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CONVOLUTION OF THREE FUNCTIONS BY MEANS OF
BILINEAR MAPS AND APPLICATIONS

JOSE LUIS ARREGUI AND OSCAR BLASCO

ABSTRACT. Let X, Y and E be complex Banach spaces, and let u: X x Y — E be a bounded bilinear
map. If f, g are analytic functions in the unit disc taking values in X and Y with Taylor coefficients x,, and
vy respectively, we define the E-valued function f %, g whose Taylor coefficients are given by u(x,, v,).
Given two bounded bilinear maps, u: X x Y — E and v: Z x E — F, in our main theorem we prove
that Young’s Theorem can be improved by showing that the function f *, (g *, k) is in the Hardy space
HP(F) provided that f, g and h are in the vector valued Besov spaces corresponding to those that appear
in some classical inequalities by Hardy-Littlewood and Littlewood-Paley.

We also investigate the class of Banach spaces for which these inequalities hold in the vector setting,
and we give a number of applications of our theorem for these spaces and for certain bilinear maps (such
as convolution, tensor products,. . . ), obtaining results both in the scalar and the vector valued cases.

Introduction

When dealing with spaces of vector-valued analytic functions there is a natural
way to understand multipliers between them. If X and Y are Banach spaces and
L(X, Y) stands for the space of linear and continuous operators we may consider the
convolution of L(X, Y)-valued analytic functions, say F(z) = ZZ‘;O T,7", and X-
valued polynomials, say f(z) = >_,_, x»2", to get the Y -valued function F x f (z) =
3" T,(x,)z". The second author considered such a definition and studied multipliers
between H'(X) and BMOA(Y) in [5].

When the functions take values in a Banach algebra A then the natural extension
of multiplier is simply that if f(z) = 3 a,z" and g(z) = }_b,z", then f x g(z) =
> an.byz" where a.b stands for the product in the algebra A. Of course, similarly
one can consider a, € LP(R), b, € LY(R) and the convolution a, x b, € L"(R)
(where p, g, r satisfy the condition in Young’s theorem). The reader is referred to
[3] for results along these lines.

In this paper we shall consider a much more general notion of convolutions coming
from general bilinear maps and that will extend the previous examples.

Assume X, Y, Z are Banach spaces and letu: X x ¥ — Z be a bounded bilinear
map. Given a X-valued polynomial f(z) = Y »_,x,2z" and given a Y-valued poly-
nomial g(z) = Zﬁ:o y»2" we define the u-convolution of f and g as the polynomial
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CONVOLUTION BY MEANS OF BILINEAR MAPS 265
given by

min{m .k}

f *y g(Z) = Z u(xy, .Vn)Z"~

n=0

This will make sense also for general vector valued analytic functions and we shall
study this convolution for functions in certain vector valued Besov spaces.

Throughout the paper we denote by P(X) and H(X) the set of polynomials and
holomorphic functions from the unit disc D into a Banach space X respectively.
As usual, we write M,(f,r) = (7'; ffﬂ ||f(re"’)ll"dt)%, and H”(X) stands for the
Hardy space of X-valued functions, understood as the subspace of L” (T, X) of those
functions f with f (n) = 0 for n < 0, or in other words the closure of polynomials
under the norm given by sup,_, . M,(f,r). For 1 < p,q < 0o, we shall be also
dealing with the spaces A, ,(X) given by those functions in H(X) such that

1
/ (=)' MI(f', r)dr < o0,
0

with the obvious modification for the case g = oo (see Section 1).

These spaces were considered first (in the scalar valued case) by Hardy-Littlewood
and Flett (see [12], [9]). The main reason for their consideration comes from the
following two results:

Let2 < p < oo. It was shown by Littlewood and Paley (see [14]) that there exists
a constant C > 0 such that

I ¥
(fo (l—r)”"M,’,’(f’,r)dr) < Clf 1. ©.1)

Now let 1 < p < 2. It was shown by Hardy and Littlewood (see [12]) that there
exists a constant C > 0 such that

i 3
(/0 (=M (f, r)dr) <Clfllp- 0.2)

In other words, H” C A, for1 < p <2,and H? C A, , for2 < p < oo.

We shall see that some results, known for Hardy spaces, actually hold in the setting
of A, 4-spaces. The aim of this paper is to give an improvement of a Young’s type
theorem for convolution of three functions in the setting of vector valued analytic
functions and in a very wide sense of convolution which allows to recover several
known results and produces a lot of applications. Our main result is as follows:
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Let 1 < pi, p2, p3 < cosuchthat -+ -- + -1 > 2and I < g1, 42,43 < 0o such
that - + - + L =1.

