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DISCREPANCY NORMS ON THE SPACE M([0,1]
OF RADON MEASURES

MINOS A. PETRAKIS

Introduction

Let X be a Banach space with a symmetric basis (e;), i € N. We assume (see
[L-T], p. 114) that the norm of X satisfies

00 00
E a3 0n€r(n) E Aapép
n=1 n=I1

for every permutation s of the integers and every choice of signs o, = £1. Let
M0, 1]be the space of all Radon measures on the unitinterval [0, 1]. For u € M[O0, 1]
we define || i || mx to be the quantity

sup {

M[X] is the space M0, 1] equipped with the norm || - || s x;.

L'10, 1] is the space of all Lebesgue integrable functions on [0, 1] and m denotes
the Lebesgue measure on [0, 1]. We can see L'[0, 1] as a closed subspace of M[0, 1].
A measure p in M[O0, 1] is called diffuse if u({x}) = O for each x in [0, 1].

This paper consists of two sections. In Section 1 we study the structure of the M[X]
spaces.The papers [Wei] and [B] are cornerstones in our considerations. Theorem 4.2
in [Wei] about the M space (related to Proposition 1 1 in [B]) can be extended to certain
classes of M[X] spaces.This is the content of Theorem 1.1 and Theorem 1.5. More
precisely in Theorem 1.1 we show that if X has a symmetric basis and contains no
copy of I' then every diffuse measure u in M[0, 1] is the limit in the M[X]-norm of
a sequence (1,) of measures such that each u, is absolutely continuous with respect
to the Lebesgue measure m on [0, 1]. Theorem 1.5 asserts the following.

Suppose X has a symmetric basis and contains no copy of I'. Let (£, Z,)
be an L'[0, 1] valued martingale and u, = w* — limé§,(x) for almost all x [m].

d
> e
i=l

, (1}),i < d disjoint subintervals of [0, 1], d € N} .
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602 MINOS A. PETRAKIS
The following are equivalent:

(i) The measures i, are diffuse for almost all x [m].
(ii) The martingale (,, X,) is Cauchy in the Bochner norm of Ly, y,.
(iii) The operator T': L'[0, 11 = L'[0, 1] associated to the martingale (§,, ¥,)
becomes representable if we give to the target space of T the M[X] norm.

In the proofs of Theorems 1.1 and 1.5, important role is played by Lemma 1.2.
Lemma 1.2 asserts that if (¢;) is a subsymmetric basis for X and X contains no copy
of I' then a convex combination of the form Z:.i:, Aie;, A; scalars, can not be large in
norm if all the coefficients A; remain small. In Lemma 1.3 we show that under certain
conditions the convergence of a net (u;) of positive measures to a diffuse measure
w in the M[X] norm is determined by the behaviour of (i) on the dyadic intervals.
Lemma 1.3 was suggested to us by the referee. It was pointed out to us by the referee
that the proof of Lemma 1.3 was included in our earlier proof of Proposition 1.4
and that despite its simplicity Lemma 1.3 gives a proof of Proposition 1.4 and can
also be used in the proof of Theorem 1.1. In the proof of Lemma 1.3 (b) we use
Lemma 1.2. Proposition 1.4 is a result on the weak topology of M[X]. Corollary 1.6
asserts the following: Let X be a Banach space with a symmetric basis such that
X contains no copy of I'. Let (£,, X,) be a martingale associated to an operator
T: L'[0, 1] — L'[0, 1]. If the martingale (£,, £,) is Cauchy in the Pettis norm then
(&,, ) is Cauchy in the Bochner norm of L,",,IXJ. In the case X = ¢, Corollary 1.6
can be viewed as a rephrasing of Proposition 11 in [B].

