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THREE VIEWPOINTS ON THE INTEGRAL GEOMETRY
OF FOLIATIONS

R. LANGEVIN AND Yu. NIKOLAYEVSKY

ABSTRACT. We deal with three different problems ofthe multidimensional integral geometry of foliations.
First, we establish asymptotic formulas for integrals of powers of curvature of foliations obtained by
intersecting a foliation by affine planes. Then we prove an integral formula for surfaces of contact of an
affine hyperplane with a foliation. Finally, we obtain a conformally invariant integral-geometric formula
for a foliation in three-dimensional space.

1. Introduction

As the extrinsic geometry of hypersurfaces is easier to understaod than the ge-
ometry of submanifolds of codimension greater than one, in the integral geometry
of foliations in a Euclidean space a great deal of attention was paid to the case of
hyperfoliations [3], [12], [14] (but compare with [15], [16]), where generalizations
of many classical results were developed.

The present paper deals mainly with the integral-geometric invariants of foliations
and submanifolds of codimension greater then I. It consists of three principal parts.

The classical integral-geometric formulas concerning foliations deal with curva-
ture integral of "weight" bounded by a dimension of a section. In the first part we
obtain asymptotic formulas for divergent integrals ofpowers ofcurvature of foliations
constructed by intersecting a given foliation with affine subspaces. The main result of
that part is that the coefficient of the principal term of the asymtotics does not depend
on an exponent, but only on the extrinsic geometry of foliation in a nice way (for the
precise formulations see Theorems and 2).

In the second part (see Theorem 3) we consider surfaces of contact of a foliation
with affine hyperplanes. It turns out that the total absolute curvature of a foliation can
be expressed in terms of the integrals over surfaces of contact of certain functions of
angles between such a surface and a leaf.

The third part of the paper is devoted tothe conformal integral geometry of a two-
dimensional foliation in a three-dimensional conformal space of constant curvature.
We obtain a formula which connects an integral of a local conformal invariant of
a foliation and the numbers of proper points of its contact with spheres in a spirit
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Fig. a. One leaf of ’-. The foliation is invariant by vertical translations in 3.

of the exchange theorem [3], [11] for the metric case (Theorem 4). The integrand
-Ik2 k 13 dV can be viewed as a foliation analogue of the well-known Willmore
integrand.

All the objects (foliations, manifolds, maps) are considered to be smooth enough
(C, for instance), all the integrals are computed with respect to the standard measure
of a corresponding space, if it is not indicated explicitly. We often use Sard’s lemma
to omit "bad sets" of measure zero without references. Normally we do not compute
constants Ci depending only on dimensions.

The authors would like to thank Professor A. M. Naveira for a series of valuable
comments. This article was written when the second author had a post doctoral grant
from the Conseil R6gional de Bourgogne.

Asymptoticformulasfor integrals ofpowers ofcurvature. Let .T"’ C U
be a smooth foliation in a domain U in a Euclidean space n+p (n > 2, p > 1). For
any (p -I- l)-dimensional affine subspace zr in "+P consider the intersection r N.T"’.
We obtain a foliation by curves in zr (in general, with singularities).

Figure (a, b, c, d) shows two generic types of singularities arising when one
intersects a foliation .T"2 C 4 with 3-dimensional affine subspaces. The foliation
is obtained by a vertical parallel translation of a leaf in 3 (Fig. la, lc) and then by
multiplying that by a line. The intersection with zr H x/ in a neighbourhood
of a singular set is shown in Fig. b, d. It can be seen that these two cases are the
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Contact points between

Fig. lb. Intersection of.T"2 with rr H x ].