Letu: X x ‘9 — E and v: Z x E — F be bounded bilinear maps where X, Y,
Z, E, F are complex Banach spaces.

If 1 < p < oo is such that % = Y:IT + FlE + 7,'; — 2, then there exists a constant
C > O such that

N

D vy uCn, y))2"

n=0

< Cllullol f N pr.qi 1811 p2ge Wl pa g
14

for any f(z) = Ym oxa2" € P(X), 8(2) = Yo" € P(Y) and n(z) =
Z,],\’:O ann € P(Z)

The paper is divided into six sections. In Section 1 we introduce the convolution,
the spaces and the property (H), corresponding to the vector-valued formulation of
(0.1) and (0.2). We present some elementary examples and geometric properties of
spaces having property (H),. In the second section we prove the main theorem and
give the corresponding corollary for vector-valued Hardy spaces. Section 3 is devoted
to some applications to the scalar valued case. Section 4 deals with the bilinear map
between L” (R")-spaces given by convolution u(f, g) = f * g. In Section 5 we give
some properties on the Taylor coefficients of functions in Hardy spaces with values
in spaces with (H), property. In Section 6 we take u: X x ¥ — X ®Y and achieve
certain results for projective tensor products. Finally, we get new results on the space
of multipliers between vector valued Hardy spaces in Section 7.

1. Preliminaries

Definition 1.1. Letu: X x Y — Z be a bounded bilinear map. Let f € H(X)
and g € H(Y) given by f(z) = Y poxnz" and g(z) = Y oy ya2". We define the
u-convolution of f an g as the function in H(Z) given by

00

frug@ =y uln, y)2".

n=0

LEMMA 1.1. Let f € P(X)and g € P(Y). Then

f % g(rte’®y = 5;; u(f(re'®"y, g(re'))dt; (1.1

-7

[S(f *u 8)V (r?e®) = Elz_r ) u(f(re'®™"), g'(rel"y)dt, (1.2)

-
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where Sf(z) = zf (2);

. 1 n )
[Sz(f *y g)]"(rze’o) = E-j; u((Sf)/(rel(O—t))

+ f(re'®), (Sg) (re"))dt, (1.3)
where S f(2) = 22 f(2).

Proof. (1.1) follows from the orthonormality of the system e"’.
(1.2) follows from the fact that

[S(f % 1 (@) = Y uCtn, (n+ Dya)" = f %, (Sg)'(2).
n=0

(1.3) follows by writing

[S2(f % 1) = Y ul(r+ D, (1 + Dy + Y X, (2 + Dyn)2"
n=0 n=0
= [(Sf) + f1+*. (58)'(2). O

Definition 1.2. Let 1 < p < oo. A complex Banach space X is said to have
property (H), to be denoted X € (H),, if there exists a constant C > 0 such that

) <clifl, (.4

1
- 2.p}-1 {2.p}
( fo (1 — p)mesi2.pl=t pmssi2.r) (1, ) dy
for any polynomial f € P(X).

Remark 1.1. The property (H); was already defined and studied in [5], denoted
there by (HL).

Definition 1.3. Let1 < p <ooand 1 < g < oo. We shall denote by A, ,(X)
the space of functions f € H(X) such that

(1= M,(f'.r) € L? (ld’ )

and set || fllp.q = IOl + (o (1 = )9~ ME(f", )dr)i.
Accordingly, we shall denote by A, o, (X) the space of functions f € H(X) such
that

, 1
M,(f',r)=0 (lTr) (r—1),

and set || fllp.00 = | f(O)|| + supg_, o, (1 — )M, (f',r).
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Remark 1.2.  Aoo.0o(X) = Bloch(X) = {f € H(X): sup,¢,(1 — |zDIf'(2)| <
oo}.

Let us point out some elementary embeddings:
PROPOSITION 1.1. Let 1 < p,q < oo and let X be a complex Banach space.

() H’(X) C Ap.oo(X).
(i) Apg(X) C ApoolX).
(iii) If X € (H), then H?(X) C A, ,(X) for ¢ > max{p, 2).