In Section 2 we introduce and study the class of M[ X ]-continuous operators. Let X
be a Banach space with a symmetric basis. Suppose Z is a Banach space. A bounded
linear operator T': L'[0, 1] = Z is called M[X]-continuous if it is continuous for the
M[X]normon L'[0, 1] (Definition 2.1). It follows that if X has a symmetric basis and
contains no copy of /' then every M[X]-continuous operator is nearly representable
and therefore strongly regular (Proposition 2.2 and Corollary 2.3). The main result
in this section (Theorem 2.9) is the following: Let Z, X be Banach spaces such
that X has a symmetric basis and contains no copy of /'. If every bounded operator
S: X — Z is compact, then every M[X]-continuous operator T: L'[0,1] — Z
is compact. In the proof of Theorem 2.9 we use Lemma 2.10 and Lemma 2.11.
Lemma 2.10 is of independent interest. This result shows that the non-compactness
of a general operator 7: L'[0, 11 — Z implies the existence of a bounded sequence
(g+), n € N, in L'[0, 1] such that each function g, is supported by a dyadic interval
I, so that the set {T'(g,),n € N} is not compact and the sequence (/) consists of
pairwise disjoint intervals.

InLemma2.11 we show that if (e;) is a symmetric basis for X then || ZLI biui| <
[| Zle b;e;| for all scalars b;, i < r, where each u; is a convex combination of
suitable elements of the basis (¢;). Theorem 2.5 is a result on the behaviour of M[/7]-
continuous operators on orthonormal sequences.In Example 2.7 and in Proposition 2.8
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we show that under certain conditions on X there are M[X]-continuous operators on
L'[0, 1] that are not compact. Of related interest are Corollaries 2.4 and 2.6.

1. The structure of M[X] spaces

In this section we study the normed spaces M[X] which are defined in the In-
troduction. In most of our theorems X denotes a Banach space with a symmetric
basis that contains no copy of /!. In Lemma 1.2 the assumption on X is that X has
a subsymmetric basis and contains no copy of I'. We refer to [L-T], p. 114 for the
definition of a subsymmetric basis.

We start with a few remarks.

(i) For X = ¢( and (e;) the usual basis for cg, the space M|cy] is the space M
considered in [B] and [Weil].

(ii) The formal identity maps Wx: M[0, 1] - M[X] and Vx: M[X] — M, are
continuous and

Neellage < Miellaxy < Nl gegs n e M[O0, 1].

(iii) The space M[I'] is the space M[0, 1] with the usual norm.

(iv) The normed spaces M[X] are not complete in general. If M[X] is complete
then M[X] is isomorphic to M[I'].

(v) The completion of L'[0, 1] under the M[cy] norm is isomorphic to the space
C10, 1] of continuous functions on [0, 1]. To see why this is true consider the operator

U: (L0, 1, - Ngeq) = (CLO, 11, - o)

U x) = / FWdm@),  xel01],  feL'[01].
0

Note that U is continuous and

1 .
NUHlloe = S fImcts f € L0, 11 (see [Weil, p. 550).
The range of U is the set of absolutely continuous functions on [0, 1] that vanish at
zero.Hence the closure of the range of U is isomorphic to C[0, 1].
(vi) The completion of L'[0, 1] under the M[/?] norm is the James function space
JF studied in [L-S].

THEOREM 1.1.  Suppose X is a Banach space with a symmetric basis and that X
contains no copy of I'. The measure . € M[0, 1] belongs to the closure of L'[0, 1]

under the M[X] norm if and only if u is a diffuse measure.

We need the following result.
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LEMMA 1.2. Let X be a Banach space with a subsymmetric basis (e;) so that
X contains no copy of I'. Given ¢ > 0 there exists 8(¢) > 0 so that if A; > 0,
S A= landsuph; < 8(e),i <d, then || Y0, hieil < e.