Fig. c. One leaf of .T"2. The foliation is invariant by vertical translations in II3.
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Contact points between
." and E

Fig. d. Intersection of.T"2 with zr H x/.

only generic cases for ’2 C ]14. Indeed, the set of tangent subspaces to leaves is a 4-
dimensional submanifold in an affine Grassmannian 4(2, 4) ofdimension 6, while the
set of 2-dimensional affine subspaces in rr is a 3-dimensional affine Grassmannian
4(2, 3). In general, these two sets intersect in a curve and the structure of the
intersection looks like Fig. b or d depending on an index of a point of contact of
.’2 with

Let k be the curvature of curves of this induced foliation in smooth points. We are
interested in studying the behavior of the integral

Fm (f km(rr fq.T’)d.) dzr,
(p+l,n+p) tqU

where 4(p + 1, n + p) is the manifold of all affine (p + l)-dimensional subspaces in
IR"+p with its standard measure dzr 17], the inner integral is computed with respect
to Lebesgue (p + l)-dimensional measure dE in rr f3 U and m > 0.

Similarly we will study the integral

Sm-- f. ( kinds) d"(p+ I,n+p)

for a smooth n-submanifold S" in a Euclidean space where the inner integral is
computed with respect to the arc length ds of the curve of intersection.
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Notice that in the case p > the curvature is always nonnegative, but in the case
p we shall consider both the integrals of Ik m and of km when m is an odd integer.
In the last case we suppose the foliation to be transversely orientable and fix a normal
vector field to .kTM (to Sn in the case of one submanifold respectively). Then the sign
of curvature can be defined in a standard way.

The geometric meaning of the integrals F0 and So both for a foliation .T" C U and
for a submanifold S c +P (that is, the integral over 4(p + 1, n -t- p) of the volume
or of the length of the curve of intersection respectively) is well known: it is just the
volume of the domain U or of the submanifold S respectively up to dimensional
constants 17].

The integral F for the case of codimension was studied in [3] and [12]. It was
proved that

F const fv h dV,

where h is the integral of the absolute value of a normal curvature over the unit
sphere in the tangent space and dV is the volume element. For submanifolds the
similar equality

S const fs h dV

can be deduced from [12] (see also [18], [19]).
For a surface S2 c 13 and m 2, it was proved in [6] using a kinematic

approach that the integral $2 is equal to fs(3H2 K)dS up to a constant, where
H and K are the mean and the Gauss curvatures of S respectively. The similar
formula $2 fs(311HII 2 2 Scal)dS, where Scal is the scalar curvature of S, holds-n--r
for multidimensional case as can be seen below (formula (6) and Lemma 5). The
kinematic formulas for powers of thi mean curvature of hypersurfaces have been
given in [24]. If m is not an integer and the integrals Sm and Fm converge, they are
equal to const f IIh(X, X)llm where the integrals are computed over the unit tangent
bundle of the foliation and of the submanifold respectively.

It is clear that in general for large m, the inner integral in Fm and the integral S,,
may diverge. For these cases the integrals

(p+l,n+p) rqk<M}
km (7r rl .T’)dE) dzr

(p+l,n+p) nlk<MlnS
kmds) dzr

are considered and the asymptotic formulas for M ---> o are obtained (the similar
idea of truncating the integrand was used in ]).
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Introduce the following local invariants of a foliation .T" and of a submanifold S:

*t(x) I Kn(X) IKn(X)IdX

(I)2(X) f IIh(X, X)II3dX

for the case p

where Tx.T"and ITxS are the projective spaces over the tangent spaces to the foliation
and to the submanifold respectively at the point x, X takes values in these projective
spaces, Ko (X) is the normal curvature of the leaf passing through x with respect to
the fixed field of normal vectors, and IIh(X, X)II is the length of the normal curvature
vector in the direction X.