Proof. (i) This follows from the estimate

Myf'orty < c M8,

(i) Since M, (f, r) is increasing, we have
I
lM,‘i(f’,r)(l -r)! s/ (1 =)' MI(f', s)ds
q r

what actually gives that if f € A, ,(X) then M,(f',r) = o(:%).
(iii) This follows from (i) and the inclusion Lo (%) N L2 () © L9(4).
O

Let us now compute the norm of f(z) = Y peoXuz? in Ap 4(X).

PROPOSITION 1.2. Let | < p < 00,1 < g < coandlet f(2) = Y000 xa2%',
where x,, € X. Then

"f"p.oo ~ sup [lxn 1l (1.5)

neN

and
1

1f llp.q ~ (Z %, u") : (1.6)

n=0

Proof. Note that

P12l < My(Sf' 1) (1.7)
and
w n
Moo(f'ir) <) 2" xaIr? " (1.8)

n=0
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To get (1.5) assume first that sup, cy l|x, || < 1; then, from (1.8), we have

My(f'sr) < Mo(Fr) < 3 2?1 < S

n=0

1—r
On the other hand, if M, (f',r) < ICTr then (taking r = 1 — 27") (1.7) gives

(1=27"2""12"|Ix, || < C2",

what shows that sup, .y llx|| < C.
To get (1.6) first use (1.7) to obtain

) : o) 1-2-0rth i
(Z IIx,,H") <C (Z (/ 2M (] — r)q—lr(z'-_l)‘ldr> ||x,,+||lq>
n=1 1=2-"

n=0 '
1 q
<c ( f (A =n7" M, r)dr) = Clfllpq-
0
To see the other inequality, consider the operator given by

T({x) = (1 —r)f'(re").

Note that (1.5) gives, for any 1 < p < oo, the boundedness of T as an operator from
£°(X) into L® (2, LP(T, X)) (where, as usual, L” (£, Y) stands for the space
of Y-valued functions on (0, 1) that are p-integrable with respect to the measure % .

It follows from (1.8) that it is also bounded from £' (X) into L'( “"_’r) , LP(T, X)).
Now use interpolation (see [4]) to get that

dr

_r)

T: 19(X) — L9 ((1 ,LP(T, X))

is bounded as well. O

Recall that for 2 < g < oo, a Banach space is said to have cotype g (see [17]) if
there exists a constant C > 0 such that, for any finite family {x,},>0 in X,

n
S

n>0

(Z ||xnn"); <cC

n>0

1
Also recall that Kahane’s inequalites can be stated as
2" ~ n
1 xnzllp = 1Y a2 I
n>0 n>0

forany 0 < p < oo.
Using this and Proposition 1.2 we get the following corollary.
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COROLLARY 1.1. Let q = max{p,2}. If X € (H), then X has cotype q.
Let us give the L7-spaces satisfying the property (H),,.

PROPOSITION 1.3. Let H be a complex Hilbert space. Then H € (H);.

Proof. Let f(z) = Z:io x,2" € H(H). From Plancherel’s we get

1 3
Ifll2 » ("x0“2+/0.(] —r)Mg(f',r)dr) : 0

PROPOSITION 1.4. Let (2, X, u) be a o-finite measure space.

() Ifp=2and p' < q < p then LI(u) € (H)).
(i) Ifl < p<2and p < q <2then L(n) € (H).

Proof. Observe that the (H), property can be stated in terms of the boundedness
of the operator T: H”(X) — L'““"'Z’"(li_’;, LP(T, X)) given by

T()(r 1) =1 =r)f'(re".
Note first that
2(72 2 _dr_ 5, 2
T: H* (L*(w) > L -l--_—r-,L (T, L*(w)
is bounded by Proposition 1.3. Both results then follow by interpolation (see [7]).

. 2 1 1y— 1 1-9 1 1-6, 8
Tose?(l),choosee = l—-,; ands = 0(:7-—-,;) ',sothat; = Tandq— =5+,
which gives

[H? (L*(w)) , BMOA (L* (W))], = H” (L (w))

[LZ( ld' LZ(T,LZ(M))),L""( ]d' L°°(T,L~"(u)))]

and

9 9
—-r —r

=L (ldr L” (T, L"(u))) :

[}

9
—r

In order to interpolate, just note that BMOA(X) C Bloch(X) for any X, so
d
T: BMOA (L*(w)) —» L™ (Tr_r L™(T, L"(u)))

is bounded for any value 1 < s < oo.
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To see (ii), let 6 be such that % =1— % and s such that 1 = =2 + £ Then

1
q s
[H' (L"), H? (L*()))], = H" (LY (w))

[LZ (ldr ’ LI (T, Lt(u))) , L2 ('iir—"? L2 (T, LZ(”’)))]
r —-r 0

= L2 (Idr L” (T, L"(u))> :

)
—r

and

It follows from our assumptions that 1 < s < 2; then L*(u) € (H); (see [5]), and by
interpolation we get LY(u) € (H),. 0O

2. The theorem and its proof

Let us start off with the following formulation of the convolution.

