SOLUTIONS TO THE QUANTUM YANG-BAXTER EQUATION HAVING CERTAIN BIALGEBRAS AS THEIR REDUCED FRT CONSTRUCTION

LARRY LAMBE AND DAVID E. RADFORD

Suppose that M is a finite-dimensional vector space over a field k and that $R: M \otimes M \longrightarrow M \otimes M$ is solution to the quantum Yang-Baxter equation(QYBE). The FRT construction [3] is a bialgebra A(R) associated with R in a natural way. There is a quotient of the FRT construction, referred to as the reduced FRT construction and denoted by $\widehat{A(R)}$, which seems rather useful in computation [11]. The bialgebra A(R) is Hopf algebra only when M=(0), whereas the bialgebra $\widehat{A(R)}$ may very well be a Hopf algebra.

Given a bialgebra A over the field k, a natural question to ask is for which solutions R to the quantum Yang-Baxter equation is $A \simeq \widetilde{A(R)}$ as bialgebras. The question suggests a way of going about classifying and studying solutions to the quantum Yang-Baxter equation.

In this paper we consider three classes of bialgebras as reduced FRT constructions: the semigroup algebras k[S] of semigroups S over k, the universal enveloping algebras U(L) of finite-dimensional abelian Lie algebras over k when k has characteristic 0, and the class of finite-dimensional Hopf algebras over k.

The first two classes provide an interesting contrast. The polynomial algebra $k[x_1, \ldots, x_r]$ in commuting indeterminants x_1, \ldots, x_r is the underlying algebra of U(L), when Dim L = r, and is also the underlying algebra of k[S], when S is the free commutative semigroup on r generators. For the enveloping algebra, one has

$$\Delta(x_i) = 1 \otimes x_i + x_i \otimes 1$$

for all $1 \le i \le r$ and for the semigroup algebra, one has

$$\Delta(x_i) = x_i \otimes x_i$$

for all $1 < i \le r$.

We show that every finite-dimensional Hopf algebra H over k is the reduced FRT construction for some solution to the QYBE. This is not difficult to prove and is very

Received August 8, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 16W30.

Research of the first-named author supported in part by EPSRC.

Research of the second-named author supported by part by a grant from the National Science Foundation.

interesting theoretically. As one might suspect, the quantum double D(H) of H is instrumental in the construction of such a solution.

A special case (r = 1) of Corollary 1 was found during the preparation of [7] and inspired this paper. This special case was presented by the first author in [5].

Throughout this paper k is a field.

1. Preliminaries

In this section we discuss basic definitions and results used in this paper. We assume that the reader has some familiarity with the theory of coalgebras and related structures. A good general reference is [14] from which we draw freely. Other books on Hopf algebras adequate for our purposes are [1] and [9].

Let U and V be vector spaces over the field k. We use the notation $f \colon U \longrightarrow V$ to denote a linear map f from U to V. Composition of linear maps will be denoted by juxtaposition. We will omit the subscript k from the familiar notations $\operatorname{Hom}_k(U,V)$, $\operatorname{End}_k(U)$, and $U \otimes_k V$.

Let $\alpha \in \operatorname{Hom}(U,k) = U^*$ be a linear functional on U. We denote the image of $u \in U$ under α by $\langle \alpha, u \rangle$ or $\alpha(u)$. Suppose that \mathcal{U} is a subspace of U^* . Then $\mathcal{U}^{\perp} = \{u \in U \mid \mathcal{U}(u) = (0)\}$ is a subspace of U. We say that \mathcal{U} is a *dense subspace* of U^* if $\mathcal{U}^{\perp} = \{0\}$. Suppose that \mathcal{U} is a dense subspace of U^* and let V be a finite-dimensional subspace of U. Then for a given $\beta \in U^*$ there exists an $\alpha \in \mathcal{U}$ such that $\alpha|_{V} = \beta|_{V}$, where $\gamma|_{V}$ denotes the restriction of $\gamma \in U^*$ to V.

Various notions of rank will be useful to us. If $f\colon U\longrightarrow V$ is linear then rank f= Dim Im f has the usual meaning. If S is a subset of U then by rank S we mean the dimension of the span of S. Suppose that $v\in U\otimes V$ is not zero. Then v has many representations $\sum_{i=1}^r u_i\otimes v_i$, where $u_i\in U$ and $v_i\in V$ for $1\leq i\leq r$. We will denote the smallest r which occurs in these representations by Rank v. When r= Rank v observe that $\{u_1,\ldots,u_r\}$ and $\{v_1,\ldots,v_r\}$ are linearly independent. We set Rank 0=0.

We let $\tau_U \colon U \otimes U \longrightarrow U \otimes U$ denote the "twist" map defined by $\tau_U(u \otimes v) = v \otimes u$ for all $u, v \in U$.

1.1. The quantum Yang-Baxter equation. Let M be a vector space over the field k and let $R: M \otimes M \longrightarrow M \otimes M$ be a linear map. For $1 \le i < j \le 3$ we define $R_{(i,j)}$ by

$$R_{(1,2)} = R \otimes 1_M, \quad R_{(2,3)} = 1_M \otimes R,$$

and

$$R_{(1,3)} = (1_M \otimes \tau_M)(R \otimes 1_M)(1_M \otimes \tau_M).$$

The equation

$$R_{(2,3)}R_{(1,3)}R_{(1,2)} = R_{(1,2)}R_{(1,3)}R_{(2,3)}$$
(1)

is called the *quantum Yang-Baxter equation* (QYBE). The reader can check that $B = \tau_M R$ satisfies

$$B_{(2,3)}B_{(1,2)}B_{(2,3)} = B_{(1,2)}B_{(2,3)}B_{(1,2)}$$
 (2)

if and only if R satisfies (1). Equation (2) is called the *braid equation*. Solutions to the braid equation are important in connection with invariants of knots and links. See [4] for a discussion of knot and link invariants and also as a source for other references.

1.2. Coalgebras and related structures. Let (C, Δ, ϵ) be a coalgebra over the field k. A common way of denoting the coproduct $\Delta \colon C \longrightarrow C \otimes C$ applied to $c \in C$ is the variation of the Heyneman-Sweedler notation $\Delta(c) = \sum c_{(1)} \otimes c_{(2)}$. We drop the summation symbol and write

$$\Delta(c) = c_{(1)} \otimes c_{(2)}$$

for all $c \in C$. Throughout this paper coalgebras, algebras, and bialgebras are usually denoted by their underlying vector spaces. We let C^{cop} be the coalgebra $(C, \Delta^{\text{cop}}, \epsilon)$, where $\Delta^{\text{cop}} = \tau_C \Delta$. Thus

$$\Delta^{\text{cop}}(c) = c_{(2)} \otimes c_{(1)}$$

for all $c \in C$. The coalgebra C is cocommutative if $C = C^{cop}$.

Likewise, if (A, m, η) is an algebra over k, then A^{op} denotes the algebra (A, m^{op}, η) , where $m^{op} = m\tau_A$. Thus

$$m^{\mathrm{op}}(a \otimes b) = m(b \otimes a) = ba$$

for $a, b \in A$. The algebra A is *commutative* if $A = A^{op}$.

Suppose that (M, ρ) is a right C-comodule. There are various notations for representing $\rho(m) \in M \otimes C$. We will write

$$\rho(m) = m^{\langle 1 \rangle} \otimes m^{(2)}$$

for all $m \in M$, again omitting the summation symbol.

Definition 1. We denote the unique minimal subspace V of C such that $\rho(M) \subseteq M \otimes V$ by $C(\rho)$.

It is not hard to see that $C(\rho)$ is in fact a subcoalgebra of C. Let $m \in M$ and suppose that N is the subcomodule of M which m generates. Then N is finite-dimensional. We may assume that $N \neq (0)$ and $\{m_1, \ldots, m_r\}$ is a basis for N. For $1 \leq j \leq r$ write $\rho(m_j) = \sum_{i=1}^r m_i \otimes c_j^i$. Then the comodule axioms imply that $\epsilon(c_j^i) = \delta_j^i$ and $\Delta(c_j^i) = \sum_{\ell=1}^r c_\ell^i \otimes c_\ell^j$ for all $1 \leq i \leq r$.

The right C-comodule structure (M, ρ) accounts for a left C^* -module structure on M which is described by

$$\alpha \rightharpoonup m = (1_M \otimes \alpha)(\rho(m)) = m^{\langle 1 \rangle} \langle \alpha, m^{(2)} \rangle$$

for all $\alpha \in C^*$ and $m \in M$. We will denote this module structure by (M, μ_ρ) and refer to it as the *rational left C*-module structure on M arising from* (M, ρ) .

An element $c \in C$ is said to be *grouplike* if $\Delta(c) = c \otimes c$ and $\epsilon(c) = 1$. We let G(C) denote the set of all grouplike elements of C. Then by [14, Proposition 3.2.1.b)] we have:

LEMMA 1. Suppose that C is a coalgebra over the field k. Then G(C) is linearly independent.

If C is a bialgebra over k then G(C) is a semigroup under the multiplication of C. If C is a Hopf algebra with antipode s then the semigroup G(C) is a group since $s(c) \in G(C)$ for $c \in C$ and is a multiplicative inverse for c.