The main results of this part are the following theorems"

THEOREM (FOLIATION CASE). Let .T" C U C n+p be a smoothfoliation with
a bounded secondfundamentalform in a bounded domain U in a Euclidean space
n+p. Then:

(1) For m < 2 the integral Fm(M) converges to Fm (where Fo const Vol(U)
and F const fv h dV) when M

(2) For m > 2 the integral Fro(M) diverges and when M oo we have the
asymptoticformulas

-Sca dV + 3(l)

Fm(M) Mm-2 (c2 fv (311HII2- Scal) dV +’(l)) for m > 2,

where H is the length ofthe mean curvature vector, Scal is the scalar curvature of
the foliation and dV is the volume element on U. In the case that p and m is
an odd integer the lastformula holdsfor the absolute value ofcurvature. Taking into
account the sign one has

km(Trf).T’)d..)dzr =Mm-2(C3futdV+-d(l)).
THEOREM 2 (SUBMANIFOLD CASE). Let Sn C In+p be a regular bounded sub-

manifold with a bounded secondfundamentalform in a Euclidean space n+p and
dV its volume element. Then:

(1) For m < 3 the integral Sm (M) converges to Sm (where So const Vol(S) and
St const f,s htdV) when M -- oo.
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(2) For rn > 3 the integral SIn(M) diverges and when M ---> x we have the
asymptoticformulas

S3(M) logM (C4 fs dP2dV +5(1))

SIn(M) M’’-3 (C5 fs dP2dV + 5(I)) for rn > 3,

In the case that p and rn is an odd integer,fi)r the curvature with sign we have

A(p+l.n+p) nllkl_<MInS

d

A(p+l.n+p) nllkl<_MInS

dT

m>3,

where the cri’s are the corresponding symmetric functions fprincipal curvatures

o.fS".

In the both theorems, the Ci’s are constants depending only on dimensions and
powers.

Surfaces of contact. Let .T"’ C U C ,,+t, be a smooth foliation in a domain
U in a Euclidean space/"+P (n, p > 1). For any (n + p I)-dimensional affine
hyperplane zr in "+t’ consider the set of its contact with .T’. We obtain a submanifold
S,r of dimension p- in rr (in general, with singularities).

At each smooth point of Srr one has two n-dimensional subspaces lying in
namely its normal subspace and the tangent space to the foliation. Let {Pi}’i’=,
0 < 4i < rr/2 be n principal angles between these subspaces [2], [23]. Recall that
the total absolute curvature of a submanifold (or of a foliation) at a point is an integral
over the unit sphere in the normal space of the absolute value of the determinant
of its shape operator with respect to a normal normalized by the volume of that
sphere.
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Figure 2. Set of contact of a foliation on curves in 3 with a plane.

THEOREM 3. Let .T"’ C U C I’’+/’ be a smooth foliation in a domain U in a
Euclidean space I’1+/’. Then

(n+p- I,n+p) i=

where K (x) is the total absolute curvature of the foliation

In particular, in the case n and p 2, the integral of the curvature of curves
of foliation over the domain in R3 equals the integral over., jr(2, 3) of integrals over
curves of contact of the sine ofthe angle between that curve and the leaf.

On the other hand, for the case of a hyperfoliation (p 1), the sets S are in
general discrete and all the angles qi vanish. In this case the theorem asserts that the
total absolute curvature of a hypersurface equals the integral over jl(n, n -t- of the
numbers of points of contact 12].

Integral of conformal invariant offoliation. Let ,2 be a smooth surface in a
three-dimensional conforrnal space, that is in S3 (or in 3) equipped with a group of
conformal transformations keeping the curvature constant. It is well known that the
Willmore integrand (k kE)EdS is invariant under this group [5], [21], [22] where
k, k2 are principal curvatures of the surface,

Moreover, identify S3 with a positive light half-cone in a Lorentzian space 4+,
and consider a unit Lorentzian sphere Q4 Q ]4+1, that is the set of vectors of unit
Lorentzian length. Then the group of conformal transformations of S is the group
SO (4, of isometries of/4+ and Q4 can be canonically identified with a set of 2-
spheres in S3. In [4] a conformal Gauss map ?’ S2 Q4 was constructed, assigning
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Figure 3. The sphere E has a saddle tangency with a leaf of
the foliation .T"2 if its curvature k is in between the principal
curvatures k and k2 of the leaf at the point of contact.

to every point x S the tangent sphere with the same mean curvature vector. It can
be easily seen, that for two surfaces which differ by a conformal transformation the
conformal Gauss maps differ by a motion in Q4.

