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REGULARITY OF PAIRS OF POSITIVE OPERATORS

SHANGQUAN BU, PHILIPPE CLEMENT AND SYLVIE GUERRE-DELABRIERE

0. Introduction

In this paper, we consider a pair (A, B) of closed operators on a Banach space X
with domain D(A) and D(B). The pair (A, B) is called regular if for every f € X,
the problem Au + Bu = f possesses one and only one solution.

Related to the notion of coercively positive pair of operators, introduced in [S],
we also consider the existence of a solution to the problem AAu + Bu = f for all
A > 0, with some uniformity in A. This stronger property is called A-regularity.

These notions of regularity and A-regularity naturally arise in vector-valued Cauchy
problems; see [G], [DG], [S] and also [CD]. The uniformity in X, given by the A-
regularity, is often useful in certain applications to partial differential equations.

In [G], under the hypothesis that 0 € p(B) and in [DG], some sufficient conditions
are given to ensure the regularity of a pair (A, B) on certain subspaces of X, related to
the operator B. These subspaces, denoted by Dg (6, p), are real interpolation spaces
between D(B) and X (Theorem 1.2).

It was observed in [S] that if 0 € p(A) N p(B), then the pair is A-regular on
Dy(0, p).

In this paper, we prove the A-regularity of this pair (A, B), considered in [G], on
Dg (6, p) under the weaker assumption that 0 € p(B) only (Theorem 2.1). Note that
if B is bounded, then the pair is A-regular on X.

We construct an example of a regular pair (A, B) of operators in a Hilbert space,
with B bounded, satisfying the assumptions of the theorem of Grisvard [G], which is
not A-regular (Example 2.2).

1. Preliminaries

In this section we give precise definitions of regularity and A-regularity of a pair
of operators. Then, for the sake of completeness, we recall a result of Da Prato and
Grisvard [DG] (see also [CD]), which is the starting point of our results.

Let X be a Banach space and A and B be two closed operators in X.

DEFINITION 1. The pair (A, B) is called regular, if for all f € X, there exists a
unique u € D(A) N D(B) such that Au + Bu = f.
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If the pair (A, B) is regular, it follows from the Banach theorem that
(1.0) Null + 1Aull + | Bull < M||Au + Bul|

for some M > 1 and for all u € D(A) N D(B).
It is easy to verify the following lemma.

LEMMA 1.0. Let A and B be two closed operators in X. Then the pair (A, B) is
regular if and only if

(1) (1.0) holds and
(2) R(A+ B) isdense in X.

Moreover, if 0 € p(A) or p(B) (where p(.) denotes the resolvent set of an operator),
then (1.0) is equivalent to

(1.1) Aull + [|Bull < M||Au + Bul|

for some M > 1 and for allu € D(A) N D(B).

Remark 1. The operator A + B is closed if and only if
llull + I Aull + || Bull < M(l|Au + Bul| + |lul))

for some M > 1 and forall u € D(A) N D(B).

In particular, if the pair (A, B) is regular, A + B has to be closed.

A regular pair of operators (A, B) is called coercive in [S].

Also, the stronger notion of coercively positive pair is introduced in [S], which
motivates our Definition 2.

DEFINITION 2. The pair (A, B) is called A-regular in X, if for all f € X and for
all A > 0, there exists a unique u € D(A) N D(B) such that AAu + Bu = f and
moreover, for all A > 0,

(1.1 IAAull + ||Bull < M||AAu + Bul

for some M > 1, independent of A and for all u € D(A) N D(B).

Remark 2. Clearly if (1.1), holds, then the inequality
AMlAu|| + pl|Bull < M||AAu + pnBul|

holds forsome M > 1, forall A, u > 0and u € D(A) N D(B), which shows that the
definition of A-regularity is symmetric in A and B.
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It is also clear that this inequality is equivalent to the following ones:
lAull < M||Au + ABul|,
forsome M > landall A > Oand u € D(A) N D(B), and
AlBull < M| Au + ABu||

forsome M > landallA > Oand u € D(A) N D(B).

