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DISCREPANCY NORMS ON THE SPACE M[0,1]
OF RADON MEASURES

MINOS A. PETRAKIS

Introduction

Let X be a Banach space with a symmetric basis (el), N. We assume (see
[L-T], p. 114) that the norm of X satisfies

n=l

for every permutation 7r of the integers and every choice of signs or,, 4-1. Let
M[0, be the space of all Radon measures on the unit interval [0, ]. For # 6 M[0,
we define II#llMIXl to be the quantity

sup{ Z lz(li)ei (li), < d disjoint subintervals of [0, ], d N
i=1

M[X] is the space M[0, 1] equipped with the norm I1" IIMIx.
L[0, 1] is the space of all Lebesgue integrable functions on [0, 1] and rn denotes

the Lebesgue measure on [0, ]. We can see L [0, as a closed subspace of M[0, ].
A measure # in M[0, 1] is called diffuse if #({x}) 0 for each x in [0, 1].

This paper consists oftwo sections. In Section we study the structure ofthe M[X]
spaces.The papers [Wei] and [B] are cornerstones in our considerations. Theorem 4.2
in [Wei] about the M0 space (related to Proposition in [B]) can be extended to certain
classes of M[X] spaces.This is the content of Theorem 1.1 and Theorem 1.5. More
precisely in Theorem 1.1 we show that if X has a symmetric basis and contains no
copy of then every diffuse measure # in M[0, 1] is the limit in the M[X]-norm of
a sequence (#n) of measures such that each #n is absolutely continuous with respect
to the Lebesgue measure m on [0, 1]. Theorem 1.5 asserts the following.

Suppose X has a symmetric basis and contains no copy of I. Let (,, E,,)
be an L[0, 1] valued martingale and #x w* lim,(x) for almost all x [m].
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The following are equivalent:

(i) The measures/z. are diffuse for almost all x [m].
(ii) The martingale (,,, E,,) is Cauchy in the Bochner norm of Llxl.
(iii) The operator T: L [0, L [0, associated to the martingale (n, E,,)

becomes representable if we give to the target space of T the M[X] norm.

In the proofs of Theorems 1.1 and 1.5, important role is played by Lemma 1.2.
Lemma 1.2 asserts that if (ei) is a subsymmetric basis for X and X contains no copy
of then a convex combination of the form _,’il= ,ki ei, ,ki scalars, can not be large in
norm if all the coefficients i remain small. In Lemma 1.3 we show that under certain
conditions the convergence of a net (/zj) of positive measures to a diffuse measure
/z in the M[X] norm is determined by the behaviour of (#.i) on the dyadic intervals.
Lemma 1.3 was suggested to us by the referee. It was pointed out to us by the referee
that the proof of Lemma 1.3 was included in our earlier proof of Proposition 1.4
and that despite its simplicity Lemma 1.3 gives a proof of Proposition 1.4 and can
also be used in the proof of Theorem 1.1. In the proof of Lemma 1.3 (b) we use
Lemma 1.2. Proposition 1.4 is a result on the weak topology of MIX]. Corollary 1.6
asserts the following: Let X be a Banach space with a symmetric basis such that
X contains no copy of . Let (,,, E,,) be a martingale associated to an operator
T: L I[0, -- L [0, 11. If the martingale (,,, E,,) is Cauchy in the Pettis norm then
(,,, En) is Cauchy in the Bochner norm of LIMIXI In the case X co, Corollary 1.6
can be viewed as a rephrasing of Proposition 11 in [B].

In Section 2 we introduce and study the class of M[X]-continuous operators. Let X
be a Banach space with a symmetric basis. Suppose Z is a Banach space. A bounded
linear operator T: L 1[0, 1] Z is called M[X]-continuous if it is continuous for the
M[X] norm on L[0, (Definition 2.1 ). It follows that if X has a symmetric basis and
contains no copy of then every M[X]-continuous operator is nearly representable
and therefore strongly regular (Proposition 2.2 and Corollary 2.3). The main result
in this section (Theorem 2.9) is the following: Let Z, X be Banach spaces such
that X has a symmetric basis and contains no copy of If every bounded operator
S: X --+ Z is compact, then every M[X]-continuous operator T: L[0, 1] - Z
is compact. In the proof of Theorem 2.9 we use Lemma 2.10 and Lemma 2.11.
Lemma 2.10 is of independent interest. This result shows that the non-compactness
of a general operator T: L [0, -- Z implies the existence of a bounded sequence
(gn), n E N, in L[0, 1] such that each function g,, is supported by a dyadic interval

In so that the set {T(g,,), n E N} is not compact and the sequence (/,,) consists of
pairwise disjoint intervals.

