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1. Introduction, notation

We introduce the following classes of polynomials. Let

Tgn f f (x) aix’ ai E R
i=O

denote the set of all algebraic polynomials of degree at most n with real coefficients.
Let

denote the set of all algebraic polynomials of degree at most n with complex coeffi-
cients.

Let ,,,k denote the set of all polynomials of degree at most n with real coefficients
and with at most k (0 < k _< n) zeros in the open unit disk.

Let "P,k denote the set of all polynomials of degree at most n with complex
coefficients and with at most k (0 < k _< n) zeros in the open unit disk.

Letn (r) denote the set of all polynomials of degree at most n with real coefficients
and with no zeros in the union of open disks with diameters [-1,- + 2r] and

2r, 11, respectively (0 < r _< 1).
Let 7)’(r) denote the set of all polynomials of degree at most n with complex

coefficients and with no zeros in the union of open disks with diameters [- 1, + 2r]
and 2r, ], respectively (0 < r _< 1).

The following two inequalities are well known in approximation theory. See, for
example, A.A. Markov [89], V.A. Markov [16], Duffin and Schaeffer [41], Bernstein
[581, Cheney [661, Lorentz [86], DeVote and Lorentz [931, Natanson [641 (some of
these references discuss only the case when the polynomial has real coefficients).
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MARKOV INEQUALITY.

holdsfor every p 79".

The inequality

IlP’llt-,l -< n211PllI-.l

BERNSTEIN INEQUALITY. The inequality

n
IP’(Y)I _<

V/1 y2

holdsfor every p E 79 and y (-1, 1).

In the above two theorems and throughout the paper II" Ila denotes the supremum
norm on A C N.

Markov- and Bernstein-type inequalities in Lp norms are discussed, for example,
in DeVore and Lorentz [93], Lorentz, Golitschek, and Makovoz [96], Golitschek
and Lorentz [89], Nevai [79], Mit6 and Nevai [80], Rahman and Schmeisser [83],
Milovanovi6, Mitrinovi6, and Rassias [94].

Throughout his life Erd6s showed a particular fascination with inequalities for
constrained polynomials. One of his favorite type of polynomial inequalities was
Markov- and Bernstein-type inequalities. For Erd6s, Markov- and Bernstein-type
inequalities had their own intrinsic interest. He liked to see what happened when the
polynomials are restricted in certain ways. Markov- and Bernstein-type inequalities
for classes of polynomials under various constraints have attracted a number of au-
thors. For example, it has been observed by Bernstein that Markov’s inequality for
monotone polynomials is not essentially better than for arbitrary polynomials. He
proved that if n is odd, then

IIP’llt-,l (n+l)
2

sup

where the supremum is taken for all 0 - p 6 79n that are monotone on [-1, 1]. This
may look quite surprising, since one would expect that if a polynomial is this far away
from the "equioscillating" property of the Chebyshev polynomial, then there should
be a more significant improvement in the Markov inequality. In a short paper in 1940,
Erd6s [40] has found a class of restricted polynomials for which the Markov factor
n2 improves to cn. He proved that there is an absolute constant c such that

IP’(Y) <min{ cV/ff en}(1 y:2)2’ - Ilpllt-,, y [-1,11,

for every polynomial p of degree at most n that has all its zeros in R \ (-1, 1).
This result motivated a number of people to study Markov- and Bernstein-type in-
equalities for polynomials with restricted zeros and under some other constraints.
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Generalizations of the above Markov- and Bernstein-type inequalities of Erd6s have
been extended later in many directions.

After a number of less general results of Erd6s [40], Lorentz [63], Scheick [72],
Szabados and Varma [80], Szabados [81], Mfit6 [81], the essentially sharp Markov-
type estimate

IIP’llt-l,ll
c3n (k -I- < sup < can (k -+- 1), (1.1)

Op7,,., IlPllt-,

with absolute constants c3 > 0 and ca > 0, was proved by Borwein [85] (in a slightly
less general formulation) and by Erd61yi [87a] (in the above form). A simpler proof is
given by Erd61yi [91 that relates the upper bound in (1.1) to a beautiful Markov-type
inequality of Newman [76] for Mtintz polynomials. See also Borwein and Erd61yi
[95a] and Lorentz, Golitschek, and Makovoz [96]. A sharp extension of (1.1) to

Lp norms is also proved by Borwein and Erd61yi [95b]. The lower bound in (1.1)
was proved and the upper bound was conjectured by Szabados [81] earlier. Another
example that shows the lower bound in (1.1) is given by Erd61yi [87b].

