. Non-integer case. It is easy to prove that if f W’p (D), 0 < ot < l, <
p < oo, then [[Kfllw.,,(o) < Cpllfllw.,,(D). Therefore, we need to prove the W
estimates for Tf which can be reduced to estimating Hf.

In order to prove Hf(z) W’p (D), the following lemma (cf. Bonami-Sibony [4])
is needed.

LEMMA 5. Let <_ p < cx, c > O. If f C (D)such that

[v fl p p(-)P do- <

D

Then f W’P(D).

(6)

Remark. Condition (6) is equivalent to IVfl p(-) Lp.

As before,

f ( GI(, z) G2(, z)

D

+ lower order singular terms) do- (),

G(,z)
r(, z),03(, z)

We need to estimate the three types of terms" I (z), 12(z), 13(z). The 13(z) is the
worst term.
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By the compactness of D and a partition of unit, for 0 < ot < 1, we have

If() Ip(z) 1-’
ip(z) 13(Z)lonv < .1, 1<,’,,4>_0 (Itl + P(Z))(It31 + t4 -k- p(Z))

dr(t)

< f If()l
dr(t)

I<.,t4>_o (Itl + p(z))(It31 + t4 + p(z))2+

_< f, If()lP()- t’
<,.,t4 >-0 (I -I- p(z))(lt3l/ t4 + p(Z))2-

dot(t)
< I.f() Ip (,)

I<C,I4>_0 (Itl + p(z))(It3l + t4 -t- p(Z))2"

dot(t)

By Polking [12], we know that

G I( Z)
Tog(z) g() dcr()

w

maps LP to LP for < p < cx. Therefore our goal is to prove the following lemma.

W,p )- LpLEMMA 6. IfO < Ot < -, f (D), then p( f() < p < oo.

Remark. For the p 2 case, one can find a proof in Lion-Magenes’ book ].

In order to prove the above lemma, Hardy’s inequalities are required.

LEMMA 7 (HARDY’S INEQUALITY). Assume < p < +cx and q is the conjugate
exponent to p. Let

rf(x f(y)dy,
x

hen

Sg(x) -g(y)dy.
Y

LEMMA 8 (MORE HARDY’S INEQUALITY). Assume < p < +oo, r > 0, and h
is a non-negative measurablefunction on (0, cx). Then

X
-r-I h(y)dy

o

xr-I h(y)dy

X
p-r-| h(x)p dx,

r

One can find proofs in Folland’s book [6].
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LEMMA 9.
then

Assume D is a boundeddomain with smooth boundary. IfO < < -,p

u ----+ p-u
is a continuous mapping of W’P (D) ---+ LP (D). The same is truefor D In+ with
p(x)

With the help of local maps, we need to verify that

for q9 eC(]_)=r C(_) =If" .f--ulna_, u eC(n)}.
Let

Then

0(x) o(x’, x), x > 0.

o(x) v(x) to(x),

v(x) (99(x) 99()) d,
x

w(x) v( cl.

(7)

foXv’(x) p’(x) -- (9(x) p())d,

fOtOt(X) ----V(X) 2 (99(X) 99()) d.
x x

Therefore, 0’(x) v’(x) w’(x), and hence qg(x) v(x) w(x). The inequality
(7) follows from the inequalities

Notice that

Ilpll,,,, f,,_, Iv(x’, x)l p dx’

xp ,,-,
(p(x) ,p()) d

Ilx,’-w(x)llL,,tz+) _< c IIq9 w.,,tq_)

p

dx’

(8)

(9)

(by HSlder’s inequality)

In fact, v(x) -- 0, w(x) 0 as x --+ cxz, since 99 has a compact support in I1_.
Note that
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we have

This proves inequality (8).
The inequality (9) follows from the following estimate.

Claim.
)"

In fact,

IIx, w(x)ll,,,+)- x-p
oo

dx’ dx

dx dx’

/if0 (fl)< X-otp dx] dx’.

Therefore, if -up > 0, i.e. ot < 7, then

fo (f,)x-up -lv()l d dx

1 (f )X -otp)-
P

-lv()l d dx (by the second inequality in Lemma 8)
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< P X-)PI-o(x)IP dx
-otp x

< ( P )P foX-’Plv(x)lPdx.-otp

Hence

]lxt-vo(x)llLl,(,)<( p )]lxt-tu(x)]l p-otp

The proof of Lemma 9 is complete.
As a conseqence of Lemma 9, we have proved Theorem 3 for 0 < ot < 1/p.
By ], if ot is not an integer, the Sobolev space W’p is the Besov space B’p. By

an interpolation theorem for Besov spaces [2], Theorem 3 is true for all non-integer
or. Therefore Theorem 3 is proved.

Remark. When ot is not an integer, the Sobolev space W’p is different from the
Besov space B’p. This is why we prove Theorem 3 in integer and non-integer cases.

3. Examples

The following example shows that there is no "gain" in Lp estimates for the
canonical solution of the 0-equation in a convex domain.

EXAMPLE 1. Let 0 < ot < +c. We convexify the domain

to get a bounded convex domain D such that D f2 if Izl > and D is strictly
convex except on the circle C (eiO, 0)" 0 < 0 < 2re }.

Forany 2 < p < +cx, thereis a 0-closed f E LP(D),butf Lq(D)forq > p,
such that the canonical solution to 0u f is in LP(D), but not in Lq(D) for q > p.