Proof of Lemma 1.2.  Suppose there exists € > 0 so that for all

k
. " 1
n € N there exists A,(.") > 0 such that E )»f'” =1, Af“’ <~—forl <i<k,
n

i=1

and || Y50, AMe; )l > e, Letxf € X*, |lx}ll = 1, so that x* (i, A"e;) > . Let
Fo=1{i <k,:|x;(e)|>5},neN.
Note that

kn kn
e <x, (Z A}'”e,-) = ZA(")x:(ei)
i=1
— Z)\’(") *(el)+ Z )\'(") *(e,

ieF, idF,,i<k,
&
<) Af"’x,*,‘(ei)+§.
i€k,

Therefore Zi cF, kf") > % It follows that #F,, - % > % where #F, is the cardinality
of the set F,,. So #F,, — oo as n — 0o. Every subsymmetric basis is unconditional
and since X contains no copy of /! the biorthogonal functionals (e}) associated to the
basis (e;) form an unconditional basis for X* (see [D], p. 99).

Consider the functionals

Zu( Me¥, where ! = x*(e;),n € N.
ieF,

Note that u"” > § fori € F,. Also note that

ZM(V!) * ZI’L(") *

ieF,
Suppose F,, = {ij < iy <--- <i,}. Thenl, =#F, and [, — coasn — oo.
Now consider the functionals

*
=[xl < 1.

Zu(n) * neN.

By the subsymmetric property we have

Z M(”) *

i€k,

Iy, il = neN.
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Let y* be a w*-limit point of the infinite sequence (y;). It follows that y*(e;) > &/2
fori € N. Now if J; is a finite subset of N we have

Zaiei > %'ZWH

iel, iel;

where (a;), j € J; are scalars and K is the unconditionality constant of the basis (e;),
i € N. Therefore X contains a copy of /'. This is a contradiction. [

Let I, = [“2;,.', z‘i,), r=20,1,..;s =1,2,...,2" be the family of the dyadic
intervals.

LEMMA 1.3. Let(u;), j € J be anet of positive Radon measures with ||u;|| < 1,
J € J. Suppose that |1 is a positive diffuse measure and (1; (I, ;) — (1) for every
dyadic interval I, r =0,1,2,..;5s =1,2,...2". Then:

(@) pj(I) — () for every interval I.
(b) nj — pinthe M[X] norm if X has a symmetric basis and contains no copy

of 1.

Proof of Lemma 1.3. (a) Let ¢ > 0. Since u is a diffuse measure we can find
n € N sothat u(l,,) <e,s =1,2,...,2" Find jj in the index set J so that

€ ..
|/‘Lj(1n,s) - M(In,.v)l < 2_" fors =1,2,...,2" J > Jo.
Let I be any subinterval of [0, 1]. Assume that
I=1VYUL, Ul Ul UI®

where IV, 1® are intervals, IV C I, iy, I® C I, ;4441. Since y; is positive we
have

& &
wi(IV) < il o) < 5 T and i (I?) < 1y sinsr) < o e

Hence for j > j, we have

L (1) — (D)

IA

I (T D) = pd D]+ 1 (1D = (D)
k

+ D 1 Uns) = 1 s40)
=0

& &
<2(gHe)+ Gkt 5
4-¢.

IA
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(b) Suppose X has a symmetric basis and contains no copy of I'. Lete > 0 and
suppose 8(¢) satisfies the property in the statement of Lemma 1.2. Find n € N so
that (1, 5) < 8(e),s =1,2,...,2". Find jj in the index set J so that

3(e) L
i (ns) = wUno)| < =0 fors = 1,2,...,2% j > jo.

For each j > jo there exists an interval I; such that

5
lj (1) — wUp)| > sup lu; (1) — p(D)| = _%‘2

where the supremum is taken over all intervals / C [0, 1]. By the argument in the
proof of (a) we have

)
(1) — (I < —(5—)

and therefore

8
sup{|u;(I) — w(I)|, I subinterval of [0, 1]} < -(28—)

By Lemma 1.2. we get
lwj — wlimxy <2-€if j > jo. O

Proof of Theorem 1.1. Let I, = [“—2-_;1, 5",—.), r=0,1,..;8s=12,...,2", be
the family of dyadic intervals. For each measure v € M[0, 1] we consider the “table”
s )r=0,1,..;5s =1,2,...,2", of v. Let u be a diffuse measure. We may
assume that p is positive otherwise we split u in its positive and negative part. For
each n € N we define a measure u, by determining its table in the following way:

Ifr <msetu,(I;5) = nully5),s=1,2,...,2".