The following essentially sharp Markov-type inequality of Erd61yi [89] for the
class 79,, (r), that was anticipated by Erd6s, is discussed in the recent book of Lorentz,
Golitschek, and Makovoz [96] in a more general setting. Namely there are absolute
constants c3 > 0 and c4 > 0 such that

{ n n2} [[p’[[[_ll { n ]c3min , < sup <c4min ,n2

O:p79,,(r) Ilpll[-,
(1.2)

In this paper we exam:,ne what happens if in (1.1) and (1.2) we allow polynomials
with complex rather than real coefficients. The "right" analogous results of (1.1) and
(1.2) for the complex classes 79,.k and 79 (r) are established.

2. New results

Our first theorem is the "right" analogue of (1.1) for polynomials with complex
coefficients.

THEOREM 2.1. There are absolute constants c > 0 and c2 > 0 such that

cn max{k + 1, logn} <
IIP’llt-,

sup
0p7;,. P t-, ]

<_ c2n max{k + 1, logn}.

Our second result is the "right" analogue of (1.2) for polynomials with complex
coefficients.

THEOREM 2.2. There are absolute constants c > 0 and c2 > 0 such that

cln log (n/7) IIP’llt-,,, c2n log (n/-)
< sup <
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for every (e/n)2 < r < 1, and

cn2 < sup
]IP’III-,I

_< 2n2
OpE79]’(r) IIPlII--.

for eve. 0 < r < (e/n)2.

Remark 2.3. Theorems 2.1 and 2.2 should be compared with their cousins (1.1)
and (1.2) in the real case. It may be surprising that if k o(logn), we have an
essentially different Markov-type inequality for 79,’,.k than for 79,,,k (a similar comment
can be made on comparing Theorem 2.2 and (1.2)). However, a closer look at the
problem suggests that the real surprise should be the fact that if log n < k < n, we
have essentially the same Markov-type inequalities for 79,,,k and 79,’,.k. Indeed, the
"standard" argument to derive Markov’s inequality for 79,] from Markov’s inequality
for 79n goes as follows. Suppose

for every q 6 79n. Now let p 6 79, be arbitrary. Fix an arbitrary point a 6 [-1, 1],
and choose a constant c 6 C with Icl so that cp’(a) is real. We introduce q 6 79,,
defined by

Then

q(x) Re(cp(x)), x .
Ip’(a)l--Icp’(a)l--Iq’(a)l < n211qllt-,l < n211plli-,l

Since this holds for every p 6 79, and a 6 [- 1, ], we have

for every p 6 79,.
Observe that, while p 6 79 implies q := Re(cp) 6 79,,, p 6 79,,k does not

imply that q := Re(cp) 6 79,,k. This suggests that in order to establish the "right"
Markov-type inequalities for 79,,k, the arguments need to be more clever than the
above standard extension.

Remark 2.4. The case k 0 of Theorem 2.1 was first observed by Halisz, who
mentioned this to me in a private letter. See also Borwein and Erd61yi [95a], where a
modified version ofHalisz’ argument is presented. Halisz also claims an independent
proof of Theorem 2.1 using potential theoretic methods. After a personal discussion
about the possibility of extending the case k 0 to the general case 0 < k < n, we
worked on the problem simultaneously and we obtained our result at about the same
time. Halisz’ approach may be presented in one of his later publications. Moreover,
his methods give the k 0 case of the conjectured Markov-type inequality

Ilp’]lI-.l-< Ckn2- llpllI-,l
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for every p 6 79;, that has at most k zeros in the diamond of the complex plane with
diagonal [- 1, 1] and with angle otr 6 [0, zr] at and (Ck is a constant depending
only on k).