LEMMA 1.0.A. Let A and B be two closed operators in X (not necessarily densely
defined). If 0 € p(A), then the pair (A, B) is A-regular if and only if:

(1) (1.1), holds for all A > 0;
(2) There exists Lo > 0 such that R(LyA + B) is dense in X.

Proof. Clearly, it is enough to prove that conditions (1) and (2) imply that the
pair (A, B) is A-regular.

First observe that conditions (1) and (2) together with Lemma 1.0, where A is
replaced by ApA, and the fact that 0 € p(A), imply that the pair (AgA, B) is regular.
Thus, in particular, 0 € p(A0A + B).

Next we show that if 0 € p(A;A 4+ B) for some A; > 0, then 0 € p(LA + B) for
all A > 0 such that

A M M . M .

(*) —€l—— ——)ifM>1land { ——,00) if M = 1.
A M+1 M-—1 M+ 1

Indeed, problem L Au + Bu = f is equivalent to

A Y
AlAu+Bu=<l——)\l>Bu+7'f.

Setting v = A Au + Bu, we have

A A
(%) u:(l——') BMA+B) v+ Ly
A A
From (1.1),, it follows that
IBMA+ B <M.

Under assumption (x), by the Banach fixed point theorem, it is clear that there
exists one and only one v € X satisfying (x) and hence (AA, B) is a regular pair for
such A. Noting that || B(AAu + B)~'|| < M also holds for A in this interval, we can
repeat this argument and, since ML“ < | and MM_T > 1, show by induction that the
pair (LA, B) is regular for all A > 0, which together with (1.1), implies that the pair

(A, B) is A-regular. This finishes the proof of Lemma 1.0.A. O
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Let us recall classical definitions on closed operators: A closed linear operator
A : D(A) C X — X (not necessarily densely defined) is called positive in (X, || - ||)
[Tr] if there exists C > 0 such that

(1.2) lul] < Cllu + AAul|, forevery A > O and u € D(A),

and if R(I + *A) = X for some A > 0, equivalently for all A > 0.

Remark 3. In [Tr], an operator A is called positive if it is positive and satisfies
the additional assumption that 0 € p(A). In this paper, it is convenient to relax this
extra condition.

Observe also that A is positive if and only if the pair (A, I) is A-regular.

If A is positive, injective and densely defined, it is easy to prove that A~" is also
positive.

If X is reflexive and A is positive, then A is densely defined [K].

Let X, := {A € C\{0}; | arg A| < o} U {0}, for o € [0, ). If A is positive, there
exists 8 € [0, r) such that (1.3) holds, [K p. 288]:

(1.3) (i) o(A) C £, and
(i) for each 0" € (0, ], there exists M(0') > 1 such that ||A(A] — A)7!| <
M(0"), for every A € C\{0} with Jarg A| > 6’

where o (A) denotes the spectrum of A.

The number w, := inf{6 € [0, ); (1.3)holds} is called the spectral angle of the
operator A. Clearly wy € [0, ).

An operator A is said to be of type (w, M) [Tan], if A is positive, w is the spectral
angle of A and

M = inf{C > 0; (1.2) holds } = min{C > 0; (1.2) holds}.

Note that M is also the smallest constant in (1.3) ii) for 8’ = .

Two positive operators A and B in X are said to be (resolvent) commuting if
the bounded operators (I + AA)~" and (I + uwB)~' commute for some A, u > 0,
equivalently forall A, u > 0.

If A and B are commuting positive operators then A + B (with domain D(A) N
D(B)) is closable [DG].

The following theorem, which is a consequence of a theorem of Da Prato-Grisvard
[DG] and of Grisvard [G] will be essential in the sequel.