Ifr > nand 1 < s < 2" consider the the unique dyadic interval of the form
I,_ x that contains I, ;. Use induction to assign to w, (I, ) the value % (L1 ). Tt
follows that for each n € N the measure p,, is absolutely continuous with respect to
the Lebesgue measure m. Note that for every dyadic interval I the sequence w, (1)
converges to u(I) asn — oo. By Lemma 1.3, ||, — ullmx; = Oasn — oco. O

PROPOSITION 1.4.  Suppose X is a Banach space with a symmetric basis and that
X contains no copy of I'. Let K be the set of positive diffuse measures of norm less
than one in M[X]. The weak and the norm topologies of M[X] coincide on K .

Proof. Assume that a net (u;), j € J, from K converges weakly to u € K. For
any interval I the functional x;(u) = w(/) is continuous on M[X]and ||x;|| = 1. It
follows that u;(I) — wu(I), j € J, for each interval /. By Lemma 1.3, u; — p in
the M[X]norm. O
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For terminology, notation and results on martingales and operators on L' we refer
to [D-U], [B] and [Wei].

Let Z be a Banach space and T: L'[0, 1] — Z be a (bounded) operator Let
X,,n=0,1,2,... be the finite algebra generated by the dyadic intervals (&L 2,, s 2,,]
k=1,2,...,2". The Z-valued martingale (§,, X,) associated to T is defined by the
formula

2II
&) = ZT(hnk)hnk(t) k=1,2,...,2 n=0,1,2,...; 1[0, 1]

where h,, k is the characteristic function of the interval [ &L TR 2,,]normalizedinL‘[O 1].
If Z = L'[0, 1] then for each x in [0, 1], (§,(x)), n € N, is a sequence of functions
in L'[0, 1] and by Doob’s theorem for [m]-almost all x in [0, 1] the weak*-limit of
(£:(x)), n € N exists as a measure u, in M[0, 1]. It is known that the family (u,) is
a random measure and the “kernel” x — ., represents the dual operator T* in the
sense that

T*(f)(x) = /fdux, f € L™, [m] — almost all x in [0, 1]

(see [Wei], Prop. 2.8).
If Z is a Banach space and f € L), the Pettis norm of f is defined by

A= sup flx*(f)ldm

x*eZ* |lx*|<1

while the Bochner norm of f is the quantity f || f()|l dm(2).

The next result follows from Theorem 4.2 in [Wei] and Lemma 1.2. (See also
Cor. 4.4 in [Wei].) It can be considered as an extention of Theorem 1.1 to the case
of a family (u,) of measures. In the special case that X is the space ¢ it becomes
Theorem 4.2 (a), (e) of [Wei].

THEOREM 1.5. Let X be a Banach space with symmetric basis such that X
contains no copy of I'. Let (£,, ) be a martingale associated to an operator
T: L'[0,1] — L'[0, 1]. Suppose u, = w* — limé&,(x) for almost all x [m]. The
following are equivalent:

(i) The measures |, are diffuse for almost all x [m].
(ii) The martingale (§,, X,,) is Cauchy in the Bochner norm of LI‘W[ X]-
(iii) The operator Wx - T: L'[0, 11 — M[X] is Bochner representable.

(Here Wx denotes the formal identity map Wy: L0, 11 = M[X].)