Suppose that C is a coalgebra over the field k which is spanned by a subset S of its grouplike elements G(C). Then by Lemma 1 it follows that S = G(C) and C = k[S] is the free k-module on the set S. For $s \in G(C)$ define $e_s \in C^*$ by $\langle e_s, s' \rangle = \delta_{s,s'}$ for $s' \in G(C)$. Then

$$e_s e_{s'} = \delta_{s,s'} e_s \tag{3}$$

for all $s, s' \in G(C)$ and

$$\sum_{s \in G(C)} e_s = \epsilon. \tag{4}$$

Notice that the left hand side of (4) is meaningful since for $c \in C$, only finitely many of the $e_s(c)$'s are non-zero. Therefore for each $c \in C$, the sum $\sum_{s \in G(C)} e_s(c)$ can be interpreted as a finite sum.

Now suppose that (M, ρ) is a right C-comodule and let (M, μ_{ρ}) be the left rational C^* -module structure on M arising from (M, ρ) . For $m \in M$ only finitely many of the $e_s \rightharpoonup m$'s are not zero. Thus $\sum_{s \in G(C)} e_s \rightharpoonup m$ can be regarded as a finite sum and $m = \sum_{s \in G(C)} e_s \rightharpoonup m$ by (4). Let $M_s = e_s \rightharpoonup M$. We have shown that $M = \sum_{s \in G(C)} M_s$. By (3) this sum is direct. Since $\rho(e_s \rightharpoonup m) = m^{(1)} \otimes (e_s \rightharpoonup m^{(2)})$ for all $m \in M$ and $s \in S$ it is easy to see that $M_s = \rho^{-1}(M \otimes ks)$. Note the \mathcal{U} is a sub-semigroup of C^* .

The difference of two grouplike elements in a coalgebra spans a coideal of the coalgebra. By virtue of Lemma 1 it follows that a coideal of C is spanned by differences of grouplike elements. We summarize all of this in the following:

LEMMA 2. Suppose that C is a coalgebra over the field k spanned by a subset of grouplike elements S. Then:

(a) S = G(C) and C = k[S] is the free k-module on S.

- (b) Let (M, ρ) be a right C-comodule and $M_s = \rho^{-1}(M \otimes ks)$ for $s \in G(C)$. Then M_s is a subcomodule of M and $M = \bigoplus_{s \in G(C)} M_s$.
- (c) Let I be a coideal of C. Then I is spanned by certain differences s s', where $s, s' \in G(C)$.

If A is a bialgebra over k, then $v \in A$ is said to be *primitive* if $\Delta(v) = 1 \otimes v + v \otimes 1$. The subspace P(A) of primitives of A is a Lie algebra under the product [u, v] = uv - vu for all $u, v \in P(A)$. Let A^o be the dual bialgebra of A. Recall that $\alpha \in A^*$ belongs to A^o if and only if α vanishes on a cofinite ideal of A. It is not hard to see that $\alpha \in A^*$ belongs to A^o if and only if there exists $v = \sum_{i=1}^r \alpha_i \otimes \beta_i \in A^* \otimes A^*$ such that

$$\langle \alpha, ab \rangle = \sum_{i=1}^{r} \langle \alpha_i, a \rangle \langle \beta_i, b \rangle$$

for all $a, b \in A$. If this is the case, and in addition r = Rank v, then $\alpha_i, \beta_i \in A^o$ for $1 \le i \le r$.

We note in particular that $P(A^o)$ is the set of all $\alpha \in A^*$ which satisfy

$$\langle \alpha, ab \rangle = \langle \epsilon, a \rangle \langle \alpha, b \rangle + \langle \alpha, a \rangle \langle \epsilon, b \rangle$$

for all $a, b \in A$.

1.3. The reduced FRT construction. Throughout this subsection A is a bialgebra over the field k.

Definition 2. Let A be a bialgebra over the field k. A left quantum Yang-Baxter A-module is a triple (M, μ, ρ) , where (M, μ) is a left A-module and (M, ρ) is a right A-comodule, such that

$$a_{(1)} \cdot m^{(1)} \otimes a_{(2)} m^{(2)} = (a_{(2)} \cdot m)^{(1)} \otimes (a_{(2)} \cdot m)^{(2)} a_{(1)}$$
(5)

holds for all $a \in A$ and $m \in M$.

For a discussion of the origin of quantum Yang-Baxter modules the reader is referred to [13]. For their connection with the FRT construction and for a discussion of their structure the reader is referred to [12, 6, 7].

Left quantum Yang-Baxter A-modules give rise to solutions to the QYBE (see [12], [6], [7] for example). Let (M, μ, ρ) be a left quantum Yang-Baxter A-module and define a linear map $R_{(\mu,\rho)}$: $M \otimes M \longrightarrow M \otimes M$ by

$$R_{(\mu,\rho)}(m\otimes n) = m^{\langle 1\rangle} \otimes m^{(2)} \cdot n \tag{6}$$

for all $m, n \in M$. Then $R_{(\mu,\rho)}$ is a solution to the quantum Yang-Baxter equation [12, 6, 7].

Definition 3. Let A be a bialgebra over the field k and let (M, μ, ρ) be a left quantum Yang-Baxter A-module. Then $R_{(\mu,\rho)}$ defined by (6) is the QYBE solution associated with (M, μ, ρ) .

In [7, Section 8.5] we noted that (5) has the more natural formulation

$$(a \cdot m)^{\langle 1 \rangle} \otimes (a \cdot m)^{\langle 2 \rangle} = a \cdot m^{\langle 1 \rangle} \otimes m^{\langle 2 \rangle} \tag{7}$$

for all $a \in A$ and $m \in M$ when A is a commutative cocommutative Hopf algebra with antipode s. In this case (7) implies (5) since A is a commutative cocommutative bialgebra. Since A is commutative, s is an antipode of A^{op} . Starting with the equation

$$(a \cdot m)^{\langle 1 \rangle} \otimes (a \cdot m)^{(2)} = (a_{(3)} \cdot m)^{\langle 1 \rangle} \otimes (a_{(3)} \cdot m)^{(2)} a_{(2)} s(a_{(1)})$$

it is not hard to see that (5) implies (7).

Consider a triple (M, μ, ρ) where (M, μ) is a left A-module and (M, ρ) is a right A-comodule. Let (M, μ_{ρ}) be the left rational A^* -module structure on M arising from (M, ρ) . Then (7) is equivalent to

$$\alpha \rightharpoonup (a \cdot m) = a \cdot (\alpha \rightharpoonup m) \tag{8}$$

for all $\alpha \in M^*$, $a \in A$, and $m \in M$. Thus (5) and (8) are equivalent when A is a commutative cocommutative Hopf algebra over k.

We need the notion of M-reduced [11, Section 3] in order to describe the reduced FRT construction.

Definition 4. Let A be a bialgebra over k and suppose (M, μ) is a left A-module. Then A is M-reduced if the only coideal of A contained in ann_A(M) is (0).

Let (M, μ) be a left A-module. Then the sum I of all coideals of A contained in $\operatorname{ann}_A(M)$ is a bi-ideal of A. Thus $\widetilde{A} = A/I$ is a bialgebra over k with the quotient bialgebra structure. Let $\pi \colon A \longrightarrow \widetilde{A}$ be the projection. Then $(M, \widetilde{\mu})$ is a left \widetilde{A} -module, where $\widetilde{\mu}$ is determined by $\widetilde{\mu}(\pi \otimes 1_M) = \mu$, and \widetilde{A} is $(M, \widetilde{\mu})$ -reduced. We leave the reader to work out the details.

In the finite-dimensional case solutions to the quantum Yang-Baxter equation have the form $R_{(\mu,\rho)}$ by the next result. The following proposition is Theorem 4.2.2 in [7] which is a slight variation of Theorem 2 in [11].

PROPOSITION 1. Suppose that M is a finite-dimensional vector space over the field k and that $R: M \otimes M \longrightarrow M \otimes M$ is a solution to the quantum Yang-Baxter equation. Then the bialgebra $\widehat{A(R)}$ satisfies the following properties:

(a) There exists a left quantum Yang-Baxter $\widetilde{A(R)}$ -module structure (M, μ, ρ) on M such that $\widetilde{A(R)}$ is M-reduced and $R = R_{(\mu,\rho)}$.

(b) Suppose that A is a bialgebra over the field k and (M, μ', ρ') is a left quantum Yang-Baxter A-module structure on M such A is M-reduced and $R = R_{(\mu', \rho')}$. There is a bialgebra map $F: \widehat{A(R)} \longrightarrow A$ uniquely defined by $(1_M \otimes F)\rho = \rho'$. Furthermore $\mu = \mu'(F \otimes 1_M)$, F is one-one, and F is an isomorphism when $A(\rho')$ (see Definition 1) generates A as an algebra.

Definition 5. Let M be a finite-dimensional vector space over the field k and suppose that $R: M \otimes M \longrightarrow M \otimes M$ is a solution to the quantum Yang-Baxter equation. The bialgebra $\widehat{A(R)}$ described in the previous proposition is the reduced FRT construction.

The reduced FRT construction $\widetilde{A(R)}$ is a quotient of the FRT construction A(R) which has a universal mapping property similar to that of Proposition 1. See Theorem 2 in [12].

Suppose that M is a finite-dimensional vector space over k and (M, μ, ρ) is a left quantum Yang-Baxter A-module structure on M. Let R be the solution to the quantum Yang-Baxter equation associated with (M, μ, ρ) . Then $\widetilde{A(R)}$ is a sub-bialgebra of a quotient of A.