Remark 2.5. What do the extremal polynomials p* 6 79,] look like, say in Theo-
rem 2.1? We cannot say much about the characterization of the extremal polynomi-
als. Some properties may be suspected from those of the quasi-extremal polynomials
p 6 79, showing the lower bound in Theorem 1.2. These polynomials are given
explicitly in the proof. This phenomenon is in contrast to the real case where we can
characterize the polynomials p* 6 79,, for which

Ip*’(l)l Ip’(l)l
sup

IIP*llt-.l /,,, IIPlII-,.

It can be shown easily that such a p* 6 79,, must have only real zeros and at least
n k of these zeros must be at -1. In addition, roughly speaking, the extremal
polynomial #* 6 79,, is "very close" to being an incomplete Chebyshev polynomial,
that is, to being a polynomial that has n k zeros at -1 and "equioscillates" the
maximal number of times (that is k -I- times) on the interval [-1, 1]. See more
about incomplete Chebyshev polynomials in Chapter 3 of Lorentz, Golitschek, and
Makovoz [96].

Remark 2.6. The crucial idea to prove both Theorem 2.1 and 2.2 is a combination
of a Chebyshev-type inequality and Nevanlinna’s inequality. The Chebyshev-type
inequality gives an upper bound for the modulus of a polynomial p 6 79,] on the
real line assuming that IIPlII-.I < M. Combining this with Nevanlinna’s inequality
offers an upper bound for IPl in complex neighborhoods of and 1, assuming that
the IPl is bounded by M on the interval [-1, I]. Finding the "right" neighborhoods
of and -1 where Ip(z)l is bounded by cM allows us to give an upper bound for
p’(I)I and P’(- 1)1 by the Cauchy Integral Formula. The desired upper bound for
Ip’(z)l, z [-1, 1], can now be obtained by a linear transformation.

Remark 2.7. The inequality

for every polynomial p of degree at most n with complex coefficients was first proved
by V.A. Markov [92] in 1892 (here T,, denotes the Chebyshev polynomial of degree n).
He was the brother of the more famous A.A. Markov who proved the above inequality
for m in 1889 by answering a question raised by the prominent Russian chemist,
D. Mendeleev. S.N. Bernstein presented a shorter variational proof of V.A. Markov’s
inequality in 1938 (see the collected works of Bernstein [58]). The simplest known
proof of Markov’s inequality for higher derivatives are due to Duffin and Shaeffer
[41], who gave various extensions as well.
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Various analogues ofthe Markov and Bernstein inequalities are known in which the
underlying intervals, the maximum norms, and the family of functions are replaced by
more general sets, norms, and families of functions, respectively. These inequalities
are called Markov- and Bernstein-type inequalities. If the norms are the same in both
sides, the inequality is called Markov-type; otherwise it is called Bernstein-type (this
distinction is not completely standard). Markov- and Bernstein-type inequalities.are
known on various regions of the complex plane and the n-dimensional Euclidean
space, for various norms such as weighted Lp norms, and for many classes of func-
tions such as polynomials with various constraints, exponential sums of n terms, just
to mention a few. Markov- and Bernstein-type inequalities have their own intrin-
sic interest. In addition, they play a fundamental role in proving so-called inverse
theorems of approximation.

There are many books discussing Markov- and Bernstein-type inequalities in detail.
See for example Cheney [66], Lorentz [86], DeVore and Lorentz [93], and Lorentz,
Golitschek, and Makovoz [96].

Remark 2.8. It is not that hard to see that our proof of Theorem 2.1 can be
extended to higher derivatives That is, there are constants Cm > 0 and C’ > 0 such
that for every integer 0 < m < n, we have

Cm (max{k + 1, logn})m < sup < C,’,, (n max{k + 1, logn})m

This extension, that cannot be done by a simple induction, is left to the reader.

Remark 2.9. Note that the case k n in Theorem 2.1 is the case when there are
no restrictions on the zeros. Hence, up to the best possible constant, our Theorem 2.1
contains the inequality of the Markov brothers.

3. Lemmas for Theorem 2.1

We need a few lemmas.