Proof. The measures u, are diffuse for almost all x [m] iff the operator T’ becomes
Bochner representable if we give to the target space of T’ the weaker My norm (Cor. 4.4,
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[Wei]). This means that given £ > 0 there is a measurable set A C [0, 1] so that
m([0, 1]\A) < & and the restriction T4 of T on L'(A) is a compact operator from
L'(A) to M. Note that Lemma 1.2 implies that given & > 0 there is §(¢) > 0 so that
if |tllmo < 8 and ||e]l = 1 then ||l pmpx) < €. So Ty is also compact from L'(A) to
M([X].Therefore T is Bochner representable in M[X] and the martingale (§,, X,) is
Cauchy in the Bochner norm of L,",,[ x- O

COROLLARY 1.6. Let X be a Banach space with a symmetric basis such that
X contains no copy of I'. Let (§,, £,) be a martingale associated to an operator
T: L'[0, 11 — L'[0, 1]. If the martingale (£,, £,,) is Cauchy in the Pettis norm then
(., X)) is Cauchy in the Bochner norm of L,'m X]-

Proof. 1t is shown in Corollary 4.4 of [Wei] that if the martingale (§,, X,) is
Cauchy in the Pettis norm then the measures y, = w* — lim €, (x) are diffuse for [m]
almost all x. Now apply Theorem 1.5. O

Remark 1.7. For X = ¢y, Corollary 1.6 becomes a restatement of Proposition 11
in [B]. In fact Corollary 1.6 can also be derived from Proposition 11 in [B] and
Lemma 1.2.

2. M[X]-continuous operators

Recall [D-U] that an operator from L'[0, 1] to a Banach space Z is called Dunford-
Pettis if it maps weakly compact subsets of L'[0, 1] into norm compact subsets of Z.
It is known [B], [U] that an operator T: L'[0, 1] — L'[0, 1] is Dunford-Pettis iff the
martingale (§,, ¥,) associated to T is Cauchy in the Pettis norm.

An operator T: L'[0,1] — Z is called nearly representable [K-P-R-U] if the
composition T - D: L'[0, 1] — Z is Bochner representable for every Dunford-Pettis
operator D: L'[0, 1] — L'[0, 1].

Definition 2.1. Suppose X has a symmetric basis. Anoperator 7: L'[0, 1] — Z
is called M[X]-continuous if there is a constant C such that [|T(f)|| < C - || fllmix)
forall f in L'[0, 1].

PROPOSITION 2.2. Let Z, X be Banach spaces so that X has a symmetric basis
and contains no copy of I'. Every M[X1-continuous operator T: L'[0,1] — Z is
nearly representable.

Proof. By Theorem 1.5 (iii), the identity map Wx: L'[0, 1] — M[X] is nearly
representable. For every Dunford-Pettis D: L'[0, 1] — L'[0, 1] we have

IT - DIl < C- IWxD(H)lmxy, f € L0, 11.
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The martingale associated to the operator Wx D is Cauchy in the Bochner L 1114[ x) horm
and hence the martingale associated to the operator T - D is Cauchy in the Bochner
Lynorm. 0O

Recall [G-G-M-S, Theorem IV.10] that an operator T: L'[0, 1] — Z is strongly
regular iff foreach A C [0, 1], m(A) > 0 and & > O there is a relatively weakly open
set V of the set

Fa=1feL'0.11: 5 20, [ 7= 1suppp) € )
such that diam(7T'(V)) < e.

COROLLARY 2.3.  Suppose X has a symmetric basis and contains no copy of 1'.
Every M[X]-continuous operator T: L'[0, 1] — Z is strongly regular.

Proof. By Theorem 1 in [A-P], every nearly representable operator is strongly
regular. O

COROLLARY 2.4. Suppose X has a symmetric basis and contains no copy of I'.
Let Z be a separable Banach lattice that contains no copy of co. Then every M[X]-
continuous operator T: L'[0, 11 — Z is Bochner representable.

Proof. By[K-P-R-U]Jif Z is aseparable Banach lattice that contains no copy of cy,
then every nearly representable operator T: L'[0, 1] — Z is Bochner representable.
O

THEOREM 2.5. Let Z be a Banach space, p > 1. Ifthe operatorT: L'[0, 1] - Z
is M[lP)-continuous and (u,),n = 1,2, ... is an orthonormal sequence then there is
some constant C such that

log(n))'—%

IT )l < C- ( NG

for infinitely many values of n.