LEMMA 2.1. Let f € P(X) and g € P(Y). Then
f*u g(2) = u(f(0), g(0))
1 4
+ if (1 = s)2ze "u(f' (zse™™), (§%g)" (s%e)d1ds.
47'[ 0 —n

Proof. Let us use the fact that
2

1
1 — sH2s¥1gs =
/o By ds = e D+
and write, if f(z) = Y_,.0%a2" and g(2) = 3,0 Yn2",
3& (! '
f *u 8(2) = ulxo, yo) +5 3 f (0 =52 (n + 2)(n + Dnu(x,, ya)2"ds,
n=1v0

where the last sum equals

3, !
= Z/ (1 = s)2zunz"~"'s" " x,, (n 4+ 2)(n + s> y,)ds
0
3 1 .4 .
= —-—/ (1 —s%%ze " "u
T Jo -
n>1 k>0

x (Z nZ"'s" x,e i1 Z(k +2)(k + l)s2kyke”") dtds

3 1 n . . .
= f (1 = sH2ze "u(f' (zse™™), (52g)" (s%e")d1tds. ]
0 J-m
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THEOREM 2.1. Let | < py, ps, p3 be such that - + - + 2 > 2and | <

41,42, q3 be such that - + = + L = 1. Take p such that + = L + L 4 2. —2.

92

LetX,Y,Z, E, F be complex ﬁanach spaces and let u: X x ')’} — pé‘ am'?v: Z x
E — F be bounded bilinear maps.
Then there exists a constant C > 0 such that

[l %y (f *4 g)"p < Cllullllvll "f"m.q. "g"pz.qz "h"m.qg
forany f € P(X),g € P(Y)and h € P(2Z).

Proof. For f; € P(X), f € P(Y) and f3 € P(Z), let
ACf1, fo, 13) = Sfax (fi % f2).
Applying (1.1) twice for r = 1 we get
A(fi. f, .ﬁ)(e"’)=—2—'; _-2—'; f_ Ze"‘*"’v(fz(e“”"’» u(fi( =), (e N)dr'dt,
and by Young’s theorem we have

NACSs fas SMp < Nulllo LA N 2o 1L f3 s

Observe now that if we write f.(z) = f(rz), then for f, g and h Lemma 2.1 and
(1.3) give

hoxy (f %4 8)(re'®) = v(zo, u(xo, y0))

1
+ 325 f (1 = s AWSSY. (Sg).s k. )(e®)ds
0

3 ! )
+Z f (1 = YA, (S0, Hly)(e)ds.
0
Therefore, using the vector-valued Minkowsky’s inequality, we get
1 f %o (g %4 B, < llv(zo, ulxo, Yol r

3 1
+ Slullvl fo (1 = s*? M, ((Sf)', $)M,,((Sg)’, )M, (', 5)ds

3 |
+ E||u||||v|| fo (1 = 5% M, (f, $)M,,((Sg)’, s)M,,,(h, 5)ds.

Let us bound each of them separately.
On the one hand,

lv(zo, u(x0, Yol < lullllvlllixollx ll yoll¥ llzollz
< leellivlf lUprg 181 pz.qs 1A ps.gs-
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On the other hand, using the fact that 1 —s* < 3(1 —s) for0 < s < 1 and splitting
] ! !
(1-5)?=1- s)'_ﬁ(l - s)'—ﬂ(] - s)'"a, by Holder’s inequality we have

1
/0 (1 = 5°’ M, ((Sf)', )M, ((Sg)', s)Mp, (K, 5)ds
< NSO p1.q 11581 p2.g2 1l pags-

Since
fse'y — f(0) = / ' el f'(re")dr,
0

it’s easy to see that M, (f,s) < M, (f',s) + | f(O)l, and thus |[(Sf)lls,.q
Cll flip,.q, the same is valid for g, so

1
fo (1 = s*?M,,, ((Sf)', 5)M,,((Sg), s)M,, (W', 5)ds
< C"f"m.m "g"pz.th "h "p;.q;-

Dealing with the last summand is similar, and then the result follows. O

COROLLARY 2.1. Let | < pi, p, p3 be such that - + - + - > 2 and 1 <
p1 <2 ’

LetX,Y, Z, E, F be complex Banach spaces suchthat X € (H)p, andY € (H),,,
andletu: X x Y > E andv: Z x E — F be bounded bilinear maps.