To establish this, we first let I be the bi-ideal of A which is the sum of the coideals of A contained in $\operatorname{ann}_A(M)$. Set $\widetilde{A} = A/I$ and let $\pi \colon A \longrightarrow \widetilde{A}$ and $(M, \widetilde{\mu})$ be as above. Since π is a coalgebra map, $\widetilde{\rho} \colon M \longrightarrow M \otimes \widetilde{A}$ defined by $\widetilde{\rho} = (1_M \otimes \pi)\rho$ gives M a right \widetilde{A} -comodule structure $(M, \widetilde{\rho})$. It is easy to see that $(M, \widetilde{\mu}, \widetilde{\rho})$ is a left quantum Yang-Baxter \widetilde{A} -module and that $R_{(\mu,\rho)} = R_{(\widetilde{\mu},\widetilde{\rho})}$. Since \widetilde{A} is $(M, \widetilde{\mu})$ -reduced, it follows that $\widetilde{A(R)} \simeq \widetilde{A}(\widetilde{\rho})$ by Proposition 1.

1.4. The Hopf algebra U(r, k). Let L be an r-dimensional abelian Lie algebra over the field k. We denote the universal enveloping algebra U(L) by U(r, k). Choose a basis $\mathcal{B} = \{x_1, \ldots, x_r\}$ for L. Then as a k-algebra $U(r, k) = k[x_1, \ldots, x_r]$ is the polynomial algebra over k in commuting indetermants x_1, \ldots, x_r . For $n = (n_1, \ldots, n_r) \in \mathbb{N} \times \cdots \times \mathbb{N} = \mathbb{N}^r$ define

$$x^{\mathbf{n}} = x_1^{n_1} \cdots x_r^{n_r}. \tag{9}$$

Thus the x^n 's form a linear basis for U(r, k). Let $U(r, k)_n$ be the homogeneous (total) degree n subspace of U(r, k) for all $n \ge 0$, i.e. $U(r, k)_n$ is the span of the x^n 's which satisfy $|x^n| = n$, where $|n| = n_1 + \cdots + n_r$. Thus U(r, k) is a graded algebra since

$$U(r,k) = \bigoplus_{n=0}^{\infty} U(r,k)_n$$

and

$$U(r, k)_m U(r, k)_n = U(r, k)_{m+n}$$

for all $m, n \geq 0$.

Set $U(r, k)_{(0)} = U(r, k)$ and let $U(r, k)_{(n)}$ be the span of the x^n 's where $|n| \ge n$. Notice that

$$U(r,k)_{(m)}U(r,k)_{(n)} = U(r,k)_{(m+n)}$$
(10)

for all $m, n \ge 0$ and

$$U(r,k)_{(0)} \supseteq U(r,k)_{(1)} \supseteq U(r,k)_{(2)} \supseteq \dots$$
 (11)

For $1 \le i \le r$ let $\epsilon_i = (0, \dots, 1, \dots, 0)$ be the r-tuple whose entries are 0 except for the i^{th} , which is 1. Define $X_i \in U(r, k)^*$ by

$$\langle X_i, x^n \rangle = \delta_{\epsilon_i, n} \tag{12}$$

for all $n \in \mathbb{N}^r$. Let $n = (n_1, \dots, n_r) \in \mathbb{N}^r$. Set

$$X^{\mathbf{n}} = X_1^{n_1} \cdots X_r^{n_r} \tag{13}$$

and set $n! = n_1! \cdots n_r!$. The notation $m \le n$ means that $m_i \le n_i$ for all $1 \le i \le r$, where $m = (m_1, \dots, m_r)$. Set

$$\left(\begin{array}{c} \boldsymbol{n} \\ \boldsymbol{m} \end{array}\right) = \prod_{i=1}^{r} \left(\begin{array}{c} n_i \\ m_i \end{array}\right).$$

Thus $\binom{n}{m} = 0$ unless $m \le n$, in which case

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}.$$

We are nearly ready to describe the structure of U(r, k) as a Hopf algebra. First some more notation. Let P(r, k) = P(U(r, k)) be the space of primitive elements of U(r, k), let $P^{o}(r, k)$ be the space of primitive elements of $U(r, k)^{o}$, and let $U^{o}(r, k)$ be the subalgebra of $U(r, k)^{*}$ generated by $P^{o}(r, k)$.

The reader is left with with the details of proof of the following lemma.

LEMMA 3. Let $r \ge 1$ and suppose that the field k has characteristic 0. Let $\mathcal{B} = \{x_1, \ldots, x_r\}$ be a basis for $U(r, k)_1$ and suppose that x^n and x^n are defined by (9)–(13). Then:

- (a) $P(r, k) = U(r, k)_1$. In particular \mathcal{B} is a basis for the subspace of primitive elements of U(r, k), and the x^n 's form a basis for U(r, k).
- (b) $\Delta(x^n) = \sum_{m \le n} \binom{n}{m} x^{n-m} \otimes x^m \text{ for all } n \in \mathbb{N}^r.$
- (c) $X^{n}(x^{m}) = n!\delta_{n,m}$ for all $n, m \in \mathbb{N}^{r}$. Thus the X^{n} 's form a linearly independent set.

- (d) $P^{o}(r, k)$ has linear basis $\{X_{1}, ..., X_{r}\}$. In particular $Dim P^{o}(r, k) = Dim P(r, k) = r$.
- (e) $U^o(r, k)$ is a sub-bialgebra of U(r, k) and the correspondence $x_i \mapsto X_i$ determines a bialgebra isomorphism $U(r, k) \cong U^o(r, k)$.
- (f) $U^{o}(r, k)$ is a dense subalgebra of $U(r, k)^{*}$.

We now consider the subalgebras and quotients of $\mathrm{U}(r,k)$. The bialgebra $\mathrm{U}(r,k)$ belongs to the class of pointed irreducible cocommutative bialgebras. It is clear that sub-bialgebras and quotients of cocommutative bialgebras are cocommutative. Subcoalgebras of pointed irreducible coalgebras are pointed irreducible. Quotients of pointed irreducible coalgebras are pointed irreducible by [14, Corollary 8.0.9]. Therefore sub-bialgebras and quotients of cocommutative pointed irreducible bialgebras are themselves cocommutative and pointed irreducible. By [14, Lemma 9.2.3], a pointed irreducible bialgebra is a Hopf algebra.

Now assume that the characteristic of k is 0 and H is a cocommutative pointed irreducible Hopf algebra over k. Then $H \simeq U(P(H))$ as Hopf algebras by [14, Theorem 13.0.1]. We make the following definition.

Definition 6. Let H be a cocommutative pointed irreducible Hopf algebra over the field k. Then rank H = Dim P(H).

By part (a) of Lemma 3 we have:

LEMMA 4. Suppose that the field k has characteristic 0. Then rank U(r, k) = r.

The conclusion of the lemma is false when the characteristic of k is not 0 except in the case when r = 0.

PROPOSITION 2. Suppose that the field k has characteristic 0.

- (a) Let B be a sub-bialgebra of U(r, k). Then B is a sub-Hopf algebra of U(r, k) and $B \simeq U(s, k)$ for some $s \le r$. Furthermore B = U(r, k) if and only if s = r, or equivalently rank B = rank U(r, k).
- (b) Suppose that I is a bi-ideal of U(r, k). Then $U(r, k)/I \simeq U(s, k)$ for some $s \le r$. Furthermore I = (0) if and only if s = r, or equivalently rank $U(r, k)/I = \operatorname{rank} U(r, k)$.

Proof. In light of the preceding comments we need only establish part (b). Suppose that I is a bi-ideal of U(r, k) and let $\pi: U(r, k) \longrightarrow U(r, k)/I$ be the projection. Set L = P(r, k). Then $\pi(L) \subseteq P(U(r, k)/I)$. Since L generates U(r, k) as an algebra it follows that $\pi(L)$ generates U(r, k)/I as an algebra. Since the monomials in a linear basis for P(U(r, k)/I) form a linear basis for U(r, k)/I it follows that $\pi(L) = P(U(r, k)/I)$. Therefore $U(r, k)/I \simeq U(s, k)$, where s = Dim P(U(r, k)/I). Now

 π is an isomorphism if and only if $\pi|_L$: $L \longrightarrow \pi(L)$ is a linear isomorphism. This is the case if and only if s = r which happens if and only if $\ker \pi|_L = I \cap L = (0)$. But $I \cap L = (0)$ if and only if I = (0) by [14, Lemma 11.0.1]. \square

2. The semigroup algebra as a reduced FRT construction

Throughout this section S is a (multiplicative) semigroup with neutral element e and A = k[S] is the semigroup algebra over k. We give A a bialgebra structure by making $s \in S$ grouplike. By part (a) of Lemma 2 it follows that S = G(A). In this section we characterize the left quantum Yang-Baxter A-modules and for the associated solution R to the quantum Yang-Baxter equation we compute the reduced FRT construction $\widehat{A(R)}$. It turns out that $\widehat{A(R)} \simeq k[S]$ where S is a quotient of a sub-semigroup of S.

We note that $A(\overline{R})$ has been studied, when $A(\overline{R})$ is spanned by grouplike elements, in special cases in [11] and [7, Chapter 4].

Let M be a left A-module. To say that A is M-reduced is to say that A is faithfully represented by endomorphisms of M.