Proof. LetV: L'[0, 1] — CJO, 1] be the Volterra integral operator defined for
fin L'[0, 1] by

V(f)x) =/ f@®)dm@), xel[0,1].
0
It is shown in [O], p. 95, that

log(n)
Jn

V@) lconn < K for infinitely many indices n.
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It is easy to see that for X = I”, p > 1, a function §(¢) as in the statement of
Lemma 1.2 is 8(¢) = £P/P~!. Note that

1
Nnllsg, <2-K og(n) for infinitely many values of n
vn
and hence
1 -7
Nnllmypy < C‘(oi(nf)) " for these indices. O

COROLLARY 2.6. There are linear functionals on L'[0, 1] that are not M[I7]-
continuous for any p > 1.

Proof. Consider the space L'[0, 27] instead of L'[0, 1]. There is a function g
in L*°[0, 27r] whose sequence of Fourier coefficients has order greater than that of
the sequences (%)"%, n € N, p > 1. The functional on L'[0, 2] determined
by such g can not be M[/”]-continuous since the exponentials form an orthonormal

system. O

It is shown in [K-P-R-U] that if the Banach space Z contains no copy of cgp
then every My-continuous operator T: L'[0, 1] — Z is a compact operator. The
next example shows that the situation is not the same for general M[X]-continuous
operators.

Example 2.7. There is an M[I*]-continuous operator S: L'[0, 1] — L'[0, 1]
which is not compact: Let (I,) n = 1,2, 3, ... be a sequence of disjoint subintervals
of [0, 1]. Consider the operator T: L'[0, 1] — [? defined by

T(H)=) (/' fdm> en, f€L'[0,1],
n=I n

where (e,) is the usual basis for /2. The map that sents each e, to the n'" Rademacher
function r, extends to an embedding U of /2 into L'[0, 1]. Now set § = U - T and
notice that S maps the sequence

into a non totally bounded set in L'[0, 1]. It is also clear that S is an an M[/?]-
continuous operator. It is easy to see that using the identity map I”? — 2,1 < p <2
one can construct M([I”]-continuous operators from L'[0, 1] to L![0, 1] that are not
compact.
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PROPOSITION 2.8. Let X be an infinite dimensional reflexive space with a sym-
metric basis (e;). Suppose that X is isomorphic to a subspace of the Banach space
Z. Then there exists a non compact operator T: L'[0, 1] — Z such that T is
M| X]-continuous.

Proof. Since X is reflexive the basis (e;) is boundedly complete. Let (1,), n =
1,2,3,..., be asequence of disjoint subintervals of [0, 1]. Note that fork € N,

k
Z ( fdm) en
l’l

([ ram)e

n=I1

< Iflh

and therefore the series

converges. The operator T: L'[0, 1] — X defined by

T(H=Y (/, fdm) e feL'0,1]
n=|1 n

is M[X]-continuous and non-compact. Let U: X — Z be an isomorphism. The
composition U - T is the required operator. [

The next theorem is the main result in this section.

THEOREM 2.9. Let X be a Banach space with a symmetric basis such that X
contains no copy of I'. Suppose Z is a Banach space and T: L'[0,1] - Z isa
non-compact operator. If T is also M[ X ]-continuous then there exists a non-compact
bounded operator S: X — Z.

For the proof of Theorem 2.9 we need two lemmas.

LEMMA 2.10. Let Z be a Banach space and T: L'[0, 1] — Z a non-compact
operator. There is a bounded sequence (g,),n € N in L'[0,1]and a sequence (1),
n € N of pairwise disjoint dyadic intervals such that supp(g,) < I,, m(I,) = O as
n — oo and the set {T(g,),n € N} is not compactin Z.

Proof of Lemma 2.10.  Since T is non-compact there is an ¢ > 0 such that for all
finite fi, f3,..., f; in By there is a g in By such that

d(T(g),co({T(fp), i < 1}) > &.