() If 1 < p; <2, then for p such that % = }7IT + % + -rf; — 2 there exists a constant
C > 0 such that '

Waxy (f % Nl < Cllulllivllllfllp, gl p 1A ps.00

forany f € P(X),g € P(Y)and h € P(Z).
(i1) If 2 < py < oo, then for p such that
there exists a constant C > 0 such that

11,1 —_ — 2p
P_P|+I72+ 2,andq =

1
& p2—2°
b *o (f *u @)llp < Cliullllvlll £l p 181 p NPl ps.q

forany f € P(X),g € P(Y)and h € P(Z).

COROLLARY 2.2. Let 1 < q < oo. There exists a constant C > 0 such that,
given a bounded bilinear map u: X x Y — Z between complex Banach spaces, and

given two polynomials f(z) = ano x,2" € P(X) and g(z) = ano yn2" € P(Y),
we have

D e, yoll < Cllulllflliglighg -

n>0
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Proof. Apply Theorem 2.1 for v: Z* x Z — C given by the dual pairing,
p=p=Lq=qq=q,9s=p3=o0cand h(z) = )_,.o2;z*, with }
of norm one and satisfying (2}, u(xz1, y»)) = [lu(xz, yn)|l. Note that [|A[lc0.00 is
bounded by a constant, due to Proposition 1.2. O

In the applications of Theorem 2.1 (or Corollaries 2.1 and 2.2) that follow, some-
times polynomials are replaced by functions defined by power series. In all such
cases the justification for doing so requires at most easy arguments, involving density
of polynomials in the corresponding function space, that will be omitted.

3. Applications to the scalar valued case

Letusconsider X =Y =Z =C,u(A, u) =v(A, ) = A - u.
The following result is known but, in particular it provides another proof of Paley’s
inequality for functions in H I (see [8]).

THEOREM 3.1. Let | < q < 2. Then, forany f(z) = Y oo anz" € HY, we have
1
1

. H
Z( > Ianl"') <Clfl, 3.1

keN \p=2k-1

(with the obvious modification for q' = 00).

Proof. Assume g = | and take A, > O such that sup;ey D pi-1<pcot An < 1.

Let h(z) = Y_ A,z". One easily sees that Moo (h', r) < ,—S-,- and therefore we obtain
h € Aco.co-

Now apply Corollary 2.1 to f, g and h, where g(z) = Y_a,z" (so that |ig|l; =
Il £111), and get

0
Z An |an|2zn

n=0

<ClfI%

o0
In particular it follows that

- :
(Z x,,la,,|2) < Cllf

n=0

for any (A,) satisfying supen 3 pi-1 <yt An < 1.
Using duality, this implies that

(Z maxz‘la,,lz) <Clfl.
3

2k-l<p<

Now using interpolation with the trivial case ¢ = 2 we get (3.1). 0O
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Our next results shows that Paley’s inequality holds not only for functions in H'
but also in the Besov class A 5.

THEOREM 3.2. Let -+ -+ - =2and - + L+ L = 1.
Then '

keN

1
(Z |a2" Iq; |b2" lq;) . 5 C"f"m.m "g"pz.qz (3~2)

for any holomorphic functions f(z) =Y, ganz", 8(2) = Y pegbaz".
In particular, if 2 < q then

(Z laz |q) < Clifllpq (3.3)

keN

forany f(z) =Y ;g anz".

Proof. To see (3.2) we just have to use Holder’s inequality after Theorem 2.1
for f, g and a suitable h(z) = Y oo ,z% (by (1.6) we have that ||hllp,.q =~

p
QX m lan|9) ).
To see (3.3), take f = g in (3.2), with p = p, = prandgq =q, =¢q,. O

4. Applications to L”-spaces and convolution

In this section we let X, Y, Z be L"—spaces, and consnder the bilinear map given
by Young’s theorem, that is, for 1 + > land, L= 1 + g — lwe have the bounded
bilinear map u: L”(R) x L"(R) - i "(R) gwen by u(f g) = f * g. The reader is
referred to [3] for particular cases and some applications.