In Lemma 2.11 we show that if (el) is a symmetric basis for X then i= biui _<

7- bieil[ for all scalars bi, < r, where each ui is a convex combination of
suitable elements of the basis (ei). Theorem 2.5 is a result on the behaviour of M[lP]
continuous operators on orthonormal sequences.In Example 2.7 and in Proposition 2.8
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we show that under certain conditions on X there are M[X]-continuous operators on
L [0, that are not compact. Of related interest are Corollaries 2.4 and 2.6.

1. The structure of M[X] spaces

In this section we study the normed spaces M[X] which are defined in the In-
troduction. In most of our theorems X denotes a Banach space with a symmetric
basis that contains no copy of . In Lemma 1.2 the assumption on X is that X has
a subsymmetric basis and contains no copy of We refer to [L-T], p. 114 for the
definition of a subsymmetric basis.
We start with a few remarks.
(i) For X co and (ei) the usual basis for co, the space M[c0] is the space M0

considered in [B] and [Wei].
(ii) The formal identity maps Wx: M[0, 1] -+ M[X] and Vx: M[X] -- Mo are

continuous and

IIllg,, II#IIMIx1 II#IIMI/’I, # M[0, 1].

(iii) The space M[1 is the space M[0, 1] with the usual norm.
(iv) The normed spaces M[X] are not complete in general. If M[X] is complete

then M[X] is isomorphic to M[l].
(v) The completion of L[0, 1] under the M[c0] norm is isomorphic to the space

C[0, of continuous functions on [0, ]. To see why this is true consider the operator

U: (L’[0, 1], I1" Ilgl.,,l) --> (C[0, 1], I1" Iloo),

U(f)(x) f(t)dm(t),

Note that U is continuous and

x [0, 1], f L’[0, 1].

IIU(f)ll llfllMI’,,1, f L[0, II (see [Wei], p. 550).

The range of U is the set of absolutely continuous functions on [0, 1] that vanish at
zero.Hence the closure of the range of U is isomorphic to C[0, 1].

(vi) The completion of L [0, under the M[/2] norm is the James function space
JF studied in [L-S].

THEOREM 1.1. Suppose X is a Banach space with a symmetric basis and that X
contains no copy ofl The measure # M[0, 1] belongs to the closure of L[0, 1]
under the M[X] norm if’and only if lz is a diffuse measure.

We need the following result.
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LEMMA 1.2. Let X be a Banach space with a subsymmetric basis (ei) so that
X contains no copy of Given e > 0 there exists 3(e) > 0 so that if i > O,
-i=, ,ki and sup )i < 6(e), < d, then = )iei < e.

ProofofLemma 1.2. Suppose there exists e > 0 so that for all

(n) (n) (n)n 6 N there exists i 0 such that z._, i 1, ,k < for k,
i=1

Cn)and ell . Letx X*, IIxll 1, so tatx(e) . Let
F li k, lx,(ei)l > l, n N.

Note that

-(n *(ei)Xn n)i i Xn
Xi= i=

F,, F,, k,,

() where #F is the cardinalityTherefore iF,, i . It follows that #F, 7
of the set F,. So #F as n . Every subsymmetric basis is unconditional
and since X contains no copy of the biorthogonal functionals (e) associated to the
basis (el) form an unconditional basis for X* (see [D], p. 99).

Consider the functionals

e i x (e), n N.
e F,,

f.Note that > 7 for Also note that

ei Ni ei lx 1.
iF. i=1

Suppose F {i < i < < i,,I. Then l #F andl, as n .
Now consider the functionals

(n),,Yn Nb n N.

By the subsymmetric property we have__
#In) ei

E F,,

<1, nN.