PROPOSITION 3. Suppose that S is a semigroup and A = k[S] is the semigroup algebra of S over the field k. Let (M, μ) be a left A-module and suppose that $\pi \colon A \longrightarrow \operatorname{End}(M)$ is the representation afforded by (M, μ) . Then the following are equivalent:

- (a) A is M-reduced.
- (b) The restriction $\pi|_S: S \longrightarrow \text{End}(M)$ is one-one.

Proof. Suppose that A is M-reduced and let $s, s' \in S$ satisfy $\pi(s) = \pi(s')$. Then $s - s' \in \operatorname{ann}_A(M)$ and spans a coideal of A. Therefore s - s' = 0. We have shown part (a) implies part (b).

To show part (b) implies part (a), suppose that the restriction $\pi|_S$ is one-one. Let I be a coideal of A contained in $\operatorname{ann}_A(M)$. Suppose that $s, s' \in S$ and $s - s' \in I$. Then $\pi(s) = \pi(s')$ which means that s - s' = s - s = 0. By part (c) of Lemma 2 we conclude that I = (0). Thus A is M-reduced. \square

It is convenient to express a representation of S by endomorphisms of M in a slightly different terminology.

Definition 7. Let S be a multiplicative semigroup with neutral element e and suppose that M is a vector space over the field k. A set of endomorphisms $\{T_s\}_{s\in S}$ is a representing set of endomorphisms of S in M if $T_e=1_M$ and $T_sT_{s'}=T_{ss'}$ for $s,s'\in S$.

PROPOSITION 4. Suppose that S is a semigroup and A = k[S] is the semigroup algebra of S over the field k. Let (M, ρ) be a right A-comodule and suppose that $\pi \colon A \longrightarrow \operatorname{End}(M)$ is the representation afforded by the rational left A^* -module structure (M, μ_{ρ}) arising from (M, ρ) . Then $A(\rho)$ is the span of the $s \in S$ such that $\pi(e_s) \neq 0$, where $e_s \in A^*$ is defined by $\langle e_s, s' \rangle = \delta_{s,s'}$ for all $s' \in S$.

Proof. By part (b) of Lemma 2 we have $M = \bigoplus_{s \in S} M_s$ where $M_s = \rho^{-1}(M \otimes ks)$ for $s \in S$. Now $A(\rho)$ is the span of the $s \in S$ such that $M_s \neq (0)$. Since $\pi(e_s)(M_{s'}) = \delta_{s,s'}M_s$ it follows that $M_s \neq (0)$ if and only if $\pi(e_s) \neq (0)$. \square

Let $\pi: S \longrightarrow \operatorname{End}(M)$ be the representation of S implicit in the previous proposition. Then the endomorphisms $E_s = \pi(s)$ of M satisfy the conditions of the following definition.

Definition 8. Let S be a set and suppose that M is a vector space over the field k. A set $\{E_s\}_{s\in S}$ of endomorphisms of M is a spanning orthogonal set of endomorphisms of M if $E_sE_{s'}=\delta_{s,s'}E_s$ for all $s,s'\in S$ and $\sum_{s\in S}\operatorname{Im} E_s=M$.

Observe that the sum $M = \sum_{s \in S} \operatorname{Im} E_s$ described in the definition is direct. Also for $m \in M$ the set of $s \in S$ such that $E_s(m) \neq 0$ is finite. Therefore $\sum_{s \in S} E_s$ defined by $(\sum_{s \in S} E_s)(m) = \sum_{s \in S} E_s(m)$ for $m \in M$ is a well-defined endomorphism of M since the right hand side of the last equation can be regarded as a finite sum.

Our next result characterizes the left A-modules, right A-comodules, and the left quantum Yang-Baxter A-modules of a semigroup algebra A = k[S].

PROPOSITION 5. Suppose that S is a semigroup and M is a vector space over k. Then:

(a) There is a one-one correspondence

$$\mathcal{T} \mapsto (M, \mu_{\mathcal{T}})$$

between the set of representing sets of endomorphisms $T = \{T_s\}_{s \in S}$ of S in M and the set of left A-module structures on M, where $s \cdot m = T_s(m)$ for all $s \in S$ and $m \in M$.

(b) There is a one-one correspondence

$$\mathcal{N} \mapsto (M, \rho_{\mathcal{E}})$$

between the set of spanning orthogonal sets of endomorphisms $\mathcal{E} = \{E_s\}_{s \in S}$ of M and the set of right A-comodule structures on M, where

$$\rho_{\mathcal{E}}(m) = \sum_{s \in S} E_s(m) \otimes s$$

for all $m \in M$.

Suppose that (M, μ_T) and (M, ρ_E) are as described in parts (a) and (b) respectively. Then:

(c) (M, μ_T, ρ_E) is a left quantum Yang-Baxter A-module if and only if the endomorphisms of T and E commute. In this case the associated solution to the quantum Yang-Baxter equation is given by

$$R=\sum_{s\in S}E_s\otimes T_s,$$

where $R = R_{(\mu_{\tau}, \rho_{\varepsilon})}$.

Proof. Part (a) follows since we are really characterizing the representations $\pi \colon S \longrightarrow \operatorname{End}(M)$ which are in one-one correspondence with the representations of A as endomorphisms of M. Part (b) is a straightforward exercise based on part (b) of Lemma 2.

It remains to establish part (c). Recall from Section 1 that the e_s 's defined by $\langle e_s, s' \rangle = \delta_{s,s'}$ for $s, s' \in S$ span a dense subspace of A^* . Now (M, μ_T, ρ_E) is a left quantum Yang-Baxter A-module if and only if (8) holds, namely

$$\alpha \rightarrow (a \cdot m) = a \cdot (\alpha \rightarrow m)$$

for all $\alpha \in A^*$ and $m \in M$. Since the e_s 's span a dense subspace of A^* and S is a basis for A this last condition holds if and only if

$$e_s \rightarrow (s' \cdot m) = s' \cdot (e_s \rightarrow m)$$

for all $s, s' \in S$. Fix $s, s' \in S$. Since $e_s \rightarrow m = E_s(m)$ and $s \cdot m = T_s(m)$ for all $m \in M$, this last equation is the same as $E_s T_{s'} = T_{s'} E_s$. We have established part (c), and the proof is complete. \square

We leave the proof of the following to the reader.

THEOREM 1. Suppose that S is a semigroup and A = k[S] is the semigroup algebra of S over the field k. Let M be a vector space over k. Suppose that $\{T_s\}_{s\in S}$ is a set of endomorphisms of M representing S and $\{E_s\}_{s\in S}$ is a spanning orthogonal set of endomorphisms of M. Assume that the members of T and E commute and set

$$R=\sum_{s\in S}E_s\otimes T_s.$$

Then:

- (a) R is a solution to the quantum Yang-Baxter equation.
- (b) Assume that M is finite-dimensional. Let $S(\rho)$ be the sub-semigroup of S generated by the $s \in S$ such that $E_s \neq 0$, and let S be the set of equivalence classes of $S(\rho)$ under the relation $s \sim s'$ if and only if $T_s = T_{s'}$. Then S is a multiplicative semigroup with neutral element [e] and product [s][s'] = [ss'] for $s, s' \in S$, and $\widehat{A(R)} \simeq k[S]$.

3. The enveloping algebra of an abelian Lie algebra as a reduced FRT construction

Let M be a finite-dimensional vector space over the field k. In this section we find all solutions $R: M \otimes M \longrightarrow M \otimes M$ to the quantum Yang-Baxter equation such that $\widetilde{A(R)} \simeq U(r,k)$ for some $r \geq 1$ when the characteristic of k is 0.

We describe the left U(r, k)-modules, the right U(r, k)-comodules, and the left quantum Yang-Baxter U(r, k)-modules in terms of r-tuples of endomorphisms of M. Initially we do not assume that M is finite-dimensional.

We begin this section with a study of the left U(r, k)-modules M.

PROPOSITION 6. Suppose that M is a vector space over the field $k, r \ge 1$, and $\pi: U(r, k) \longrightarrow \operatorname{End}(M)$ is a representation of U(r, k). Let (M, μ) be the resulting left U(r, k)-module structure on M. Assume that the characteristic of k is 0. Then the following are equivalent:

- (a) U(r, k) is (M, μ) -reduced.
- (b) For all bases $\{x_1, \ldots, x_r\}$ for P(r, k) the set $\{T_1, \ldots, T_r\}$ of endomorphisms of M is linearly independent, where $T_i = \pi(x_i)$ for all $1 \le i \le r$.
- (c) There exists a basis $\{x_1, \ldots, x_r\}$ for P(r, k) such that the set $\{T_1, \ldots, T_r\}$ of endomorphisms of M is linearly independent, where $T_i = \pi(x_i)$ for all $1 \le i \le r$.

Proof. Let L = P(r, k) and I be the largest coideal of U(r, k) contained in $\operatorname{ann}_{U(r, k)}(M)$. Consider the restriction map $\pi|_{L}: L \longrightarrow \operatorname{End}(M)$. Since $\operatorname{Ker} \pi|_{L} = L \cap I$, and I is a coideal of U(r, k), it follows by [14, Lemma 11.0.1] that I = (0) if and only if $L \cap I = (0)$. The proposition now follows. \square

PROPOSITION 7. Suppose that M is a vector space over the field $k, r \ge 1$ and (M, ρ) is a right U(r, k)-comodule. Assume that the characteristic of k is 0 and let $\pi \colon U(r, k)^* \longrightarrow \operatorname{End}(M)$ be the representation of $U(r, k)^*$ afforded by the rational left $U(r, k)^*$ -module structure (M, μ_{ρ}) . Then the following are equivalent:

- (a) $U(r, k)(\rho)$ generates U(r, k) as an algebra.
- (b) For all bases $\{X_1, \ldots, X_r\}$ for $P^o(r, k)$ the set $\{N_1, \ldots, N_r\}$ of endomorphisms of M is linearly independent, where $N_i = \pi(X_i)$ for all $1 \le i \le r$.
- (c) There exists a basis $\{X_1, \ldots, X_r\}$ for $P^o(r, k)$ such that the set of endomorphisms $\{N_1, \ldots, N_r\}$ of M is linearly independent, where $N_i = \pi(X_i)$ for all $1 \le i \le r$.