LEMMA 3.1. Let 0 < k < n be integers and let s [0, 1]. We have

for every

Observe that the above lemma follows immediately from its "real case" when 79,’,k
is replaced by 79,,,k. To see this apply Lemma 3.2 below with p 6 79,.k replaced by
p-fi "]92n,2k and obtain the conclusion of Lemma 3.1.
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LEMMA 3.2. Let 0 < k < n be integers and let s [0, 1]. We have

for every, p 79,.k.

Because of symmetry, Lemma 3.2 reduces to"

LEMMA 3.3. Let 0 < k < n be integers and let s [0, 1]. We have

for every p

The following lemma shows that it is sufficient to prove Lemma 3.3 only for some
special elements of 79,,,k with some additional nice properties.

LEMMA 3.4. Let 0 < k < n befixed integers and let 0 < a < s < 2 befixed real
numbers. There exists a p* 79,.k for which

Ip(l + a)l
sup

p,,., IIPlII-.-,I

is attained. This p* is of theform

p*(x) (x + l)"-;q*(x),

To finish the proof of Lemma 3.1, it is now sufficient to refer to the result below
proved by Borwein and Erd61yi [92]. More precisely the lemma below follows from
Theorem 2 of Borwein and Erd61yi [92]. Then Lemma 3.3 follows from Lemma 3.5
with the help of Lemma 3.4, and as we have already remarked Lemma 3.1 follows
from Lemma 3.3.

LEMMA 3.5. Let 0 < k < n be integers and let s [0, 1]. We have

IIPlII-,.,+I-< exp (18 (x/-ks + ns)) IIPlII-,.,-.I

for every polynomial p oftheform

p(x) (x + )"-kq (x), q 79k.

Now we examine the growth of a p 6 79j’,k near to subject to IIPlII-.I 1.
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LEMMA 3.6. There is an absolute constant c5 such that

log IP(Z)I _< c5

.for every p 79.k with Ilpllt-.l < 1, andfor every z C satisfying

Iz-ll
n max{k + 1, log n

This will follow by a combination ofLemma 3.1 and our next lemma. The proofof
Lemma 3.7 below (in fact a more general result) may be found in Boas [54] (pages 92
and 93).

LEMMA 3.7 (NEVANLINNA’S INEQUALITY). Let x, y R. The inequality

log Ip(x + iy)l < lY___I log Ip(t)l
:r (t-x)2+y2dt

holdsfor every polynomial p with complex coefficients.

The upper bound of Theorem 2.1 will be obtained by a combination of the Cauchy
integral formula, Lemma 3.6, and a linear transformation.

4. Lemmas for Theorem 2.2

The line of proof is similar to that of Theorem 2.1. We need a few lemmas. For
technical reasons we need to introduce the following classes of polynomials. Let
79,, (r)+ denote the set of all polynomials of degree at most n with real coefficients
and with no zeros in the open disk with diameter [1 2r, 1] (0 < r < 1).

Recall that the classes 79,, (r) and 79;(r) are defined in the Introduction.

LEMMA 4.1. Let 0 < s < r < 1. We have

[[PlI[--..+.] -< exp (8nr-/Zs)
.]:or every p 79 (r).

Observe that the above lemma follows immediately from its "real case" when
p 79,(r) is replaced by p 79,,(r). To see this apply Lemma 4.2 below with
p 79,’(r) replaced by p--fi 792,, (r)and obtain the conclusion ofLemma 4.1.

LEMMA 4.2. Let O < s < r < 1. We have

IlpllI--..+.l -< exp (8nr-I/2s)Ilpllt-.

for every p 79,(r).
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Because ofsymmetry, Lemma 4.2 reduces to

LEMMA 4.3. Let 0 < s < r < I. We have

IIPlI[-,+,I -< exp (8nr-I/2s)IIplII-,I
for every p 79,(r)+.

The following lemma shows that it is sufficient to prove Lemma 4.3 only for some
special elements of 79, (r)+ with some additional nice properties.

LEMMA 4.4.
which

Let 0 < a < s < r < be fixed. There exists a p* 79,(r)+ for

Ip(l -+- a)l
sup

pP,,r)+

is attained. This p* has all its zeros in [-1, 2r] and Ip(1)l IlpllI-,l.