The unit sphere Q4 induces a pseudo-Riemannian structure from 114+ and an
invariant volume element/z. Moreover, the conformal Gauss map , is an immersion
outside umbilical points, the induced metric on , (S) is Riemannian and

Area(,(S)) - (k k2)2dS,

as shown in [4].
We obtain the analogue of this formula for foliations in a three-dimensional con-

formal space. Though the theorem is formulated for foliations in I3, it is clear that
it remains true for any 3-space of constant curvature by the conformal invariance
arguments.

Let .T"2 C U C/I be a smooth foliation in a domain U in a Euclidean space 3.
For any 2-dimensional generalized sphere (that is, a sphere or a plane) E in 3 denote
by N- (E) the number of its negative contacts with the foliation .T"2, i.e., the number
of points of a saddle tangency of E and .T"2 (Fig. 3). It is clear that the number N- (E)
is conformally well defined.

Identifying 3 with S via stereographic projection, one can identify the set/3 of
generalized spheres in 113 with Q4 and equip it with the same conformally invariant
measure/z. Then the following theorem holds

THEOREM 4. Let 9v2 C U C I3 be a smooth foliation in a domain U in a
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Euclidean space ]3. Then

lfvlk6 -kzl3dV--fBN-(E)d/’t(2)"
Since the right hand side is conformally well defined, one obtains the following:

Corollary. Let .T2 C U C 3 be a smooth foliation in a Euclidean space It3.
Then the 3-form

[k -k213dV,

where ki are the principal curvatures of leaves and dV is the volume element, is a

conformal invariant.

2. Proofs of the theorems

In this section we prove Theorems and 2 (modulo a number of technical lemmas
moved to section 3) and also Theorems 3 and 4.

Proofof Theorems and 2. In the proofs of both theorems we are going to use
the coarea formula [8]. Recall that for a Riemannian manifold jt and a manifold
./J’q (! q) with a measure element dy, a smooth map P A// jV" and a measurable
function f: jA - , we have

(1) fj f(x) llJac(P)ll dx fAc (fp f(x) dx) dy,
-I(y)

where the inner integral in the right hand side is computed with respect to the
(l- q)-dimensional Hausdorff measure induced on p-i(y) from j and IIJac(P)ll
is the Radon derivative of the measure on jV" with respect to the image under dP
of the q-dimensional measure on j/. In the case of Riemannian manifolds the
measure elements involved are Riemannian volume elements. To evaluate the Ja-
cobian IIJac(P)ll at a point x E jl one can choose orthonormal frames in Tx.M
and in Tp(x)JV" and consider the rectangular q x/-matrix Q of the linear operator
dP with respect to these frames. Then IIJac(P)II /det Q tQ, where indicates
transposition.

For our purposes in the foliation case, we use the following notation.
.M is the Grassmann bundle G(p + 1, n + p, TU) of all (p + l)-dimensional

linear subspaees in the tangent bundle over U C "+P. It can be equipped with a
standard Riemannian structure which is in fact just the structure of the Riemannian
product U x G(p + 1, n -t- p) with the homogeneous metric on the Grassmannian
G(p + 1, n -t- p) [10].



INTEGRAL GEOMETRY OF FOLIATIONS 243

./V" is 4(p -I- 1, n / p) with its standard measure.
P is a map which sends a point (x, zr) to the plane through x parallel to zr in "+P.
f is the function such that ./p-,t) k"(rr N )x(Ikl < M), where X is the

characteristic function.
In the case of a submanifold we just change U and .T" to S in the above paragraph.
Now the right hand side of the formula (I) is exactly the integral F,,, (M) (respec-

tively Sm (M)) and our goal is to evaluate the left hand side. Moreover, all the measures
involved are just the corresponding Riemannian volume (or length) elements.

First we compute the Jacobian of the map P.