Proof. Let A = U(r, k), let B be the subalgebra of A generated by $A(\rho)$, and consider the map Res: $P(A^o) \longrightarrow P(B^o)$ defined by $Res(p) = p|_B$. Let $p \in P(A^o) = P^o(r, k)$. Then Ker p is a subalgebra of A. Thus it follows that

 $p(A(\rho)) = (0)$ if and only if p(B) = (0). Since $\operatorname{ann}_{A^*}(M) = A(\rho)^{\perp}$ we conclude that $p \in \operatorname{ann}_{A^*}(M)$ if and only if p(B) = (0).

We have shown that $\operatorname{Ker} \operatorname{Res} = \operatorname{P}^o(r,k) \cap \operatorname{ann}_{A^*}(M) = \operatorname{Ker} \pi |_{\operatorname{P}^o(r,k)}$. Therefore Rank $\operatorname{Res} = \operatorname{Rank} \pi |_{\operatorname{P}^o(r,k)}$. By part (a) of Proposition 2 and Lemma 3, Res is onto. Thus we compute

$$\operatorname{Dim} P(B) = \operatorname{Dim} P(B^{o}) = \operatorname{Rank} \operatorname{Res} = \operatorname{Rank} \pi |_{\mathbf{P}^{o}(r, k)}.$$

By part (a) of Proposition 2 again we have A = B if and only if r = Dim P(B), and $r = \text{Dim } P^o(r, k)$ by part (d) of Lemma 3. Thus it follows that A = B if and only if $\pi \mid_{P^o(r, k)}$ is one-one. Now the proof is easily completed. \square

We next characterize the left modules, right comodules, and the left quantum Yang-Baxter modules for U(r, k) when the field k has characteristic 0. We will find the following notation conventions very convenient. Let V be a vector space over k and $r \ge 1$ be a fixed integer. For an r-tuple $\mathcal{T} = (T_1, \ldots, T_r)$ of endomorphisms of M we define

$$T^{n} = T_1^{n_1} \cdots T_r^{n_r}$$

for all $\mathbf{n} = (n_1, \dots, n_r) \in \mathbb{N} \times \dots \times \mathbb{N} = \mathbb{N}^r$.

To characterize the right comodules for U(r, k) we will need the notion of locally nilpotent endomorphism.

Definition 9. A linear endomorphism $T: V \longrightarrow V$ of a vector space over V over the field k is *locally nilpotent* if for every $v \in V$ there is an integer $n \ge 0$ such that $T^n(v) = 0$.

A basic example of a locally nilpotent endomorphism is the following. Let (M, ρ) be a right C-comodule for a coalgebra C over the field k and let (M, μ_{ρ}) be the resulting rational left C^* -module structure on M. Let $\pi \colon C^* \longrightarrow \operatorname{End}(M)$ be the representation of C^* afforded by (M, μ_{ρ}) . Then

$$\pi(\alpha)(m) = \alpha \rightarrow m = m^{\langle 1 \rangle} \langle \alpha, m^{(2)} \rangle$$

for all $\alpha \in C^*$ and $m \in M$. Since every $m \in M$ generates a finite-dimensional subcomodule $(N, \rho|_N)$ of (M, ρ) , and thus $C(\rho|_N)$ is a finite-dimensional subcoalgebra of C, it follows that $\pi(\alpha)$ is a locally nilpotent endomorphism of M for all $\alpha \in \operatorname{Rad}(C^*)$.

Now suppose that V is a vector space over the field k and $N \in \text{End}(V)$ is locally nilpotent. Then

$$T = \sum_{\ell=0}^{\infty} \alpha_{\ell} N^{\ell}$$

is a well-defined endomorphism of V for any $\alpha_0, \alpha_1, \alpha_2, \ldots \in k$. To see this, note that for a given $v \in V$ there are only finitely many $\ell \geq 0$ such that $N^{\ell}(v) \neq 0$. Thus

$$T(v) = \sum_{\ell=0}^{\infty} N^{\ell}(v)$$

has finitely many non-zero summands and can thus be regarded as a finite sum. For the same reason if $\mathcal{N} = (N_1, \dots, N_r)$ is an r-tuple of locally nilpotent endomorphism of V then

$$T = \sum_{\boldsymbol{n} \in N^r} \alpha_{\boldsymbol{n}} \mathcal{N}^{\boldsymbol{n}}$$

is a well-defined endomorphism of V for all choices of coefficients $\alpha_n \in k$. If in addition $\mathcal{T} = (T_1, \dots, T_r)$ is an r-tuple of endomorphisms of V then

$$T = \sum_{n \in N^r} \alpha_n \mathcal{N}^n \otimes \mathcal{T}^n$$

is a well-defined endomorphism of $V \otimes V$ for any choice of coefficients $\alpha_n \in k$. There are obvious generalizations of the latter to the tensor product of a finite number of vector spaces over k.

PROPOSITION 8. Suppose that M is a vector space over the field k and $r \ge 1$. Assume that the characteristic of k is 0. Let $\mathcal{B} = \{x_1, \ldots, x_r\}$ be a fixed basis for the space of primitives P(r, k) of U(r, k). Then:

(a) There is a one-one correspondence

$$\mathcal{T} \mapsto (M, \mu_{\mathcal{T}, \mathcal{B}})$$

between the set of r-tuples $T = (T_1, ..., T_r)$ of commuting endomorphisms of M and the set of left U(r, k)-module structures on M, where $x_i \cdot m = T_i(m)$ for all $1 \le i \le r$ and $m \in M$.

(b) There is a one-one correspondence

$$\mathcal{N} \mapsto (M, \rho_{\mathcal{N},\mathcal{B}})$$

between the set of r-tuples $\mathcal{N}=(N_1,\ldots,N_r)$ of commuting locally nilpotent endomorphisms of M and the set of right U(r,k)-comodule structures on M, where

$$\rho_{\mathcal{N},\mathcal{B}}(m) = \sum_{\boldsymbol{n} \in N^r} \mathcal{N}^{\boldsymbol{n}}(m) \otimes \frac{x^{\boldsymbol{n}}}{\boldsymbol{n}!}$$

for all $m \in M$.

Suppose that $(M, \mu_{\mathcal{T}, \mathcal{B}})$ and $(M, \rho_{\mathcal{N}, \mathcal{B}})$ are as described in parts (a) and (b) respectively. Then:

(c) $(M, \mu_{T,B}, \rho_{N,B})$ is a left quantum Yang-Baxter U(r, k)-module if and only if the components of T and N commute. In this case the associated solution to the quantum Yang-Baxter equation is given by

$$R = \sum_{n \in \mathcal{N}^r} \frac{1}{n!} \mathcal{N}^n \otimes \mathcal{T}^n,$$

where $R = R_{(\mu_{\mathcal{N},\mathcal{B}},\rho_{\mathcal{T},\mathcal{B}})}$.

Proof. Part (a) follows from the usual formulation of left A-module structures (M, μ) on M in terms of representations $\pi_{\mu} \colon A \longrightarrow \operatorname{End}(M)$ given by $\mu(a \otimes m) = \pi_{\mu}(a)(m)$ for any algebra A over k, where $a \in A$ and $m \in M$, together with the observation that as an algebra $A = \operatorname{U}(r, k)$ is the (commutative) polynomial algebra over k on any basis for P(A).

To show part (b) we first note that the subalgebra $\mathcal{A} = U^o(r, k)$ of $A^o = U(r, k)^o$ generated by $P^o(r, k) = P(A^o)$ is a dense subspace of A^* by part (f) of Lemma 3. Thus if $\rho \colon M \longrightarrow M \otimes A$ is a linear map we have that (M, ρ) is a right A-comodule if and only if (M, μ_ρ) is a left A-module, where this module action is given by

$$\alpha \cdot m = (1_M \otimes \alpha)(\rho(m))$$

for all $\alpha \in \mathcal{A}$ and $m \in M$.

First of all assume that $\mathcal{N} = (N_1 \dots, N_r)$ is an r-tuple whose components are commuting locally nilpotent endomorphisms of M. Define $\rho_{\mathcal{N},B} \colon M \longrightarrow M \otimes A$ by

$$\rho_{\mathcal{N},B}(m) = \sum_{\boldsymbol{n} \in \mathbb{N}^r} \mathcal{N}^{\boldsymbol{n}}(m) \otimes \frac{x^{\boldsymbol{n}}}{\boldsymbol{n}!}$$

for all $m \in M$. By part (b) of Lemma 3 it follows that

$$\Delta\left(\frac{x^n}{n!}\right) = \sum_{m < n} \frac{x^{n-m}}{(n-m)!} \otimes \frac{x^n}{m!}$$

for all $n \in \mathbb{N}^r$. Therefore $(M, \rho_{\mathcal{N}, \mathcal{B}})$ is a right U(r, k)-comodule.