THEOREM 1.1. Let A and B be two commuting positive operators in X such that

(i) D(A) 4+ D(B) is dense in X,
(ll) wp +wp < T
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Then the closure of A + B is of type (w, M) with w < max(wa, wg).
If moreover

(iii) 0 € p(A) or p(B) (resolvent set of A or B), then
(a) there exists M > 1 such that

(1.4) lull < M||Au + Bull, forallu € D(A)N D(B),

and0 € p(A+ B),
(b) R(A+ B) 2 D(A) + D(B),
(c) A+ Bisclosed if and only if R(A + B) = X if and only if (1.1) holds,
(d) the inverse of A + B is given by

(*) (A+B) 'x= #/(AH)—'(B—z)*'xdz,
2mi y

where y is any simple curve in p(B) N p( — A) from coe™ to coe'™, with
wp <0y <7 — wyu.

Remark 4. (1) Under hypotheses (i)—(iii) of Theorem 1.1, assumption 2) of
Lemma 1.0 is always satisfied. Therefore, in order to prove the regularity of a pair
(A, B), it is sufficient to verify inequality (1.1), which means that A(A + B) 'isa
bounded operator.

(2) Similarly, under hypotheses (i)—(iii) of Theorem 1.1, assumption (2) of
Lemma 1.0.A is always satisfied. Therefore, in order to prove the A-regularity of a pair
(A, B), it is sufficient to verify inequality (1.1),, which means that AA(AA + B)~!
is a uniformly bounded operator for all A > 0.

In this paper, we shall always be in the situation of (i)-(ii) of Theorem 1.1, which
means that we will consider the following three hypotheses for a pair of positive
operators A and B in X of type respectively (ws, M4) and (wg, Mp):

Hy: D(A) + D(B) is dense in X.
H,: A and B are resolvent commuting.
Hy: wp+wp <.

In order to obtain results on the regularity and the A-regularity of a pair of operators,
we need to introduce the interpolation spaces D4(0, p), associated with a closed
operator A, for6 € (0, 1) and p € [1, +00]. These spaces are subspaces of X which
are dense in X for the norm ||.|| whenever A is densely defined.

For 0 € (0, 1) and p € [1, +00), D4(6, p) is the subspace of X consisting of all
x such that

1 A(A+0)"'xll e L?,
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where L is the space of p-integrable Borel functions on (0, +00) equipped with its
invariant measure dt/t.

For 6 €]0, I[, D4(8, 00) is the subspace of X consisting of all x € X such that
sup{[t? A(A+1)"'x|| | 1 € (0, +00)} < +00.
When 0 belongs to p(A), Da(0, p) equipped with the norm
Xl Do, = It ACA +t)—lx“LL’

becomes a Banach space.
When 0 € p(A) and A is bounded, ||.1|p,.p) is equivalent to the norm of X.
The following fundamental result, due to Grisvard (Theorem 2.7 of [G]) is the
starting point of this paper.

THEOREM 1.2. Let X be a complex Banach space, and let A and B be two positive
operators in X, of type (wa, M) and (wg, M) respectively, satisfying hypotheses
Hy, Hy, H;.

If0 € p(B), the pair (A, B) is regular in Dg(6, p).

2. Results

The first result of this paper is the following theorem which is an extension of
Theorem 1.2 to the case of A-regularity.

THEOREM 2.1. Let X be a complex Banach space, and let A and B be two
positive operators in X, of type (wa, Ma) and (wg, Mp) respectively, satisfying
hypotheses Hy, Hy, Hy. If 0 € p(B), the pair (A, B) is A-regular in Dy (6, p) for
every0 <0 <land1 < p < oo.

Remark 5. If moreover B is bounded, it is clear that the pair (A, B) is A-regular
in X.

The next example shows that in particular, even if X is a Hilbert space, the hy-
pothesis 0 € p(B) cannot be omitted in Theorem 2.1.

Example 2.2. Thereexists a Hilbert space G and there exist two positive operators
A and B in G satisfying hypotheses Hy, H; and H,, with B bounded, such that the
pair (A, B) is regular, but not A-regular in G.