THEOREM 4.1. Letl<p,,q,be9uchthat;'l- E>]’_+ +F>2and

tro+ =L+ 4L 2=%thenforf,,eL”'(R),g,,eL”Z(R)
andh € L”‘(R), we have

l iR L n

a9 a2 "

(Zlfn*gn*hnlz) <c(2nfnu) (an,.n‘;z) (Zuhnu;’,;:)
n>0 n>0 n>0 w=0

(with the corresponding modification if q; = oo for some i).

Proof. Take u: L""(R) x L”?(R) — L"(R), where - = F + —2 — 1, given
by u(f,g) = f *g,and v: L”(R) x L"(R) - L”’(R) glven by v(h k) =hxk.
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Now apply Theorem 2.1 to the L -valued functions F(z) = Y .- f7%,G@) =
Yo o 8nz? and H(z) = Y ne haz?'. Proposition 1.2 allows us to write

L £ L

q a2 93

<C (Dmn) (anw,;) (Zuhnu;',;:) :
HP(LP) n>0 n>0 n>0

Now, since p < oo, the proof is finished by a simple application of Khintchine’s
inequality. O

Z(fn * 8p * hn)z2"

n>0

THEOREM4.2. If | < p <2 < q < oo are such that + + 1 > 1 and if
= % + é — 1, then there exists a constant C > 0 such that

o -;
"¢S"Up \ (Z @, fu * gn)"’%) <C (Z Ifnlz) (Z lgnlz)
< )

1
r

(¥

n>0 n>0 n=0 7

Jfor any two finite sequences (f,) C L”(R)), (g,) C LY(R).

Proof. Take u: LP(R) x LY(R) — L"(R) given by u(f,g) = f x g and
v: L"(R) x L"(R) — C given by v(f,8) = (f.8) = [z f(x)gx)dx. Now
take p) = p, p» = q and p3 = r'. Therefore (ii) in Corollary 2.1 gives

2"
Z < ¢n, f;l *8n > 2
n>0 00
2" 2" 2”
<C Zﬁ:z Zgnz Z¢,,z
n=0 Hr(Lry In=0 Ha(L4) I n=0

_yI(L’ )
e

Now Proposition 1.2 applied to X = L”, together with standard estimates, gives

=2

D us fuxgn)l < C (Zm ) (Zlgnlz) (an““) "

n>0 n>0 n>0 n>0
Now, taking ¢, = «, ¢, for () €/ = and ¢ € L" (R), gives the result. 0O

5. Applications to the geometry of Banach spaces

In this section we deal with the case Y = C, Z = X*, u: X x C — X given by
u(x,2) =Ax and v: X* x X — C given by v(x*, x) = (x*, x).
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In [6], there was an investigation into the connection of the vector-valued for-
mulation of inequalities in the setting of Hardy spaces, such as Paley’s or Hardy’s
inequalities, with properties in the geometry of Banach spaces such as type, cotype
or Fourier type. Later in [5] it was observed that behind Paley’s inequality is actually
the embedding H'(X) C A;2(X). Let us give a brief proof of this fact.

THEOREM 5.1 (see [5]). If X € (H), then X satisfies Paley’s inequality, i.e., there
exists a constant C > 0 such that

o }
(Z llxar ||2> < Clflh

n=0

forany f(2) =Y 02 x,2" € H'(X).

Proof. 1t follows from Corollary 2.2 and Proposition 1.2 that for any finite se-
quence (A,) € £% we have

A

o0
Z A'" 22"

n=0

D Il < Cliflha

n>0

1.2

IA

Clifll.

This clearly implies the desired inequality. O

THEOREM 5.2. Let1 < q; <2, X € (H),, and ql. +

= % Then there exists a
constant C > 0 such that

1
92

b)
(Z (X, x;>|2) < Cllf g l1gllga.00

n>0
forany f(z) =3, oxu2" € P(X) and g(z) = }_,-o X3 7" € P(X™).
Proof. Assume f(z) = Y, xa2" € P(X) and g(z) = }_,0%,2" € P(X*).