Conversely, suppose that (M, ρ) is a right A = U(r, k)-comodule. Let π : $A^* \longrightarrow \operatorname{End}(M)$ be the representation of the induced left rational A^* -module structure (M, μ_{ρ}) on M. By parts (b) and (d) of Lemma 3 the set $\{X_1, \ldots, X_r\}$ is a basis for $P(A^o)$, where $X_i(x^n) = \delta_{\epsilon_i,n}$ for all $n \in \mathbb{N}^r$, and $X^n(x^m) = n!\delta_{n,m}$ for all $n, m \in \mathbb{N}^r$. Let $N_i = \pi(X_i)$. Then N_1, \ldots, N_r commute since X_1, \ldots, X_r commute. Now let $m \in M$ and suppose that N is the finite-dimensional sub-comodule of M which m generates. Then $\rho(N) \subseteq N \otimes V$ for some finite-dimensional subspace

V of A. Therefore there exist an integer $n_{\min} \ge 0$ such that V is in the span of the x^n 's, where $n = (n_1, \dots, n_r)$ satisfies $n_i \le n_{\min}$ for all $1 \le i \le r$. This means

$$\mathcal{N}^{\mathbf{n}}(m) = X^{\mathbf{n}} \rightarrow m \in M\langle X^{\mathbf{n}}, V \rangle = (0)$$

whenever $n_i > n_{\min}$ holds for one of the components n_i of n. In particular N_i is a locally nilpotent endomorphism of M for $1 \le i \le r$. Since A is a dense subspace of A^* and is spanned by the X^n 's, the calculation

$$(1_{M} \otimes X^{m}) \left(\sum_{n \in \mathbb{N}^{r}} \mathcal{N}^{n}(m) \otimes \frac{x^{n}}{n!} \right) = \mathcal{N}^{m}(m)$$

$$= X^{m} \rightarrow m$$

$$= (1_{M} \otimes X^{m})(\rho(m))$$

for all $m \in \mathbb{N}^r$ and $m \in M$ shows that $\rho = \rho_{\mathcal{N},\mathcal{B}}$. We leave it to the reader to complete the proof of part (b) by showing for r-tuples \mathcal{N} and \mathcal{N}' whose components are commuting locally nilpotent endomorphisms of M that $\rho_{\mathcal{N},\mathcal{B}} = \rho_{\mathcal{N}',\mathcal{B}}$ implies $\mathcal{N} = \mathcal{N}'$.

We now show part (c). By parts (a) and (b) any left quantum Yang-Baxter A-module has the form $(M, \mu_{\mathcal{T},B}, \rho_{\mathcal{N},B})$ where $\mathcal{T} = (T_1, \ldots, T_r)$ and $\mathcal{N} = (N_1, \ldots, N_r)$ are r-tuples of commuting endomorphisms, where N_1, \ldots, N_r are locally nilpotent. The formula for $R = R_{(\mu_{\mathcal{T},B},\rho_{\mathcal{N},B})}$ follows from the calculation

$$R(m \otimes n) = m^{(1)} \otimes m^{(2)} \cdot n$$

$$= \sum_{n \in \mathbb{N}^{r}} \mathcal{N}^{n}(m) \otimes \left(\frac{x^{n}}{n!}\right) \cdot n$$

$$= \sum_{n \in \mathbb{N}^{r}} \mathcal{N}^{n}(m) \otimes \frac{1}{n!} \mathcal{T}^{n}(n)$$

for all $m, n \in M$.

We complete the proof of part (c) by showing that (8) holds, namely

$$\alpha \rightarrow (a \cdot m) = a \cdot (\alpha \rightarrow m)$$

for all $\alpha \in A^*$, $a \in A$, and $m \in M$ if and only if the T_i 's and N_j 's commute. Since A is a dense subalgebra of A^* it is not hard to see that (8) is equivalent to

$$X_i \rightharpoonup (x_i \cdot m) = x_i \cdot (X_i \rightharpoonup m)$$

for all $1 \le i, j \le r$ and $m \in M$. This last equation is equivalent to $N_i T_j = T_j N_i$ for all $1 \le i, j \le r$. We have shown part (c), and thus the proof of the proposition is complete. \square

The solution to the quantum Yang-Baxter equation described in part (c) of Proposition 8 can be described in terms of the exponential map. Assume that the characteristic of k is 0 and that N is a locally nilpotent endomorphism of a vector space V over k. Then

$$\exp N = \sum_{n=0}^{\infty} \frac{N^n}{n!}$$

is a well-defined endomorphism of V. The endomorphism of part (c) of Proposition 8 can be written

$$R = \exp(N_1 \otimes T_1) \cdots \exp(N_r \otimes T_r).$$

When M is finite-dimensional, observe that $R = 1_{M \otimes M} + N$ for some nilpotent endomorphism N of $M \otimes M$; thus R is unipotent.

Suppose that A = U(r, k) and that $(M, \rho_{\mathcal{N}, \mathcal{B}})$ is a finite-dimensional right A-comodule. To prove the theorem of this section we need to know the rank of the subalgebra B of A generated by $A(\rho)$.

LEMMA 5. Suppose that M is a finite-dimensional vector space over the field k and $\mathcal{N} = (N_1, \ldots, N_r)$ is an r-tuple of nilpotent endomorphisms of M. Assume that the characteristic of k is 0, let \mathcal{B} be a basis for P(r, k), and suppose that B is the subalgebra of U(r, k) generated by $U(r, k)(\rho_{\mathcal{N},\mathcal{B}})$. Then rank $B = \operatorname{rank} \mathcal{N}$.

Proof. First of all suppose that C is a coalgebra over k and that (M, ρ) is a finite-dimensional right C-comodule. Let $\{m_1, \ldots, m_s\}$ be a basis for M and write $\rho(m_j) = \sum_{i=1}^s m_i \otimes c_i^i$ where $c_i^i \in C$. Then $C(\rho)$ is the span of the c_i^i 's. Therefore

$$C(\rho) = (M^* \otimes 1_C)(\rho(M)). \tag{14}$$

Now let A = U(r, k) and consider (M, ρ) , where $\rho = \rho_{\mathcal{N}, \mathcal{B}}$. Choose a basis $\{\mathcal{N}^{n_1}, \dots, \mathcal{N}^{n_t}\}$ for the span of the \mathcal{N}^n 's. Since

$$\rho(m) = \sum_{n \in \mathbb{N}^r} \mathcal{N}^n(m) \otimes \frac{x^n}{n!}$$

for all $m \in M$, there exist $c_1, \ldots, c_t \in A$ such that

$$\rho(m) = \sum_{i=1}^{t} \mathcal{N}^{\mathbf{n}_i}(m) \otimes c_i$$
 (15)

for all $m \in M$.

We claim that $A(\rho)$ is the span of the c_i 's. First note that $A(\rho)$ is contained in the span of the c_i 's by (14) and (15). To see that the c_i 's are contained in $A(\rho)$ we note that $M^* \otimes M \cong \operatorname{End}(M)$, where $\langle \alpha \otimes m, n \rangle = \langle \alpha, n \rangle m$ for all $\alpha \in M^*$ and $m, n \in M$. Thus we can think of $M \otimes M^*$ as $\operatorname{End}(M)^*$ via the composite

 $M \otimes M^* \simeq (M^* \otimes M)^* \simeq \operatorname{End}(M)^*$ which is given by $\langle m \otimes \alpha, T \rangle = \langle \alpha, T(m) \rangle$ for all $m \in M$, $\alpha \in M^*$, and $T \in \operatorname{End}(M)$. Now fix $1 \leq j \leq t$ and let

$$f = \sum_{\ell=1}^{p} m_{\ell} \otimes \alpha_{\ell} \in \operatorname{End}(M)^{*}$$

be the functional which satisfies $\langle f, \mathcal{N}^{\mathbf{n}_i} \rangle = \delta_{i,j}$. Then

$$c_{j} = \sum_{i=1}^{t} \langle f, \mathcal{N}^{\mathbf{n}_{i}} \rangle c_{i}$$

$$= \sum_{i=1}^{t} \left(\sum_{\ell=1}^{p} \langle \alpha_{\ell}, \mathcal{N}^{\mathbf{n}_{i}} (m_{\ell}) \rangle \right) c_{i}$$

$$= \sum_{\ell=1}^{p} (\alpha_{\ell} \otimes 1_{C^{*}}) (\rho(m_{\ell}))$$

which means that $c_i \in A(\rho)$. Therefore $A(\rho)$ is the span of the c_i 's.