DISCREPANCY NORMS 605

Let y* be a w*-limit point of the infinite sequence (y*). It follows that y* (ei) > el2
for 6 N. Now if J is a finite subset of N we have

aiei >-- - ieJ,

where (ai), j JI are scalars and K is the unconditionality constant of the basis (el),
6 N. Therefore X contains a copy of This is a contradiction. [2]

.;Letlr,, [__,y-),r-- 0,1,.. s 2 be the family of the dyadic
intervals.

LEMMA 1.3. Let (#j j J be a net ofpositive Radon measures with j 1,
j J. Suppose that tz is a positive doCfuse measure and lzj(Ir,,,,) -- #(lr,,)for every
dyadic interval Ir,,, r 0, 1,2 s 1,2 2r. Then:

(a) #j(1) --+ #(/)for every interval I.
(b) #j --’> l in the M[X] norm ifX has a symmetric basis and contains no copy

ofl

ProofofLemma 1.3. (a) Let e > 0. Since # is a diffuse measure we can find
n 6 N so that #(In,,,.) < e, s 1,2 2n. Find jo in the index set J so that

e
2nI#j(In,,)- #(In,,)l < 2- for s- 1,2 j > jo.

Let I be any subinterval of [0, 1]. Assume that

I I() U In,s U In,,+"" U In,,,.+k U i(2)

where I (), 1 (2) are intervals, I () c_ In,,_, i(2) C__ ln,s+k+l. Since #j is positive we
have

#j(I ()) < #j(In,s-) < - + s and /,j(l(2)) _< #j(In,s+k+) < + s.

Hence for j > j0 we have

-#(1(2))1
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(b) Suppose X has a symmetric basis and contains no copy of Let e > 0 and
suppose 6(e) satisfies the property in the statement of Lemma 1.2. Find n 6 N so
that/z(l,,,) < 6(e), s 1,2 2". Find j0 in the index set J so that

8(e)
2"Itxj(l,,,)- Iz(In,s)l <

4 2--2
for s- 1,2 j > j0.

For each j > j0 there exists an interval lj such that

I/zj(/j) -/z(/j)l > sup I#j(1) -/z(1)l
8

where the supremum is taken over all intervals I [0, l]. By the argument in the
proof of (a) we have

I#(b) #()1 _<

and therefore

sup{l#j(l) #(I)1, I subinterval of [0, 1]} <
2

By Lemma 1.2. we get

II/zj-/ZllMtxl2"eifj > j0.

ProofofTheorem 1.1. Let lr, ,.1, ,. ), r 0, s 1,2 2r, be
the family of dyadic intervals. For each measure v 6 M[0, we consider the "table"
(V(Ir,s)) r 0, s 1,2 2r, of v. Let # be a diffuse measure. We may
assume that/z is positive otherwise we split/z in its positive and negative part. For
each n 6 N we define a measure/zn by determining its table in the following way:

If r < n set lzn (Ir,s) lZ (Ir,s), S 1,2 2
If r > n and < s < 2 consider the the unique dyadic interval of the form

Ir-l,k that contains Ir, Use induction to assign to lzn(Ir,s) the value /z,(Ir-,k). It
follows that for each n 6 N the measure/Zn is absolutely continuous with respect to
the Lebesgue measure m. Note that for every dyadic interval I the sequence
converges to/z(1) as n --+ oo. By Lemma 1.3, I1# #llMtx 0 as n oo.

PROPOSITION 1.4. Suppose X is a Banach space with a symmetric basis and that
X contains no copy of 11 Let K be the set ofpositive diffuse measures ofnorm less
than one in MIX]. The weak and the norm topologies of MIX] coincide on K.

Proof. Assume that a net (/zj), j 6 J, from K converges weakly to/z 6 K. For
any interval I the functional ;t (#) =/z(1) is continuous on M[X] and IItll 1. It
follows that #j(1) -- #(I), j J, for each interval I. By Lemma 1.3,/zj --+ /z in
the M[X] norm.
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For terminology, notation and results on martingales and operators on L we refer
to [D-U], [B] and [Wei].