Remark 6. In[L, Theorem 2.4] (see also [CD]), another example is given, where
A is the derivative acting on L” ([0, T]; Y) for some non reflexive space Y, such that
the pair (A, B) is not A-regular in D4 (0, p).
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Proof of Theorem 2.1.  Fix A > 0. By Theorem 1.2, we know that the pair
(A, AB) is regular in Dg (6, p). In particular, for all x € Dg(6, p),

y» = (A+AB) 'x € D(A)N D(B)
and we have By, € Dg(0, p) together with the inequality

IABy llpyo.py < Cllxlpyo.p)-

We shall show that C is independent of A. For this, we are going to use equality (x)
of Theorem 1.1, applied to A and AB. Without loss of generality, since 0 € p(B),
we can suppose that y consists of the half line (coe™"%, ge~*], the arc of the circle

= {z : |z| = &, |arg(z)| < 6y} and the half line [ge/®, coe'®), for some fixed
6y, wp < By < m — w, and for sufficiently small ¢ in order to insure that y is in
p(—A) N p(AB). Since A is of type (w4, M4), by (1.3) there exists M’, such that for
all z such that |arg z| < 6y,

M/
A+ < I’l‘.

As in the proof of Theorem 3.11 of [DG], for every ¢ > 0 we can write
AB+0)7"'y, = WB+0)"A+AB) 'x
1
— /(A +27'"AB+1)'AB —2)'xdz
2mi J,

Il

by (%) and H,
= L/(AH)"(AB—z)"x dz
© 2ni ), 14z
L f(A+z)—'()\B+t)—'x ¢
2mi J, t+z
1 z
=-— [A+2'AB-2)""x
Zni/y( +2)7 ( 2) Py
1 d
—(x3+t)—'—-—,/(A+z)—'x ¢
2ri J, t+z
1
= — [|A+2'0B-2)"" '
2m'/y( o OBy T
by ganalytlcuy of the function (A“) and the fact that || 42— (A“) | < |7(7‘+W| for |arg z|
=0
Hence

ABAB+1)"'y, = yy —t(AB+0)7'y,
= A+ AB) 'x—tAB+0)"AF+AB) " 'x
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= —'—,f(AJrz)"(AB—z)"xdz
2mi v

| t
- | LA+ AB =2 'xdz
i yt+z( +2)7( 2)" xdz
[ At 0B - 'rdz
C2mi J, 42 '

Then
1 z
ABAB 41"y, = —/ ——(A+2)"'"AB —2)"'xdz.
2mi Jy, 2+t
First, we claim that

lim f L(A + z)"'(AB -2 'xdz=0.
¢ 2+t

>0t

Since B is invertible, ||(AB — z)~!|| is uniformly bounded with respect to z in a
neighborhood of the origin. So there exists &y such that |(AB —2)~"|| < 2|(AB)~!||
for |z| < &). We can suppose that gy < % Then, for ¢ < gy we have

/ X A+ "OB -2 'xdz
c. 2+t

|z _ _
s/'————MA+4)'HMAB—z>WHuuwn
C. |z + 1]

fo do SM/ |(AB)~ | ||x €60
<2M' |(AB)"" ot
< 2 ¢ )nmmﬁwHﬁww_ t

which tends to zero when ¢ — 0%, The claim is proved; hence we have

1 4
ABOAB+0 "y = — | ——(A+2)"AB-2)"'xdz
i Jy, 2+t
where yy consists of the half-lines {z : arg(z) = —6y} and {z : arg(z) = 6p}.

By hypotheses H; and H,

1
AB(AB +1)"'ABy, = —f X (A+2)7"ABOB - 2)"'xdz
2ri Jy, 7+t

and so

IABAB + 1)~ 'ABy, ||

! |z i -
< — A+z AB(AB —2)” x| |dz
<), |z+t|”( ) IAB( )" x|l |dz]
Foo r dr
<K o (r)—

0 12+ r2 4 2rcoshy
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where K is a constant depending only on A and B, and

¢x(r) = max{|[AB(AB — re'®)~'x||, IAB(AB —re”"™)"'x||} = ¢, (%)

The hypothesis x € Dy (8, p) means that r¢, (r) € LL (R*) (see [DG]); thus we
have