We will assume that the basis \mathcal{B} has been chosen in the following way. Reorder $\{N_1, \ldots, N_r\}$ if necessary so that $\{N_1, \ldots, N_s\}$ is a basis for the span of the N_i 's. Now there are only finitely many n's such that \mathcal{N}^n is not zero. Choose a basis for the span of the \mathcal{N}^n 's, consisting of \mathcal{N}^n 's, so that any \mathcal{N}^n is a linear combination of basis elements \mathcal{N}^m which satisfy $|m| \geq |n|$. Since \mathcal{N}^n is nilpotent whenever $n \neq o$, it follows that $\mathcal{N}^o = 1_M$ must be in the basis. Also observe that

$$P(A) \subseteq A_{(1)},\tag{16}$$

$$c_i \in A_{(2)} \quad \text{if} \quad |n_i| > 1, \tag{17}$$

and

$$c_0 = 1. (18)$$

Let B be the subalgebra of A generated by $C = A(\rho)$. Since $\{N_1, \ldots, N_s\}$ is a basis for the span of $\{N_1, \ldots, N_r\}$ for $s < j \le r$ we have

$$N_j = \sum_{i=1}^s \alpha_j^i N_i,$$

where $\alpha_j^i \in k$. We calculate

$$\rho_{\mathcal{N},\mathcal{B}}(m) = m \otimes 1 + \sum_{j=1}^{r} \mathcal{N}_{j}(m) \otimes x_{j} + \nabla$$

$$= m \otimes 1 + \sum_{i=1}^{s} \mathcal{N}_{i}(m) \otimes x_{i} + \sum_{j=s+1}^{r} \left(\sum_{i=1}^{s} \alpha_{j}^{i} \mathcal{N}_{i}(m) \right) \otimes x_{j} + \nabla$$

$$= m \otimes 1 + \sum_{i=1}^{s} \mathcal{N}_{i}(m) \otimes (x_{i} + \sum_{j=s+1}^{r} \alpha_{j}^{i} x_{j}) + \nabla$$

$$= m \otimes 1 + \sum_{i=1}^{s} \mathcal{N}_{i}(m) \otimes x_{i}^{\prime} + \nabla,$$

where $x_i' = x_i + \sum_{j=s+1}^r \alpha_j^i x_j$ for all $1 \le i \le s$ and $\nabla = \sum_{|\boldsymbol{n}| > 1} \mathcal{N}^{\boldsymbol{n}} \otimes \frac{x^{\boldsymbol{n}}}{\boldsymbol{n}!} \in M \otimes A_{(2)}$. By the way we chose our basis for the span of the $\mathcal{N}^{\boldsymbol{n}}$'s it follows by (16)–(18) that $A(\rho) \subseteq k1 \oplus \operatorname{sp}(x_1', \ldots, x_s') \oplus A_{(2)}$. Thus the primitives of \boldsymbol{B} lie in the span of x_1', \ldots, x_s' which form a linearly independent set.

Let $\mathcal{A}=k[x_1',\ldots,x_s']$ be the subalgebra of A generated by x_1',\ldots,x_s' . Then \mathcal{A} is a sub-Hopf algebra of A and $\mathcal{A}\simeq \mathrm{U}(s,k)$ as Hopf algebras. Since $A(\rho)\subseteq B\subseteq \mathcal{A}$ we may consider $(M,\rho_{\mathcal{N},\mathcal{B}})$ to be a right \mathcal{A} -comodule. Let $\pi\colon \mathcal{A}^*\longrightarrow \mathrm{End}\,(M)$ be the representation of \mathcal{A}^* arising from the left rational \mathcal{A}^* -module structure on M determined by $(M,\rho_{\mathcal{N},\mathcal{B}})$. Let $X_i'=X_i|_{\mathcal{A}}$ for $1\leq i\leq s$. Then $X_1',\ldots,X_s'\in P(\mathcal{A}^o)$ form a linear independent set, and thus form a basis for $P(\mathcal{A}^o)$ by Lemma 3. Since $N_i=\pi(X_i')$ for $1\leq i\leq s$ we can apply Proposition 7 to conclude that $B=\mathcal{A}$. This completes the proof. \square

By part (c) of Proposition 8 we have an explicit formulation of the solution R to the quantum Yang-Baxter equation associated to a left quantum Yang-Baxter U(r, k)-module structure. Our next result characterizes $\widehat{A(R)}$.

THEOREM 2. Let M be a vector space over the field k. Suppose that the characteristic of k is 0. Let $T = (T_1, \ldots, T_r)$ and $\mathcal{N} = (N_1, \ldots, N_r)$ be r-tuples of commuting endomorphisms of M such that the N_i 's are locally nilpotent and the N_i 's commute with the T_i 's. Set

$$R = \sum_{\boldsymbol{n} \in \mathcal{N}_{r}} \frac{1}{\boldsymbol{n}!} \mathcal{N}^{\boldsymbol{n}} \otimes \mathcal{T}^{\boldsymbol{n}}$$

and

$$\mathfrak{R}=\sum_{i=1}^r N_i\otimes T_i.$$

Then:

- (a) R is a solution to the quantum Yang-Baxter equation.
- (b) If M is finite-dimensional, then $A(R) \simeq U(\text{Rank } \Re, k)$.

Proof. By part (c) of Proposition 8 there exists a left quantum Yang-Baxter U(r,k)-module structure $(M,\mu_{\mathcal{T},\mathcal{B}},\rho_{\mathcal{N},\mathcal{B}})=(M,\mu,\rho)$ on M such that R described in the statement of the theorem is the associated solution to the QYBE. Thus part (a) follows. In the finite-dimensional case, we note that the fact that R satisfies the QYBE also follows from the fact that the N_i 's and T_j 's generate a commutative subalgebra \mathcal{A} of End (M) and that $R \in \mathcal{A} \otimes \mathcal{A}$.

Assume further that M is finite-dimensional. Let A = U(r,k) and write $\mathcal{B} = \{x_1,\ldots,x_r\}$. Reorder $\{T_1,\ldots,T_r\}$ if necessary so that $\{T_1,\ldots,T_s\}$ is a basis for the span of the T_i 's. Recall that the representation $\pi\colon A\longrightarrow \operatorname{End}(M)$ afforded by (M,μ) is determined by $\pi(x_i)=T_i$ for all $1\leq i\leq r$ and that the representation $\pi_{\operatorname{rat}}\colon A^*\longrightarrow \operatorname{End}(M)$ afforded by (M,μ_ρ) is determined by $\pi_{\operatorname{rat}}(X_i)=N_i$ for all $1\leq i\leq r$, where the X_i 's are defined for $\mathcal B$ as in Lemma 3. To compute $\widehat{A(R)}$ we will pass to a quotient of A and then to a subalgebra of the quotient.

Let $s < j \le r$ and write

$$T_j = \sum_{i=1}^s \alpha_j^i T_i$$

where $\alpha_j^i \in k$. Let I be the sum of the coideals of $\operatorname{ann}_A(M)$. Then $x_j - \sum_{i=1}^s \alpha_j^i x_i \in I$ for $s < j \le r$. Since $\{T_1, \ldots, T_s\}$ is linearly independent, the quotient A/I is the free algebra on the set of cosets $\overline{\mathcal{B}} = \{\overline{x_1}, \ldots, \overline{x_s}\}$ by Lemma 3. Observe that

$$\mathfrak{R} = \sum_{i=1}^{s} N_i \otimes T_i + \sum_{j=s+1}^{r} N_j \otimes \left(\sum_{i=1}^{s} \alpha_j^i T_i\right)$$
$$= \sum_{i=1}^{s} \left(N_i + \sum_{j=s+1}^{r} \alpha_j^i N_j\right) \otimes T_i$$

so

$$\mathfrak{R}=\sum_{i=1}^s\overline{N}_i\otimes T_i,$$

where $\overline{N}_i = N_i + \sum_{j=s+1}^r \alpha_j^i N_j$ for all $1 \le i \le s$.

Let $(M, \overline{\mu}_{\mathcal{T},\mathcal{B}})$ be the left A/I-module structure on M given by $\overline{\mu}_{\mathcal{T},\mathcal{B}} = \mu_{\mathcal{T},\mathcal{B}}(\pi \otimes 1_M)$ and let $(M, \overline{\rho}_{\mathcal{N},\mathcal{B}})$ be the right A/I-comodule structure on M defined by $\overline{\rho}_{\mathcal{N},\mathcal{B}} = (1_M \otimes \pi)\rho_{\mathcal{N},\mathcal{B}}$, where $\pi \colon A \longrightarrow A/I$ is the projection. Then $(M, \overline{\mu}_{\mathcal{T},\mathcal{B}}, \overline{\rho}_{\mathcal{N},\mathcal{B}})$ is a left quantum Yang-Baxter A-module and R is the associated quantum Yang-Baxter equation solution. Let $\overline{\mathcal{T}} = \{T_1, \ldots, T_s\}$. Then $(M, \overline{\mu}_{\mathcal{T},\mathcal{B}}) = (M, \mu_{\overline{\mathcal{T}},\overline{\mathcal{B}}})$. Observe that for $m \in M$ we have

$$\overline{\rho}_{\mathcal{N},\mathcal{B}}(m) = \sum_{\boldsymbol{n} \in N'} \mathcal{N}^{\boldsymbol{n}}(m) \otimes \overline{\left(\frac{x^{\boldsymbol{n}}}{n!}\right)}$$

$$= m \otimes \overline{1} + \sum_{i=1}^{s} N_{i}(m) \otimes \overline{x_{i}} + \sum_{j=s+1}^{r} N_{j}(m) \otimes \overline{x_{j}} + \nabla$$

$$= m \otimes \overline{1} + \sum_{i=1}^{s} N_{i}(m) \otimes \overline{x_{i}} + \sum_{j=s+1}^{r} N_{j}(m) \otimes \left(\sum_{i=1}^{s} \alpha_{j}^{i} \overline{x_{i}}\right) + \nabla$$

$$= m \otimes \overline{1} + \sum_{i=1}^{s} (N_{i}(m) + \sum_{j=s+1}^{s} \alpha_{j}^{i} N_{j}(m)) \otimes \overline{x_{i}} + \nabla$$

$$= m \otimes \overline{1} + \sum_{i=1}^{s} \overline{N}_{i}(m) \otimes \overline{x_{i}} + \nabla$$

where $\nabla \in M \otimes (A/I)_{(2)}$. Thus $\overline{\rho}_{\mathcal{N},\mathcal{B}} = \rho_{\overline{\mathcal{N}},\overline{\mathcal{B}}}$, where $\overline{\mathcal{N}} = (\overline{N_1}, \dots, \overline{N_s})$. Thus we may replace A by A/I and $(M, \mu_{\mathcal{T},\mathcal{B}}, \rho_{\mathcal{N},\mathcal{B}})$ by $(M, \mu_{\overline{\mathcal{T}},\overline{\mathcal{B}}}, \rho_{\overline{\mathcal{N}},\overline{\mathcal{B}}})$. In particular we may assume that $\{T_1, \dots, T_r\}$ is linearly independent.