Here B, denotes the unit ball {f € L': || f]l; < 1} of L' and d is the norm distance
in Z. Now we make the following:
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Claim. For fi, fa,..., f4 € By and for every n € N there isa g € By such
that

d(T(g), AT (f), i < 1})) > 38—3 and supp(g) C I

where I is a dyadic interval of length m(I) < 5.
To prove the claim, suppose there exist fi, fa, ..., fa € By andn € N such that

for all  in By with supp(h) € I, I a dyadic interval of length m([) < % we have

d(T (). SAT(f). i <d)) < 3.
There is a g in B, with

d(T(g),co({T(fi), i =d})) > e.
Let iy =[5 £ n=0,1,...k <2". If lg | Liklli # Oset

8 | In.k

Enk = 55 -
" g |

Write g in the form g = "2, A, xux Where A, & = |lg | Lxll1, k < 2". Note that
since supp(ga.x) S I« we have

d(T(g,1), T (7). i <d)) < 3"—3 k<2

Let K =co({T(f;), i <d}) and choose w, x € K so that

£
”T(gn.k) - wll,k” 5 ﬁs n= 0# ls ceey k S 2"~

Note that forn € N,

n m

Z Ak T (gni) — Z An ok Wh k
k=1 k=1

This implies that

n

Z A4n.k(T(gn.l<) - wn.k)
k=1

=

£
33

£
d(T(g),K)) < 3
a contradiction which proves the claim is true.

Now assume that (g,), n € N is a sequence in By so that the set {T (g,), n € N}
is not compact, supp(g,) < I, where the I, are dyadic intervals of length < %,
n € N. We may assume that either the sequence (I,) is monotone (i.e., increasing, in
the sense that max 7, < min I, or decreasing) (Case I) or that the sequence (I,,) is
directed, in the sense that I,, C I, if m > n (Case II). To see why this is true suppose
I, = [a,, b,]. By passing to subsequences we may assume that both (a,) and (b,)
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are monotone. If (a,) is increasing and (b,) is decreasing we are in Case IL. If both
(a,) and (b,) are (strictly) increasing sequences we do the following: Start with an
interval 1,, of length less than 1/2. Findn, > n, sothatb,, > b,,. Now take a dyadic
interval J from the sequence (I,,) so that the right endpoint of J is larger than b,,, and
the length of J is smaller than b,, — b,,,. Note that /,,, and J are disjoint. It is clear
now that by induction we can contruct a subsequence (/,,,) of (1,,) which consists of
disjoint “increasing” dyadic intervals. So we are in Case I. Similar considerations
show that we are in Case I if both (a,) and (b,) are decreasing sequences. If one of
the monotone sequences (a,), (b,) is eventually constant it is easy to see we are in
Case II. In Case I it is clear that Lemma 2.10 is true. We claim the same holds in
Case II: In fact there is an increasing sequence n; < ny < ---Hg < Ry < -+ of
integers so that

lgn | Ing,y Il = Oask — oo

For each k write I, in the form

Nit1

L,=1'Ul,, UI*
Ry Ny

where I, , I? are disjoint intervals which are also disjoint to I,,,, and max I, <

min Ifk By passing to a further subsequence we may assume that either the set
{T(gn, | 1) k € N} or the set {T(g,, | I2), k € N} is not compact. O

LEMMA 2.11.  Suppose X is a Banach space with a symmetric basis (e;),i € N.
Foreachi € N let {ejj: j < ki} be a set of elements of (e;) such that {e,;: j < kp,} N
{eij: j < ki} is the empty set if i # m. Letu; = Zf | aijeij, where Z Lyaij <1,
aij > 0. Then || Y_i_, biu;ll < || Y_i_, bieill for all scalars b;, i <r.