LEMMA 1. I. In the case ofa foliation, IIJac(P)II 1.
2. In the case ofa submanifold, IIJac(e)ll(x, zr) Ilprr,r+/-ll, where zr "L is the

subspace orthogonal to rc at x, pr is the projection operator, and its norm is the
(p + )-dimensional volume ofthe projection ofa unit cube in zr "L on TxS.

Notice that for the foliation case the norm of the projection of zr’L on T. U is and
so both the cases in the Lemma are basically the same. Moreover, it is clear that
Ilprr, szr-LII IlprN, srcll.

To evaluate the left hand side in the formula (1) express the function f in terms
of local invariants. Lemma 2 below in fact states the multidimensional version of the
Meusnierformula (compare [?], [9], [13]). It can be also derived from the Meusnier
Euler-type Theorem in [7].

LEMMA 2 (MULTIDIMENSIONAL MEUSNIER FORMULA). Let S" C I’’+p be a reg-
ular submanifold in a Euclidean space It’’+p and let h be its second fundamental
.form. Let
and intersecting TxS in a line. Let X be a unit vector on that line and let {ua }P= be
orthonormal vectors in yr normal to X and such that their projections prN,SU on
the normal space are also mutually orthogonal. Denote unit vectors of prN,,su by
n and let cos (u, n), where is the Euclidean inner product. Thet for
p>l,

(2) k(8"

andfor p l,

(3) k(S" f3 yr) (h(X, X), n)/cosb,

where h(X, X) is a normal curvature vector in the direction X.

The above formula for the case p > has the following geometric meaning (for
details see the beginning of the proof of Lemma 4): let L be an n-dimensional plane
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Figure 4. Multidimensional Meusnier formula.

parallel to TxS and passing through the endpoint of the vector h(X, X). It intersects
zr in a line parallel to X. The curvature k(S" N zr) is just the distance between this
line and the point x (Fig. 4). Also note that with the above notation the Jacobian of
the map P for the case of a submanifold equals I-Iv= cos I.

Taking into account that the domain of integration in the left hand side in (1) is the
Riemannian product of U (resp. ,S) and the Grassmann manifold G(p -I- 1, n + p),
one has to compute the following integrals at every point x of U (resp. S):

(4) km (zr S) x (Ikl _< M)dzr

for the foliation case, substituting k from (2) or (3), where S is a leaf of .T" passing
through x; and

(5) k"(zr nS) x(Ikl _< M)llprN.,.szrlldzr

for the submanifold case, substituting k from (2) or (3).
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To this end we first decompose each of these integrals into repeated integrals over
IPT.S of the integral over the Grassmann manifold G(p, n + p in the (n + p )-
dimensional subspace I1’’+p- X-L orthogonai to X PT.S using the following
lemma (compare with Chern’s linear kinematic formula [7]).

LEMMA 3. Let T" C I"+p be a fixed n-dimensional subspace in a Euclidean
space ,,+t, and let g G(p + 1, n + p) --, ]R be afunction. Then

fG(p+l.n+p) g(TrP+l)dyr p+! --fp dXfT EG(p.n+p-
got p/x X)Ilprr,rrPlldzr I’,

where ]PT is the projective space over T, G (p, n + p is the Grassmann man(fold
of p-dimensional subspaces in "+P- X-L and X IPT.

Notice that in terms of Lemma 3, [[prrirrPl[ Ilprr+/-rrt’+[[ where rrt,+
n"t’ AX.

If g (zr) km (zr f3 S), homogenity arguments, like those of Chem in the proof of
the linear kinematic formula, will allow us to separate the curvature type contribution
and the angle type contribution.

It is clear from (2) or (3) that in our case(s) the integral over G(p, n + p 1) of
the function g(Tr p A X) in Lemma 3 does not depend of the direction of the normal
vector h(X, X), but only on its length and on M (although, as the referee pointed out,
the function g(Tr p A X) itself may depend on the direction of h(X, X)). To be more
precise, the integral (4)equals

(6) u" (zr’) IIh(X, X)ll’" IlprN, SrrPll

x (llh(x, X)ll lu(zrP.)l _< M)drr p) dX,

V/ p :/where the function /z (rr p) in the notation ofLemma 2 equals a=(n, n) cos:bc
and n is an arbitrary fixed unit normal vector. In the case of the curvature with sign,
one gets/z(r 4-1 / cos . The same is true for the integral (5) (that is, in the case
of the submanifold) with IlprN,srrll instead ofjust Ilpr.,srPll in (6).