Assume that $\{T_1, \ldots, T_r\}$ is linearly independent and A is M-reduced. Notice that Rank $\mathfrak{R} = \operatorname{Rank} \mathcal{N}$. Let B be the subalgebra of A generated by $A(\rho)$. Then $\widetilde{A(R)} \simeq B$. But Rank $\mathcal{N} = \operatorname{rank} B$ by Lemma 5. This completes the proof of part b), and we are done. \square

COROLLARY 1. Suppose that M is a finite-dimensional vector space over the field k and let $R: M \otimes M \longrightarrow M \otimes M$ be a solution to the quantum Yang-Baxter equation. Assume that the characteristic of k is 0. Then the following are equivalent:

- (a) $\widetilde{A(R)} \simeq U(r, k)$ as bialgebras.
- (b) There exists r-tuples $T = \{T_1, ..., T_r\}$ and $\mathcal{N} = \{N_1, ..., N_r\}$ of endomorphisms of M such that
 - (i) $\{T_1, \ldots, T_r, N_1, \ldots, N_r\}$ is a commuting family,
 - (ii) N_1, \ldots, N_r are nilpotent,
 - (iii) $\{T_1, \ldots, T_r\}$ and $\{N_1, \ldots, N_r\}$ are linearly independent, and
 - (iv) $R = \sum_{n \in \mathbb{N}^r} \frac{1}{n!} \mathcal{N}^n \otimes \mathcal{T}^n$.

Proof. Part (b) implies part (a) by Theorem 2. To show part (a) implies part (b) we first observe that there is a left quantum Yang-Baxter $\widehat{A(R)}$ -module structure on M with associated quantum Yang-Baxter equation solution R. Thus part (a) implies part (b) by Proposition 8 and Theorem 2. \square

4. Finite-dimensional Hopf algebras as reduced FRT constructions

Every finite-dimensional Hopf algebra H over the field k can be embedded into the underlying Hopf algebra D(H) of the quantum double $(D(H), \Re)$ of H. In

this section we show that M = D(H) has a left quantum Yang-Baxter H-module structure (M, μ, ρ) such that H is (M, μ) -reduced and $H(\rho) = H$. As a consequence $H \simeq \widehat{A(R)}$, where R is the solution to the quantum Yang-Baxter equation associated to (M, μ, ρ) .

The quantum double is a quasitriangular Hopf algebra.

Definition 10. A quasitriangular bialgebra (respectively quasitriangular Hopf algebra) over the field k is a pair (A, R), where A is a bialgebra (respectively Hopf algebra) over k and $R = \sum_{i=1}^{r} a_i \otimes b_i \in A \otimes A$ satisfies the following:

(QT.1)
$$\sum_{i=1}^{r} \Delta(a_i) \otimes b_i = \sum_{i,j=1}^{r} a_i \otimes a_j \otimes b_i b_j$$
,

$$(QT.2) \sum_{i=1}^{r} \epsilon(a_i)b_i = 1,$$

(QT.3)
$$\sum_{i=1}^{r} a_i \otimes \Delta^{\text{cop}}(b_i) = \sum_{i,j=1}^{r} a_i a_j \otimes b_i \otimes b_j$$
,

(QT.4)
$$\sum_{i=1}^{r} a_i \epsilon(b_i) = 1$$
, and

(QT.5)
$$(\Delta^{\text{cop}}(a))R = R(\Delta(a))$$
 for all $a \in A$.

Let $R_{(\ell)} = (1_A \otimes A^*)(R)$ and $R_{(r)} = (A^* \otimes 1_A)(R)$. If r = Rank R observe that $\{a_1, \ldots, a_r\}$ is a basis for $R_{(\ell)}$ and $\{b_1, \ldots, b_r\}$ is a basis for $R_{(r)}$.

Suppose that A is a finite-dimensional quasitriangular Hopf algebra over the field k. Then $R_{(\ell)}$ and $R_{(r)}$ are sub-Hopf algebras of A by [10, Proposition 2.a)] and $R_{(\ell)}R_{(r)}=R_{(r)}R_{(\ell)}$ by [10, Theorem 1.a)]. Let $H=R_{(\ell)}$ and regard M=A as a left H-module under multiplication. Define $\rho\colon M\longrightarrow M\otimes H$ by

$$\rho(m) = \sum_{i=1}^r b_i m \otimes a_i$$

for all $m \in M$. Then (M, ρ) is a right H-comodule by virtue of (QT.1) and (QT.2). Using (QT.5) we deduce that (5) holds for (M, μ, ρ) . Therefore (M, μ, ρ) is a left quantum Yang-Baxter H-module. Since (M, μ) is a faithful H-module we conclude that H is (M, μ) -reduced. Now suppose that $r = \operatorname{Rank} R$. We have noted that $H = R_{(\ell)}$ has basis $\{a_1, \ldots, a_r\}$ and $\{b_1, \ldots, b_r\}$ is linearly independent. Since $\rho(1) = \sum_{i=1}^r b_i \otimes a_i$ it follows that $H(\rho) = H$ (see Definition 1). Therefore $A(R) \simeq H$ by Proposition 1(b), where $R: M \otimes M \longrightarrow M \otimes M$ is the quantum Yang-Baxter equation solution $R = R_{(\mu, \rho)}$. Since

$$R(m \otimes n) = \sum_{i=1}^{r} m^{(1)} \otimes m^{(2)} \cdot n = \sum_{i=1}^{r} b_i m \otimes a_i n$$

the solution R is given by

$$R(m \otimes n) = \sum_{i=1}^{r} b_i m \otimes a_i n$$

for all $m, n \in M$.

Now suppose that $(D(H), \mathfrak{R})$ is the quantum double of H. Then there exists an embedding of Hopf algebras $\iota: H \longrightarrow D(H)$ such that $\iota(H) = \mathfrak{R}_{(\ell)}$. See [2, page 816] for the definition of the quantum double and its construction and see [10, Section 3] for the conventions regarding the double we are following here. Since $Dim D(H) = (Dim H)^2$ we have shown:

THEOREM 3. Suppose that H is an n-dimensional Hopf algebra over the field k. Then there exists an n^2 -dimensional vector space M over k and a solution R: $M \otimes M \longrightarrow M \otimes M$ to the quantum Yang-Baxter equation such that $H \simeq \widehat{A(R)}$.

REFERENCES

- E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge, UK, 1980.
- 2. V. G. Drinfel'd, *Quantum groups*, Proceedings of the International Congress of Mathematicians, Berkeley, California, 1987, 798–820.
- 3. L. D. Faddeev, N. Y. Reshetihkin and L. A. Takhtadzhan, *Quantization of Lie algebras and Lie groups*, Leningrad Math. J. 1 (1990), 193–225; Translation from Algebra Anal. 1 (1989), 178–206.
- Louis Kauffman, Knots and physics, Series on Knots and Everything, vol. 1, World Scientific, Singapore.
- 5. L. Lambe, The 1996 Adams Lectures at Manchester University: New Computational Methods in Algebra and Topology, Part I, Solving the Quantum Yang-Baxter Equation, May 20, 1996, preprint.
- L. Lambe and D. E. Radford, Algebraic aspects of the quantum Yang-Baxter equation, J. Algebra 154 (1993), 228–288.
- 7. ______, Introduction to the quantum Yang-Baxter equation and quantum groups: an algebraic approach, Mathematics and its Applications, no. 423, Kluwer Academic Publishers, Dordrecht, 1997.
- 8. Shahn Majid, Quasitriangular Hopf algebras and Yang-Baxter equations, Internat. J. Mod. Physics A 5 (1990), 1–91.
- S. Montgomery, Hopf algebras and their actions on rings, Regional Conference Series in Mathematics, no. 82, AMS, Providence, RI, 1993.
- 10. D. E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), 285-315.
- 11. _____, Solutions to the quantum Yang-Baxter equation arising from pointed bialgebras, Trans. Amer. Math. Soc. **343** (1994), 455–477.
- 12. _____, Solutions to the quantum Yang-Baxter equation and the Drinfel'd double, J. Algebra 161 (1993), 20–32.
- 13. D. N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge Philos. Soc. 108 (1990), 261–290.
- 14. M. E. Sweedler, Hopf algebras, Benjamin, New York, 1969.

Larry Lambe, Department of Mathematics, University of Wales, Bangor, Bangor, Gwynedd LL57 1UT, United Kingdom llambe@caip.rutgers.edu

David E. Radford, Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, Illinois 60607-7045 radford@uic.edu