To finish the proof of Lemma 4. l, it is now sufficient to prove the lemma below.
More precisely Lemma 4.3 follows from Lemma 4.5 with the help of Lemma 4.4,
and as we have already remarked Lemma 4.1 follows from Lemma 4.3.

LEMMA 4.5. Let 0 < s < r < I. We have

Ilpll-I,+,l _< exp (8nr-l/Zs)Ilpl[[-l,II
for every polynomial p 79. having all its zeros in [-1, 2r].

To prove Lemma 4.5 we need the following result from Erd61yi [89] (see also
Borwein and Erd61yi [95a, p. 237].

LEMMA 4.6. Every polynomial p 79, has at most

2n.,/g Ilpllt-,
Ip(1)l

zeros (counting multiplicities) in [1 6, 1], 6 > 0.

Now we examine the growth of a p P,(r) near to subject to Ilpllt-, 1.

LEMMA 4.7.
that

Suppose (e/n)2 < r < I. There is an absolute constant c5 such

log IP(Z)I c5

for every p 79(r) with IlPllt-, 1, andfor every z C satisfying

Iz-ll_<
n log(nq/-")



MARKOV INEQUALITIES FOR CONSTRAINED POLYNOMIALS 553

To prove Lemma 4.7 we also need the following Chebyshev-type inequality valid
for all p 6/2,’. See, for example, Borwein and Erd61yi [95a]. The lemma below can
also be viewed as the case k n of Lemma 3.1 with a better constant.

LEMMA 4.8. Let s [0, 1]. We have

Ilpllt-t-.+, exp (5ns 1/2)

for every p 79,’.

5. Proof of Theorem 2.1

As discussed in Section 3, the proof ofLemma 3.1 is reduced to that ofLemma 3.4.
So we start this section with the proof of Lemma 3.4.

ProofofLemma 3.4. The existence of p* 6 72n,k is a standard compactness ar-
gument combined with Rouche’s theorem. We omit the details of this part.

Now we show that p* has only real zeros. Suppose that p* has a non-real zero z0.
Consider the polynomial

pz) := p*fz) ( e
(z (1 4- a))(z (1 a)) ’(z zo)(z -io)

It is easy to check that for a sufficiently small e > O, p, 6 79n,k. To this end one needs
to verify only that if z0 is non-real and Iz01 > 1, then for sufficiently small e > O, the
two zeros of the quadratic polynomial

(z zo)(z .o) e(z (1 + a))(z (1 a))

are outside the open unit disk. This follows from the fact that for sufficiently small
> 0, the above quadratic polynomial has two non-real zeros with modulus r, where

r2 Iz012 8(1 a2)
1, IZ01>_ 1, aS(0,1).

1--

Observe now that for sufficiently small e > O, p, 79,,, contradicts the extremality
of p*. This contradiction shows that p* has only real zeros, indeed.

It remains to prove that if z0 6 II \ (- 1, 1) is a zero of p*, then z0 1. Indeed,
if z0 1, cxz) is a zero of p*, then

q* (Z) :=
p*(z)
Z ZO
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contradicts the extremality of p*. If z0 6 (-oe,-1) is a zero of p*, then for
sufficiently small e > 0,

p (z) p* (z) (
contradicting the extremality of p*. !--1

ProofofLemma 3.6. Let p 6 79,,’.k. We normalize so that

max Ip(t)l 1;
<t< 1+ ,,1+)

that is,

log Ip(t)l _< 0,

In the rest of the proof let

-l<t<l+
n(k+ 1)

(5.2)

z--x +iy, Ix- 11, lyl
n max{k + 1, log n

(5.3)

We have

lyl [- log Ip(t)l
7r g_ (t -x)2 + y2

lY___[ [- nlog(21tl)
dt

7r J_ (t-x)2+y2
dt

<
n f-’ log(2ltl)

7rn max{k + 1, logn} 2

c

max{k+l,logn}

dt

(5.4)

with an absolute constant c. Here we used the well-known inequality Ip(t)l < 12tl"
valid for all p 6 79 with P I-. 1 -< and for all 6 IR \ (- 1, 1). Obviously

lY_.__[ fl+ log Ip(t)l
rr a-I (t x)2 -- y2

dt <_ O. (5.5)