" IAB(AB 4+ 1)~ 'ABy, |l

oo rt? dr
=K h(r)—
0 124+ r2 4+ 2rcosby

+o00 (rt—l)I—O

Il

0 dr
— | ri g (r)—
0 \/l + (rt=Y% 4+ 2rt="'cos6y r

Kfxg(t)

where
-0

V1 412+ 2tcosby

g(t) = t°¢u(t) € LP(RY)

f@)

e LLR™)

By Young’s theorem, we can write

Nt AB(AB + t)_l)»B)’A"LL’(R*)
= Klfloiwsligherws

+00 1/p
K’ ( / (r"m(r))"ﬂ)
0 r

+00 I/p
— K ( f (r"¢>.(r)>"5‘-’1>
0 r

0
K" 2N x N pyo.p)-

IA

IA

where K" is a constant depending only on A and B, see [DG]. On the other hand,

I°AB(AB + )" 'ABy:ll .2 w+)

+o00 » dt
= (/0 (t°IABAB + 1)~ "ABy, ) T)

+00 dr\"r
= A (fo (I1BB + 07" Byll)” 7)

A,H—Ol

1/p

By llDyo.p)s
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hence

0 0
M NABY Dy < K"AlIx | pyio. p

or

IABCA+AB) ' xlpye.p < K"IIxlDyo.p)-

This is the inequality that we wanted. It implies that
IABCA+2B) " Ipy0.p < K",

which shows the A-regularity of the pair (A, B) on Dg (6, p) by Remark 4.2. O

Let us mention another case of A-regularity which is a consequence of Theorem 1.2
applied in the context of [DV], namely when B'* is bounded for all s € [—1, +1]:

COROLLARY 2.3. Let H be a Hilbert space and let A and B be two positive
operators in H satisfying Hy, Hy and H,. If 0 € p(B) and sup{||B*| | |s| < 1} <
400, then the pair (A, B) is A-regular in H.

Proof of Corollary 2.3.  As mentioned in [DV], under the hypothesis that
sup{l|B*|| | Is| < 1} < +4oo, D(8,2) = D(B?). Thus Theorem 2.1 implies
that (A, B) is a A-regular pair in D(B?). Then Dore and Venni show that, under the
hypothesis of Corollary 2.3, (A, B) is a regular pair in H. An adaptation of their
proof can be done to prove that in fact, the pair is A-regular. Indeed, for x € H, by
Theorem 2.1, observing that B~ %x € Dg(6,2), we have

IAB(A+AB) 'x|| = |IB°AB(A+AB)"'B~x|
CIIBB~ x| = Clix||

A

where C > Ois independent of A > 0. O

Construction of Example 2.2. Let G be a complex Hilbert space and let A and
B be two positive operators with B bounded, satisfying hypotheses H; and H,.
Observe that since B is bounded, Hy is also satisfied. If moreover 0 € p(A), then by
Theorem 1.1, the pair (A, B) is regular and G = Dg (0, p) for every 6 € (0, 1) and
p € [1, oo]. Hence if the pair (A, B) is not A-regular, we are done.

In order to construct such a pair, we consider, as in [BC], the space

+00
G = tr(H) = {x = (xken » X € Hand [|x]> =) x> < +o0
k=1
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where (H, ||.||) is a complex Hilbert space. A family (A;)xen of bounded operators
on H defines the following closed densely defined operator A on G:

D(A) i={x = (X )ken » Xk € H , Y on I1Akxk|I? < 00}

2.0 {(Ax)k = Agxi , k € Nforx = (xp)ren € D(A).

Moreover A is bounded if and only if sup, .y l|Axll < oo and if this is the case, we
have [|Al| = supyey [ Acll-

If 0 € p(Ay) for all k € N and sup, .y ||A,:I || < oo, then 0 € p(A). As in [BC],
we shall say that the family of positive operators (Ay)ren Of type (0, M) satisfies
property (P) if for every k € N,

(i) o (Ax) C [0, co0) and

(it) forevery 6 € [0, = [, thereis M (8), independent of k, such that || (/ +zA)7! I <
M (0), for every z € Zy.