Let Z be a Banach space and T: L[0, 1] -- Z be a (bounded) operator. Let
En, n 0, 1,2 be the finite algebra generated by the dyadic intervals 5r, ],
k 1,2 2". The Z-valued martingale (,,, E) associated to T is defined by the
formula

2"

n(t) T(h,,)h.(t), k 1,2 2n; n 0, 1,2 [0, 1]
k=l

whereh, is the characteristic function ofthe interval , normalized in L [0, ].
If Z L[0, 1] then for each x in [0, 1], ( (x)), n N, is a sequence of functions
in L[0, 1] and by Doob’s theorem for [m]-almost all x in [0, 1] the weak*-limit of
( (x)), n N exists as a measure in M[0, 1]. It is known that the family () is
a random measure and the "kernel" x x represents the dual operator T* in the
sense that

T*(f)(x) f fd, f L, [m] almost all x in [0, 1]

(see [Wei], Prop. 2.8).
If Z is a Banach space and f L, the Pettis norm of f is defined by

IIIflll sup [ Ix*(f)l dm
x*Z*,llx*lll J

while the Bochner norm of f is the quantity f Ilf(t)ll dm(t).
The next result follows from Theorem 4.2 in [Wei] and Lemma 1.2. (See also

Cor. 4.4 in [Wei].) It can be considered as an extention of Theorem 1.1 to the case
of a family () of measures. In the special case that X is the space c0 it becomes
Theorem 4.2 (a), (e) of [Wei].

THEOREM 1.5. Let X be a Banach space with symmetric basis such that X
contains no copy of Let (n, En) be a martingale associated to an operator
T" L[O, 1] --+ L[O, 1]. Suppose lZx w* limn(X) for almost all x [m]. The
following are equivalent:

(i) The measures lZx are diffusefor almost all x [m].
(ii) The martingale (n, En) is Cauchy in the Bochner norm of
(iii) The operator Wx T" L 110, 1] --+ M[X] is Bochner representable.

(Here Wx denotes theformal identity map Wx" L110, 1] M[X].)

Proof. The measures #x are diffuse for almost all x [m] iffthe operator T becomes
Bochner representable ifwe give to the target space of T the weaker M0 norm (Cor. 4.4,
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[Wei]). This means that given e > 0 there is a measurable set A c_ [0, 1] so that
m([0, I]\A) < e and the restriction TA of T on L(A) is a compact operator from
L(A) to M0. Note that Lemma 1.2 implies that given e > 0 there is 3(e) > 0 so that
if II#IIM0 < and I1#11 then IlttllMtx] < e. So TA is also compact from L(A) to
M[X].Therefore T is Bochner representable in M[X] and the martingale (n, En) is
Cauchy in the Bochner norm of LM[XI"

COROLLARY 1.6. Let X be a Banach space with a symmetric basis such that
X contains no copy of Let (n, E,) be a martingale associated to an operator
T" L[0, --+ L [0, ]. Ifthe martingale (, En) is Cauchy in the Pettis norm then
( E) is Cauchy in the Bochner norm ofLMIX]"

Proofi It is shown in Corollary 4.4 of [Wei] that if the martingale (,, E,,) is
Cauchy in the Pettis norm then the measures #x to* lim s(x) are diffuse for [m]
almost all x. Now apply Theorem 1.5. Vl

Remark 1.7. For X co, Corollary 1.6 becomes a restatement of Proposition 11
in [B]. In fact Corollary 1.6 can also be derived from Proposition 11 in [B] and
Lemma 1.2.

2. M[X]-continuous operators

Recall [D-U] that an operator from L [0, to a Banach space Z is called Dunford-
Pettis if it maps weakly compact subsets of L [0, into norm compact subsets of Z.
It is known [B], [U] that an operator T: L [0, --+ L [0, is Dunford-Pettis iff the
martingale (,, En) associated to T is Cauchy in the Pettis norm.

An operator T: L[0, --+ Z is called nearly representable [K-P-R-U] if the
composition T. D: L[0, Z is Bochner representable for every Dunford-Pettis
operator D: L 110, L [0, ].

Definition 2.1. Suppose X has a symmetric basis. An operator T" L [0, --+ Z
is called M[X]-continuous if there is a constant C such that IlT(f)ll < C. IlfllMtxl
for all f in L [0, ].

PROPOSITION 2.2. Let Z, X be Banach spaces so that X has a symmetric basis
and contains no copy of Every M[X]-continuous operator T" L[0, 1] Z is
nearly representable.