Now we use Lemma 3.1 and (5.3) to obtain

lY/[2 log Ip(t)l
re _+ (t -X)2 + y2

dt

lY__I [2 18 (/nk(t 1) + n(t 1))
dtJ (t x)2 + y2

ly___[ f2 72 (/nk(t 1) + n(t 1))
dt

Ji (t 1)27r ,,-+
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(t 1)-3/2 dt
rcn(k + l) +

+
72n "[,2

7rn max{k + 1, logn}) ,+,,,_+,,
(t 1)- dt

2 )-1/2144/-n- ,{k+i) 72nlog(n(k + 1)/2)
< +

7rn max{k + I, log n zr n max{k + 1, log n
<c (5.6)

with an absolute constant c. Finally, similarly to (5.4), for n >_ 2, we have

lYl f2 loglp(t)l-- (t- X)2 -I-22
dt

<
[y[ f2 nlog(21tl)

(t --X)2 -- y2
dt

<
n f2 4 log(2lt 1)

7rn max{k + 1, logn} (t 1)2
c

max{k + 1, log n

dt

(5.7)

with an absolute constant c. Now from (5.1)-(5.7) and Lemma 3.7 (Nevanlinna’s
inequality), if z 6 C satisfies (5.3), then

Ip(z)l <exp(I- !f loglp(t)l
(t x)2 -+- y2 dt) < c max Ip(t)l

<t< I+
(5.8)

with an absolute constant c. Finally observe that Lemma 3.1 implies

max Ip(t)l < c61lplll-,l (5.9)
<t< I+ .(k- )

with an absolute constant 6. The lemma now follows from (5.8) and (5.9).

Proofof Theorem 2.1.
in a standard fashion that

It follows from Lemma 3.6 and Cauchy’s integral formula

Iq’(l)l < c7n max[k + 1, logn}llqll-,l

for every q 6 79,’,k. Now let et be a linear transformation that maps [-1, 1] onto
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[-1, y] so that y if y [0, 1], or onto [y, 1] so that y if y 6 [-1,0]. Let
p 6 79.k. Then q "= p o ot 6 79,,k. Applying (5.10) to q 6 79,’.k, we obtain

2
[p’(y)[ [q’(1)[

l+y
2

< cvn max{k + 1, logn}
l+y
2

cvn max{k + 1, logn} [[Plll-,yl
l+y

< 2c7n max{k + 1, logn}llPlli-,l

if y 6 [0, 1], and

2
Ip’(y) Iq’(l)l

1-y
2

< c7n max{k + 1, logn} Ilqllt-,l
l-y
2

c7n max{k + 1, logn} IlPllty,l
l-y

< 2c7n max{k + 1, log n P [- l, 1

if y 6 [- l, 0]. This proves the upper bound of the theorem.
When log n < k < n the lower bound of the theorem follows from an example

given by Szabados [81, Example 1], see also Erd61yi [87b]. These examples are in
fact polynomials with real coefficients. Szabados’ example is given by defining

x )"- 19(2n_2k_l/2,0)(Xp(x)
2 ’

’’’) denotes the kth Jacobi polynomial with parameters ot and/3. Erd61yiwhere, k

[87b] offers a more elementary but more technical example.
As the upper bound in (1.1) shows, when k o(log n) the polynomials showing

the lower bound of the theorem cannot be real. For the case 0 < k < log n, we offer
the following example. Let

2mzri )Zm ".--exp
\ 2n +

m--l,2 n,

be those (2n + l)th roots of unity that lie in the open upper half-plane. Let

P2n+l(Z) :’-- P2n+2(Z) (Z 1) -’I (z Z,n)2

m=l

Then P2n+l G 79c and IP2,,+l (x)[ Ixz’+2n+l,O

implies
for every x N. Note that this

Ip2,+n(-l)l IIP2n+nllI-,n] 2.
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Also

2n+l(-1)
P2n+l (-1)

--+2 > 2Im
m=l Zm \m=Ln/2J+l Zm

--=_l >2_
2 lJ((2k+l):rr)-2v/2 l-l-zml 7r ,-o 2n+lI_n/2J +

> cgn logn

with an absolute constant c8 > 0. r--!