Proof of Lemma 2.11. Let x* in the unit ball Bx- of the dual space X* of X be

such that
r
x* (Z b,-u,-) =
i=1
r

r r r ki ki
|zb,~u,~ by = Y b (zaijeij)sz Sa@.
i=l1 i=1 i=l i=1 i=l i=I

where ¢; is an element of the set {e;;: j < k;} such that

Xr:b,‘u,‘
i=1

x*(&)) = max(x*(e;;), j < ki).
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It follows that

=<

Er:b;u; fx* (Zr:ble_,> < Xr:bte—l ibiei
i=l i=l1 i=l i=l

In the last inequality we used the symmetry of the basis (¢;),i € N. 0O

Proof of Theorem 2.9. Suppose T: L'[0, 1] — Z is an M[X]-continuous op-
erator which is not compact on L'[0, 1]. By Lemma 2.10 there is a sequence (g;)
in By so that supp(g;) < I, where () is a sequence of disjoint dyadic intervals,
m(l;) — 0as s — oo, and the set {T'(g;), s € N} is not compact in Z. The proof
of Lemma 2.10 shows that we can also suppose that

”T(g2m—l) - T(me) - T(g2n—l) - T(gZIz)" >e¢e ifm ?é n.

By splitting g, = g — g~ into its positive and negative part and by passing to a further
subsequence we may assume without loss of generality that each g; is positive. For
convenience we also assume that ||g;||; = 1 and that the sequence of the dyadic
intervals (Iy) is increasing.

Now consider the sequence

Hi=g1—g, Lh=8g—84.... fi =8gi-1—8i,..., i €N.
Let

m

h= Zai,fi, a; real numbers, | <i <m.
i=1
Suppose (¢;) is a 1-symmetric basis for X. We now make the following:

Claim. Given any interval I there is a subinterval J of I so that J is contained
in one of the intervals (/) and
/ h dm‘ .
J

/hdm
1

Infactif I =[a,bland a € Iyy—y,b € Iy, k <[ write I in the form

<4.

I=UNIy_DUUNLYyUMUUNL_)UUNI)

/ hdm = 0.
M

Now choose J to be one of the 4 intervals

where M is an interval so that

Ji=UNIyy), h=UNIy), Zh=UNIy_y), Ja=UNIy)
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fhdm / hdm
J J;

Sothe claim is true. Now consider a finite number of disjointintervals A, A,, ... Ay.
The unconditionality of (¢;) and the claim imply that there exist intervals Hy, H, .. .,
Hysothat H, € A,,q =1,2,...d, every H, is contained in some interval from the

sequence (I,) and
d d
hdm e /hdm el .
(), ram) | =4[ (], pom)

q=1 g=1

so that

=

,t=1,2,3,4

<4

Let A, = {g <d: H, C I}, s <2m. Note that

qEZA:I(quhdm)eq+Z(/;,qhdm)eq+~~+ 3 (/thdm>eq

geA; qEA

By Lemma 2.11 the last quantity is less than

\(/ hdm)e. +(f hdm>e2+'~+ (f hdm)ezm
ll IZ IZm
= |la, (f gl dm)e. + a (/ gzdm)ez
I| 12
+ a; (/ g;dm)eg+ a (/ g4dm)e4
1 In
+ oot am (/ 82m—1 dm) em—1 + am (/ 8&2m dm) €2m
Ilm—l I2m

=< ”alel +aiex + azes + azeq + - - - + amern—1 + Amerm ”
<2llaie; + azes + -+ - + amen |l

by the symmetry of the basis (¢;). The M[X ]-continuity of the operator T: L'[0, 1] —
Z shows that the map e; — T (f;),i € N, extends to a bounded operator S: X — Z
because

|s (L), = |7 (Can)| = c-[Las],y, =8 [Lael,.

Since {T'(f;), i € N} is not compact in Z we get that the operator S is not compact.
O

As a corollary of Theorem 2.9 we obtain a result from [K-P-R-U], Cor. 13.
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COROLLARY 2.12.  If the Banach space Z contains no copy of co then every My-
continuous operator T': LY0, 11— Zis compact.

Proof. By a theorem of Pelczynski if S: ¢o — Z is non compact then S fixes a
copy of . O
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