Proof By Theorem 1.5 (iii), the identity map Wx" L 1[0, 1] -+ M[X] is nearly
representable. For every Dunford-Pettis D: L[0, ---> L[0, we have

liT" D(f)ll <_ C. IlWxD(f)ll4tx, f E L[O, 11.
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The martingale associated to the operator WxD is Cauchy in the Bochner LMIX] norm
and hence the martingale associated to the operator T D is Cauchy in the Bochner
L norm. I--I

Recall [G-G-M-S, Theorem IV. 10] that an operator T: L [0, --+ Z is strongly
regular iff for each A c__ [0, ], m (A) > 0 and e > 0 there is a relatively weakly open
set V of the set

FA {f L[O, 1]" f > O, f f 1, supp(f)

___
A}

such that diam(T(V)) < e.

COROLLARY 2.3. Suppose X has a symmetric basis and contains no copy of 11
Every M[X]-continuous operator T: L[0, 1] Z is strongly regular

Proof
regular.

By Theorem in [A-P], every nearly representable operator is strongly

COROLLARY 2.4. Suppose X has a symmetric basis and contains no copy of
Let Z be a separable Banach lattice that contains no copy ofco. Then every M[X]-
continuous operator T: L [0, Z is Bochner representable.

Proof. By [K-P-R-U] if Z is a separable Banach lattice that contains no copy ofc0,
then every nearly representable operator T" L[0, 1] -- Z is Bochner representable.

THEOREM 2.5. Let Z be a Banach space, p > 1. lfthe operator T: L [0, Z
is M[lP]-continuous and (un), n 1,2 is an orthonormal sequence then there is
some constant C such that

(log..!n))T (un _<_ C , rff
for infinitely many values ofn.

Proof Let V" L[0, 1] C[0, 1] be the Volterra integral operator defined for

f in Ll[0, 1] by
x

V(f)(x) f(t)dm(t), x [0, ].

It is shown in [O], p. 95, that

log(n)
IIV(u)llcto, <_ g------ for infinitely many indices n.
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It is easy to see that for X p, p > 1, a function 6(e) as in the statement of
Lemma 1.2 is 6(e) ep/p-I Note that

Ilun llMo < 2.K
log(n)

for infinitely many values of n

and hence

log(n)
Ilu, IIMvp <_ C. for these indices. I--I

COROLLARY 2.6. There are linear functionals on L ![0, 1] that are not M[lP]
continuousfor any p > 1.

Proof Consider the space L [0, 2zr instead of L [0, ]. There is a function g
in L[0, 2r] whose sequence of Fourier coefficients has order greater than that of

t’lg(n)the sequences ---) -7, n 6 N, p > 1. The functional on L[0, 2r] determined

by such g can not be M[lP]-continuous since the exponentials form an orthonormal
system. I--I

It is shown in [K-P-R-U] that if the Banach space Z contains no copy of co
then every M0-continuous operator T: L[0, 1] --+ Z is a compact operator. The
next example shows that the situation is not the same for general M[X]-continuous
operators.

Example 2.7. There is an M[/2]-continuous operator S: L[0, 1] --+ L[0,
which is not compact: Let (In) n 1,2, 3 be a sequence of disjoint subintervals
of [0, ]. Consider the operator T: L [0, --+ 12 defined by

T(f) Z f dm en, f L110, 1],
n=l

where (en) is the usual basis for 12. The map that sents each en to the nth Rademacher
function rn extends to an embedding U of 12 into L 110, 1]. Now set S U T and
notice that S maps the sequence

m(l,,)
)(.I,, n 1,2

into a non totally bounded set in L 110, 1]. It is also clear that S is an an M[/2]
continuous operator. It is easy to see that using the identity map lP --+ 12, < p < 2
one can construct M[IP]-continuous operators from LI[0, 1] to LI[0, 1] that are not
compact.
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PROPOSITION 2.8. Let X be an infinite dimensional reflexive space with a sym-
metric basis (el). Suppose that X is isomorphic to a subspace of the Banach space
Z. Then there exists a non compact operator T: L[0, 1] -- Z such that T is
M[X]-continuous.