Take p; = 2, p» = qi1, p3 = q2 and p = oo. Applying part (i) in Corollary 2.1 we
have

0
}E:A"z"

n=0

00
§ An < xnax: >z"

n=0

<C

£ llg, 18 llgs.c0-
2

o0
Therefore

(Z |<x,.,x::>|2) < Cllfllg, g llgs.c0- O

n=0
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6. Applications to projective tensor products

Another interesting and useful bilinear map corresponds to the embedding X x
Y - XQ®Y. A result similar to the next one was shown in [5] under slightly different
assumptions.

THEOREM 6.1 (see [5]). Let X,Y € (H),. There exists a constant C > 0 such

that
1 b4
s

forany xy,....,x, € Xandy,,...,y, €Y.

kak ®yks,k ikt

k=1

dt
—ds <C
2 ¥ =

n
S nd
k=1

n
. Z}’kzk
k=1 1

X®Y 1

Proof. Consideru: X x ¥ — X®Y givenby u(x,y) =x ® y and v: X®Y x
(X®Y)* — Cgiven by v(z, z*) = (z, z*). Take p; = p, = l and p3 = p = o0.
Forany h(z) = Y02, T,2" € Bloch((X®Y)*) we have

n
S ne
I

k=1

n

Z(Tk»xk ® w2k

k=1

< ClihlIBioch

o0

Now use the fact (see [1], [5]) that the predual of Bloch( £*) can be identified with the
set of E-valued analytic functions on the disc such that the integral
fo f_ IIf (re”)lIE‘“ds is finite, under the pairing given by (f, g) = > _,_, (e}, ex)

for polynomials f(z) = ,_, ez and g = Yo ekz" By choosing z = 1 we get
the desired result. 0O

THEOREM 6.2. Let |1 < p, pa, p3 be such that L p— =2.
Let X, Y, Z be complex Banach spaces such that X € (H),,, andY € (H),,. Set
q-oo:fp2<2andq-— =5 if 2 < p). Then

< Clifllp glp, Al psgs
X&YQz

Z Zn ® (X ® Yn)

n>0

Jor any f(z2) = Y ,.0%2" € P(X), 8(2) = Y,50W2" € P(Y) and h(z) =
anO Z,,Z" € P(Z)

Proof. Useu: X xY — X®Y givenby u(x,y) =x®y andv: Z x XQY —
ZRX®Y givenby v(z,w) =z@w. O
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7. Applications to multipliers for vector valued functions

One of the main motivations for the new formulation of convolution comes from
the study of multipliers between vector valued Hardy spaces. A sequence of operators
T, € L(X,7Y) is called a multiplier between H”(X) into H?(Y), to be denoted by
(T) € (HP(X), HI(Y)), if Y02 T, (x,)2" € HI(Y) forany f(2) = Y g xn2" €
H”(X) In [5] the case (H' (X) BMOA(Y)) was studied.

If + >landi=1 + — 1, then a simple application of Young’s theorem
gives

H"(L(X,Y)) C (H"(X), H(Y)).

THEOREM 7.1. Let X, Y be complex Banach spaces, and let | < p, q,r be such
thatql = % + % — 1. Assume that X € (H),,andlets = o0 if p <2ands = 172[’—2 if
2 < p. Then we have

A T,) € (HM (X)), HY(Y))
whenever Y o2 A,z" € H' and Y02 T,z" € A, (L(X, Y)).

Proof. Takev: C x X —> X givenby v(A,x) =Axandu: X x L(X,Y) > Y
given by u(x, T) = T (x).
Let¢(z) = Y nog 2" and h(z) = Y220 T,2", and f(2) = 3, o 2" € P(X).
It is clear that
ZAII(ﬂIxII)Z" = ¢ *y (f *y h)(Z)

n>0

Thus, by Theorem 2.1, we have

A

Z )\n(Tnxn)z

n>0

= C"¢"I.2"f"p.max|p.2l"h"r.s

IA

Cliolillfp Al s 0

THEOREM 7.2. Let X, Y be complex Banach spaces, and let | < p < q be
such that X € (H),. Let Z be another complex Banach 9pace Then, for any
1 < p,pqi.q 2suchthat + — ' —2+ 1 ——and +—-—l

maxlp 2]’ lf
Z,,=0 T,7" € Ap, 4, (L(X, Z)) andZ,,=0 nZ" €A,,2_q2(L(Z Y)) then

(SuTy) € (HP(X), HY(Y)).

Proof. Take u: X x L(X,Z) — Z given by u(x,T) = T(x) and v: Z x
L(Z,Y) — Y given by v(z, S) = S(z) and use Theorem 2.1, combined with the
(H)p, property of X. O
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