For < p < +cx, let

O (X (Zl).2)
f(z)= , fl >2,

( ,t(1-zl, |o

where log(l z) can be taken as the principal branch in D, X 6 C(C) such that

X 0in {Iz- 11 > 7}, X in {Iz- 11 < }. Hence OX has acompact support in

{ <lz-ll< 7}"
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Rewrite as

(ax(z)/a-) . x(z)
f(z) d- + d-2

(1-z)7 log (1-z)’ log
fd2 + f2d2.

Clearly, f is 0-closed. The first term is uniformly bounded, but the second term is
not.

Claim f Lp D).

By the above observation, we only need to consider the second term in f. By the
polar coordinate change z pei, we have

fo f dot(z,)
]f2lPdcr(z) < c

,:,,<, 12[log t
:,-,<1/2 I1 z

< cfo5 d,o

( ,)<oo.p log f

Therefore, f e LP (D).

Claim 2. f q Lq D for q > p.
In fact,

fo lf21q dr(z) fo xq(zl) dr(z)

II z17 log

Jlz ]lm(I-z )[<[Re(l-z)[
C

l<l,]zl-II<,

do’(z)
x

II-zl 7 log logixlz,
(Choose an integer k >_ 2. Then -Izl _< I1 -zl _< 2(1 -Izl).)

JIz Ilm(I-z,)l<l
C

i[<l,[zl-l[<, IRe(I-z,)[

do’(z)
x

’)-I1 z 17 log log Ii-zil

dp
s > 0 very small.> c

2q_l_s
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The last integral is divergent since 2q g > if e is sufficiently small. Thus,
P

f Lq(D)for q > p.
Notice that

U(Zl, Z2)

(l-z)7 log

is a solution for Ou f
The same proofs as before show that v LP(D), but v . Lq(D) for q > p.

Claim 3. v is the canonical solution for Ou f

In fact, assume h is holomorphic and in L2(D). By the mean value theorem,

f
Iz21<(Iog

z2h(zl,z2)do’(z2)

Therefore, v is the canonical solution for 0 in this domain D.

EXAMPLE 2. Take D as in Example 1. For any 2 < p < +cx, there is f 6

’p(D), -f 0, f W ’q(D) for q > p, such that the canonical solution to

--f isin W’t’(D), but not in wI’q(D) forq > p.
Let

f(z)-- e, /3 > 2,

(l-z)7- log

where X is the same as in Example I. It is easy to see that f 6 LP (D).
af aT afSince , 0?-7’ a.--, a.: areallinLt’(D),thenf W’’(D). Also,./ w’q(D),

q>p.
By the mean value theorem again,

v(z)

(1 z)7 log

is the canonical solution to Ou f.
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The same proofs as in Example show that v W .I,(D), but v q W I,q (D) for
q > p. This implies that v q W+s’P(D), since by the Sobolev imbedding theorem
Ill,

W+s’P(D) wI’r(D), 4p
r-- >p,

4-6p

for small > 0.
Therefore, on a convex domain, the canonical solution for 0 has no "gain" in the

Sobolev estimates.

4. HOlder estimates for 0

In order to get A, estimates, we need some classical lemmas. The first one is the
Hardy-Littlewood lemma.

LEMMA 10. Let O < ot < 1, D {z D" dist(z, OD) > }. If u e C(D)
satisfies

Ilgradull/,,<z) _< M6-+’, _< p _< +oo

uniformly in 8, then u A,(D) and IlUlIAS,) _< cMfor some constant c > O.

For p +c case, one can find a proof in [9]. For general p, we can prove it
similarly.

The second one is Minkowski’s inequality for integrals (cf. 17]).

LEMMA 11. For any <_ p < +, #f .f LP(Di x De), then

.f (x, y) dx dy < If(x, y)l t’ dy dx.

As in the computation in 3, in order to estimate vH.f L,’ m), we need to estimate
the three types of terms" I (z), 12(z), 13(z). The 13(z) is the worst term.

Here we give a proof for the 0 < ot < case. For the ot > case, we can use the
Seeley extension as in 3 to prove it. We omit the details.

By the compactness of D and the partition of unity, estimating 13(z.) it can be
reduced to estimating IlJ (z)ll,,v,), where

J(z) f: f(.)
X()G(, z)

dcr(se

with V, W, X taken as before.
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After making the coordinate change (3), we can write g(t, z) and

J(z) 1<,.,,>_o f(g(t, z))k(t, z) da(t)

[- [f (g(t, z)) f (g(tl, t2, O, t4, z))]k(t, z) da(t)
I<c,t4>0

+ I f(g(t, t2, O, t4, z))k(t, z) da(t)
c, t4

(z) + J_(z).

By the usual Minkowski’s inequality, we have

IIJ(z)IIL,’VnD <_ IJ(z)l ’
"- Jl "-I- J2.

+ IJ2(z)l"

By the estimates (2), (4), (5) and Minkowski’s Inequality for integrals, we get

J c If (g(t, z)) -f(g(t, t2, O, t4, z))l p da(z)
<c, t4 >_0 IDa

da(t)

(Itl + 8)(It31 + t4 -I- )})3

<_ cllfllgD)
1<,..,4>_0 (Itl-I- t})(lt3]-I- t4 -t- 8)

da(t)

<_ cllfllAgtD 8-+.
After integration by parts with respect to t3, we can show that

]2 < cIIfIIAgD) a-, V/3 > O.

Direct computations show that

IIl(z)ll,,vno <_ clI.flIA;DS-,
1112(Z)II,,vnD <_ cll.fllat;o-/,

which give H.f(z) A(D) by Lemma 10. It is easy to prove that K.f(z) A(D).
Therefore T.f(z) A(D)and with estimates

IIT.fllag<D> <_

for all ot > 0, < p _< +oe. This proves Theorem 4.
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