-1

6. Proof of Theorem 2.2

As discussed in Section 4, with the help of Lemma 4.4, the proof of Lemma 4.
is reduced to that of Lemma 4.5. The proof of Lemma 4.4 is very similar to that
of Lemma 3.4, and it is left to the reader. So we start this section with the proof of
Lemma 4.5.

ProofofLemma 4.5. Let 0 < a < s < r < 1. Suppose

p(x) c -I (x xj) xj E [-1, 2r],
j--I

and assume that P (1)1 P I- , 1. Let

Iv (1 2(v + l)4r, 2v4r], v 1,2

It follows from Lemma 4.6 that

-I --I( a ) --I ( aIp(l+a)l l+a xj _< 1+ _< exp
[p(1)l Xj Xj Xjj--I j--I j--I

_< exp < exp a
j= xj v=l xtel,, Xj

_< exp a 2nv/2(v + 1)4r
v--I

( x (v + l)2 n 16na’
exp < exp /

_< exp

and the lemma is proved. I-1
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ProofofLemma 4.7. Let p 6 7),. We normalize so that

max Ip(t)l- 1"
_l<t<l+ 2’/7

(6.1)

that is,

log Ip(t)l _< 0,

In the rest of the proof let

(6.2)

z x + iy, x, y , Ix 11, lyl <
n log(n v/7)"

(6.3)

Note that the assumption (e/n)2 < r < implies log(n/7) >_ 1. We have

lyl [- log Ip(t)l
Jr J_ (t- x)2 -t- y2

dt < lYl f- nlog(21tl)
Jr ec (t --X)2-+- y2

< f-’nlog(21t[) dt
2

cn/7

dt

(6.4)

with an absolute constant c. Here we used the well-known inequality Ip(t)l <_ 12tl"
valid for all p 6 7);’, with Ilplll-.ll -< and for all 6 R \ (-1, 1). Obviously

lyl log Ip(t)l
Jr (t --X)2 nt- y2

dt < O. (6.5)

Observe that (e/n)2 < r < implies 2/-/n < r. Now we use Lemma 4.1 and (6.1)
to obtain

lyl [l+r log Ip(t)l
Jr J+, (t x)2 -t- y2

dt < [y--[ [l+r 16nr-l/2(t_ 1)
Jr Jl+, (t_x)Z+y2

dt

<
]Yl [,+r 64nr-,/Z(t_ 1)
Jr JI+L7., (t 1) 2

dt

< lYl 64n [+r (t 1) -l dt

64n + (r_)< log
nlog(n)

< c (6.6)
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with an absolute constant c. Also, Lemma 4.8 yields

lyl f2 log Ip(t)l
7r J+ (t-x)2+y

ly__l f2 5n(t- 1) 1/2
dt -< rr a +r (t x)2 _7/y2 dt

[YA f2 20n(t- 1) 1/2

-<
re a+r (t- 1)2

dt

20n(t 1)-/ dt
+r

20n

nlog(n)
( c (6.7)

with an absolute constant c. Here we used the fact that the assumption (e/n)2 < r <

implies

2v/7 2v/7
< <r.

nlog(nx/7) n

Similarly to (6.4), we obtain

lyl/’ log Ip(t)l
rr J2 (t X) 2 -+- y2

nlog(21tl)
dt <

(t --X)2 q-- y2
dt

< n
v/7 foo 41og(2ltl)

rrn log(nv/7) J2 (t 1) 2

-log(nv/7)-

dt

(6.8)

with an absolute constant c. Here we used the fact that the assumption (e/n)2 < r <

implies

2v/7 2v/7
<<r<l.

nlog(n7) n

Now, from (6.1)-(6.8) and Lemma 3.7 (Nevanlinna’s inequality), if z 6 C satisfies
(6.3) then

ip(z)l<_exp(lylf log Ip(t)l )rr c (t -x)2 q- y2
dt < c max Ip(t)l (6.9)