We will need the following slight extension of Lemma 4.1 of [BC], which we state
without proof.

LEMMA 2.4. Let (Ap)ren, (Bi)ken be two families of bounded positive operators
on H, satisfying property (P) and such that AyBy = ByAy for all k € N. Then
the operators A and B defined by (2.1) are densely defined and of type (0, M 4) and
(0, Mp) respectively. Moreover, the pair (A, B) satisfies hypotheses Hy, H,, H,.

Now suppose that (Ax)xen and (B)ken are two families of operators in H as in
Lemma 2.4 satisfying (2.2) and (2.3):

(2.2) 0 € p(Ay) forevery k € Nand sup ||A;'|| < oo
keN

(23) VI>1,3x €H, |lx| =1, suchthat I||Ax; + Bixill < | Aixl.

Set By = By, with g > 0, k € N such that || B¢|| < 1 for all k € N. Then the
families (A;)ren and (By)ren also satisfy the assumptions of Lemma 2.4. The pair
(A, B) defined by (2.1) satisfies Hy, H,, H,. Moreover 0 € p(A) by (2.2) and B is
bounded with | B|| < I.

We claim that the regular pair (A, B) is not A-regular. Clearly for every A > 0,
the pair (A, AB) is regular and if (A, B) is A-regular, then there exists M > 1,
independent of A such that forall y € G,

(24) IAA+AB)" 'yl < M|yl
Choose y = y = (3" )ren with

wW = ofork #1
v\ = (A + B)x;, l eN.
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Hence with A = M,", from (2.4) we obtain
2.5) MI\(A; + B)x/l = Al > LICA; + Bpxill

for every I € N, a contradiction since |[(A; + B,)ir, || # 0.
It remains to construct the operators A; and B;. For this purpose, we shall need
the following lemma, which can be essentially found in [BC].

LEMMA 2.5. Let H be a complex separable Hilbert space with a Schauder basis
(en)nen and let (e}),en be the corresponding coordinate functionals. Let (¢, )nen be

a nondecreasing sequence of positive real numbers and let Cy. be the linear operators
defined by

Ny
(2.6) Cex ==Y _cref (x)ex
=0
where Ny € N for all k € N.
Then the operators Cy are bounded positive operators of type (0, M) satisfying
property (P). Moreover, 0 € p(Cy) for all k € N and sup,cn ||Ck—I || < oo.

In view of this lemma, if (a,),en and (b,),en are two nondecreasing sequences
of positive numbers and Ay, f?k are defined by (2.6) where (Ny)ien is an arbitrary
sequence of natural numbers, then the operators Ay, By satisfy all required properties
except (2.3). In order to satisfy this condition, we choose for (e,),en a conditional
basis of £, as in [BC] and we choose for (a,).eN, (b,)nen the sequences denoted by
f(n) and g(n) in [BC], having the property that

o0

sup
x€Gy . lxll=1

e;(x)eg| = oo

t=o Ak + by

where Gy = span{e, , n € N}. It follows that for every / € N, there exists N; € N
and a;; € C for 0 < k <[ such that

N

Ak x, ()
E e (¥ ek
=5 ak + bi ¢

>1

where y = >V i 1e1, 0 < |ly?|| < 1. Setting
{Akx = Z,}ZLO ame:, (x)em
Bix =3, 0 buej, (e
we obtain

NA/A + By~ y @) = 1)1y®)
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or equivalently

14D = 1A + Bz
where ¥ = (A; + B))~'y # 0. Setting
F0

o _
lED

we obtain (2.3). This concludes the construction of Example 2.2. O

Remark 7. In this construction, we can obtain a bounded operator A’ by defining
A;(=vakwithvk >0, keN

in order to ensure that [|A; || < 1. Then, similar arguments show that the pair (A’, B)
does not satisfy (1.1), although it satisfies (1.1).

It follows from Theorem 2.1 that 0 ¢ p(A") U p(B). Hence one cannot assert as
in Example 2.2 that the pair (A’, B) is regular.
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