Proof Since X is reflexive the basis (ei) is boundedly complete. Let (In), n
l, 2, 3 be a sequence of disjoint subintervals of [0, l]. Note that for k 6 N,

and therefore the series

f dm en

converges. The operator T: L [0, X defined by

T(f)--n ,f dm en, f L[O,I]

is M[X]-continuous and non-compact. Let U: X -+ Z be an isomorphism. The
composition U T is the required operator. U!

The next theorem is the main result in this section.

THEOREM 2.9. Let X be a Banach space with a symmetric basis such that X
contains no copy of Suppose Z is a Banach space and T: L[0, 1] ---> Z is a

non-compact operator IfT is also M[X]-continuous then there exists a non-compact
bounded operator S: X- Z.

For the proof of Theorem 2.9 we need two lemmas.

LEMMA 2.10. Let Z be a Banach space and T: L [0, Z a non-compact
operator. There is a bounded sequence (gn), n N in L[0, 1] and a sequence (In),
n N ofpairwise disjoint dyadic intervals such that supp(gn) c_ In, m (In) -- 0 as
n -+ o and the set {T (gn), n N} is not compact in Z.

ProofofLemma 2.10. Since T is non-compact there is an e > 0 such that for all
finite f, f2 fi in Bt, there is a g in Bt, such that

d(T(g),-6-6({T(fi), < 1}))> s.

Here Bt, denotes the unit ball {f L f II of L and d is the norm distance
in Z. Now we make the following:
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Claim. For .f, .f2 fd BL, and for every n 6 N there is a g 6 BL, such
that

d(T(g), E6({T(fi), _< 1})) > and supp(g)

_
I

33

where I is a dyadic interval of length m (I) < r.
To prove the claim, suppose there exist .f, .f2 f, BL, and n 6 N such that

for all h in BL, with supp(h)

_
I, I a dyadic interval of length m(1) < we have

d(T(h), E-6(IT(fi), < d})) _< --.
There is a g in BL, with

d(T(g), U6({T(f/), _< d})) > e.

Let I,,., [S/-, ], n 0. k < 2". If IIg I,,., lit # 0 set

gll,,.k
IIg l,,.k I1

Write g in the form g y"= .,,.,g,,., where X,,. IIg I/,,, t, k < 2". Note that
since supp(g,.k) c_ I,,., we have

d(T(g,,.k), U6(IT(fi), _< d})) _< -, k _< 2".

Let K --6({T (f/), < d}) and choose w,,.k 6 K so that

T (g,,.,) w,,., < -, n 0, k < 2".

Note that for n 6 N.

This implies that

d(T(g) K)) <
33’

a contradiction which proves the claim is true.
Now assume that (g,), n 6 N is a sequence in B, so that the set {T (g,), n 6 N}

is not compact, supp(g,)

_
I, where the /,, are dyadic intervals of length < r,

n 6 N. We may assume that either the sequence (/,,) is monotone (i.e., increasing, in
the sense that max I < min I,+, or decreasing) (Case I) or that the sequence (/,,) is
directed, in the sense that Im C I, if m > n (Case II). To see why this is true suppose
I,, [a,, b,]. By passing to subsequences we may assume that both (a,,) and (b,,)
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are monotone. If (a,,) is increasing and (bn) is decreasing we are in Case II. If both
(a,,) and (b,,) are (strictly) increasing sequences we do the following: Start with an
interval In of length less than 1/2. Find n2 > n so that bn2 > bn,. Now take a dyadic
interval J from the sequence (In) so that the right endpoint of J is larger than bn2 and
the length of J is smaller than bn bn. Note that/,, and J are disjoint. It is clear
now that by induction we can contruct a subsequence (Ink) of (I,,) which consists of
disjoint "increasing" dyadic intervals. So we are in Case I. Similar considerations
show that we are in Case if both (an) and (bn) are decreasing sequences. If one of
the monotone sequences (an), (bn) is eventually constant it is easy to see we are in
Case II. In Case it is clear that Lemma 2.10 is true. We claim the same holds in
Case II: In fact there is an increasing sequence n < n2 < ...nk < nk+ < of
integers so that

For each k write Ink in the form

where 12k, I2 are disjoint intervals which are also disjoint to In,+, and max I, <
min I2k. By passing to a further subsequence we may assume that either the set

T (gnk l,l k 6 N or the set T (gnk I,2 ), k 6 N is not compact, rl

LEMMA 2.1 1. Suppose X is a Banach space with a symmetric basis (ei ), N.
Foreachi N let {eij" j < ki} beasetofelementsof(ei)suchthat{emj" j < kn,}n
{eij" j < ki is the empty set if =/: m. Let ui Y= aijeij, wherey aij < 1,

aij > O. Then 7= bull <_ 7= bieill for all scalars bi, < r.