_l<t<l+2,/7’

with an absolute constant c. Finally observe that Lemma 4. implies

max Ip(t)l _< cllpllI-,
<t< 1+ 2.-

(6.10)

with an absolute constant c. The lemma now follows from (6.9) and (6.10).
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Proofof Theorem 2.2. First assume that (e/n)2 < r < I. It follows from
Lemma 4.7 and Cauchy’s integral formula in a standard fashion that

cvn log (n x/’-F)Ip’(1)l _< [Iplll-,l (6.1 1)

for every p 72;(r), where c7 > 0 is an absolute constant. Now, by a linear
transformation, we obtain

[P’(Y) < [[P[[I-,1 (6.12)

for every p 6 72,(r) and y 6 [1 r, 1]. By symmetry, we have

Ip’(y)l _< Ilpll-, (6. s)

forevery p 6 72,(r) and y 6 [- 1, -1 +r]. Itis an obvious consequence ofBernstein’s
inequality (see the Introduction) that

[P’(Y)[ < [[P[[I-I,I (6.14)

for every p 6 72, (here we do not need to exploit the information about the zeros).
Inequalities (6.1 2)-(6.1 4) yield the upper bound of the theorem under the assumption
(e/n)2 < r _< 1. When 0 < r < (e/n)2 the upperbound ofthe theorem follows from
Markov’s Inequality (here we do not need the information about the zeros again). By
this the upper bound of the theorem is completely proved.

When 1/8 < r < 1, the lower bound of the theorem follows from the case k 0
of the lower bound in Theorem 2.1 When 0 < r <_ n -2, the Chebyshev polynomial
T, defined by

T,,(x) "--cos(n arccosx), x 6 [-1, 1],

shows the lower bound of the theorem. For the case n-2 < r < 1/8, we offer the
following example. We define

k Lr-/2J <_ n, and (6.15)

Let

--(1-2r)+2rexp[(2j-1)rci][\Zj
\ /2m+l

j 1,2 m, (6.16)

be the zeros of (z (1 2r))2m+1 + (2r)2m+ in the open upper half-plane. Let

P,,,(z) (z (1 -4r)) H(z zj)2 (6.17)
j=l
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Let

z" -zj, j 1,2 m, (6.18)

be the zeros of (z (-1 + 2r))2m+l + (2r)2m+1 in the open upper half-plane. Let

fire(Z) (Z (--1 +4r)) E(Z ,.j)2. (6.19)

We introduce

O(z’=g
1-2r

where Uk is the kth Chebyshev polynomial of the second kind defined by

sin((k + 1)0)
U,(z)- z-cos0, 0 (0, n).

sin0

Let

Pn Pm Pm uI4m+2
,r ’,k

Obviously P.,r Jg(C4m+Z)(k+l)(r) Q "P’On+z(r). We show that

max IP,,r(Z)l- IP,,r(l)l.
-l<z<l

(6.20)

Observe that

I(Pm m)(Z)l 4((1 2r)2 z2)2m+l -1 -+-4r < z < -4r,

and

IQ2(z)((1 2r)2 z2)l 2m+l _< (1 2r)4m+2 _< 1, -1-F2r <z< 1-2r,

hence

-l+4r <z < l-4r. (6.21)

Also

hence

I(PPm)(1)I max
zel- 1,11\[- l+4r, 1-4rl

I(PmPm)(Z)l

IP,,r(1)l

Using (6.21 ), (6.15), and

max IP,,.r(Z)l
z[- 1, l\l- +4r, 1-4r]

(6.22)

IQ,(z)l _< IQ,(I 2r)l- IU,(l)l- k + 1, z e [-1 + 2r, 2rl,
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we obtain

max
ze[- l+4r, 1-4r]

Ip,,,(z)l _< 4 _< 22’’+1

r-(2m+l)(2r)2’’’+1 < (k 4- l)4m+2(2r)2m+l
< Ip,,,r(1- 2r)l < Ip,,,(l)l. (6.23)

Now (6.22) and (6.23) yield (6.20). Using (6.20) and (6.15), we obtain

\j=l Zj

Lm/2J 2 LI(j >2 r> 2- = II-zjI rr j=,

cm log m c’nC7 log(n C7)
F r

c’n log(n/-)
,/;

\j=l I--Zj
-1(2j l)7r )2m+l

where c > 0 and c’ > 0 are absolute constants. This finishes the proof. IEl
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