ProofofLemma 2.11.
such that

Then

Let x* in the unit ball Bx, of the dual space X* of X be

biui bix*(ui) bix* aijeij < bi aijx* (-e-[i ),
i= i= i= \i= i= i=

where e-7 is an element of the set {eij" j < ki} such that

x*() max(x*(eij), j < ki).
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It follows that

In the last inequality we used the symmetry of the basis (el), 6 N.

ProofofTheorem 2.9. Suppose T: L[0, l] --+ Z is an M[X]-continuous op-
erator which is not compact on L[0, 1]. By Lemma 2.10 there is a sequence (g.)
in Bt, so that supp(g.) /. where (/.,.) is a sequence of disjoint dyadic intervals,
m (/.) --+ 0 as s -- 0o, and the set {T(g.,.), s 6 N} is not compact in Z. The proof
of Lemma 2.10 shows that we can also suppose that

T (g2m- T (g2,,,) T (g2,,- T (g2,,)[I > e if m n.

By splitting g. g.+ g.- into its positive and negative part and by passing to a further
subsequence we may assume without loss of generality that each g. is positive. For
convenience we also assume that Ilg.ll and that the sequence of the dyadic
intervals (/.) is increasing.
Now consider the sequence

f g g2, f2 g3 g4 i g2i-i g2i N.

Let

h aifi, ai real numbers, < < m.
i--I

Suppose (ei) is a 1-symmetric basis for X. We now make the following:

Claim. Given any interval I there is a subinterval J of I so that J is contained
in one of the intervals (/.) and

hdm hdm

In fact if I [a, b] and a 6 12k-, b 6 12/, k < write I in the form

I (I fq/2,-I) U (I fq/2,) U M U (I fq I2/-) U (I f3 I2/)

where M is an interval so that

Mhdm
-O.

Now choose J to be one of the 4 intervals

J =(In/zk_), Jz=(In/zk), J3=(I1/2/-), J4=(In/21)
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SO that

fjhdm > fj hdm r--1,2,3,4.

So the claim is true. Now consider a finite number of disjoint intervals A , A2 Ad.
The unconditionality of (el) and the claim imply that there exist intervals H, H2
Hd so that Hq Aq, q 1,2 d, every Hq is contained in some interval from the
sequence (/,,) and

<4

Let A, {q < d: Hq c_ I. }, s < 2m. Note that

qA2 q A2m

By Lemma 2.11 the last quantity is less than

I](,hdm) e’+(fhdm)e2+’"+(f,,,hdm)e2"]l
al (fl gldm) el-bal (fl2g2dm)
q-a2(ftg3dm)e3q-a:z(fl4g4dm)e4
+ ...+a,,,(f,,,_, g2,,,-idm) e2m-i+am(f,,, g2mdm) e2mll

<_ Ilae + ae2 + a:e3 + a2e4 +... -t- ame2m- + a,,,e,,,

<_ 211ae + ae +... + amemll

by the symmetry ofthe basis (el). The M[X]-continuity ofthe operator T" L [0, 1] --+

Z shows that the map ei --- T (fi), N, extends to a bounded operator S" X Z
because

z
<8.C. ][yaieillIIS (-’aiei)] lIT c.

Since {T(fi), 6 N} is not compact in Z we get that the operator S is not compact.

As a corollary of Theorem 2.9 we obtain a result from [K-P-R-U], Cor. 13.
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COROLLARY 2.12. If the Banach space Z contains no copy ofco then every Mo-
continuous operator T" L[0, -- Z is compact.

Proof
copy of co.

By a theorem of Pelczynski if S" co --+ Z is non compact then S fixes a

Acknowledgments. am grateful to Professor S. Argyros for fruitful discussions.I
wish to thank the referee for valuable comments and suggestions.
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