Denoting the inner integral in (6) by I (llh(X, X)ll, M) one can easily see that for
a positive , x and y, I (.x, .y) )d"l (x, y). So

l(llh(X, X)ll, M) IIh(X, X)II"I(I, M/llh(X, X)ll)

and it is sufficient to compute the two integrals

Am(M) fG(p.,,+p-) tz"(zr ’) IlprN.,SzrPll x(lu(rr’)l _< M)drr p
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and

BIn(M) f(t’."+p-) Ix’" (re p) pr.,.szr x(lz(zr)l _< M)dzr p

for the case of the foliation and for the case of the submanifold respectively. This
computation is contained in Lemma 4.

LEMMA 4.

and

M

Am(M) C9 (X2 I)x’"-"dx

B,,,(M) Co fig (X2 l) x’"-"-tdx

where C9 and Co are certain constants depending on n, p and m.

Naturally, the integrals in Lemma 4 can be computed explicitly (in the case of
integer m). To prove the theorems we only need to notice that for M --> xz, Am (M)
converges when m < 2, diverges as const log M when m 2 and as const M’’-2

when m > 2. Similarly, BIn(M) converges when m < 3, diverges as const log M
when m 3 and as const Mm-3 when m > 2.

Substituting this in the above formulas we obtain the desired results modulo the
following lemma.

LEMMA 5.
Then

1. Let x be a point ofa regular submangfi)ld S" in a Euclidean space.

f llh(X’X)ll2dX C(n) (311HII2 2
-Scal

where h is the secondfundamentalform, H is the mean curvature vector, and Scal is
the scalar curvature ofS at x.

2. Let x be a point ofa regular hypersurface S" in a Euclidean space. Then

h(X, X)3dX C2(n)(5o’ 12ro’2 -I- 8r3),

where ai are the corresponding symmetricfunctions ofprincipal curvatures ofS at x.

ProofofTheorem 3. To prove the theorem, one applies the coarea formula (1) to
the map from the projective normal bundle llN.F ofthe foliation to A(n+p- 1, n+p)
sending a unit normal to .F at a point to the corresponding hyperplane passing through
that point. In other words, the map P NJz --> A(n + p 1, n + p) acts as follows"
P(x,n) ((x,n),n) forx 6 U with the usual identification ofA(n + p- l,n + p)
with a tautological bundle over e,,+p-I.
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p--Choose orthonormal frames {e},= tangent to .T" at x and {ni }i= normal to
and to n.

The mapdP (x, n) sends the vectors e, tangent to U to the vectors ((x, ’e,,n), e,, n);
the vectors ni tangent to U to the vectors ((x, ,,,n), 7,,in); the vector n tangent to U
to the vector ((x, 7,,n) + 1, 7,,n); and the (lifts of) vectors ni tangent to the fiber of
N.T" to the vectors ((x, hi), hi), where 7 is the Euclidean connection in "+P.

With respect to the frames chosen, the matrix of the linear operator dP at the point
(x, n) is a matrix with n + 2p columns and n + p rows. By standard orthogonal
transformations with rows it can be reduced to the form

dP= C 0
D,Ip_

where A is an n x n matrix with the elements (Teon, etJ); B is a (p 1) x n matrix
with the elements/Ten, nj); C is an n x (p- I)matrix with the elements (7,,,n, e,);
D is an (p- I) x (p- 1)matrix with the elements (7,,,n, nj); lp_ is the identity
matrix of the corresponding dimension, and is a column of some elements.

The preimage (S, zr +/-) P- (rr) of the (regular) point rr P(x, n) is a (p- )-
dimensional submanifold inN, whose tangent space at the point (x, n) is spanned
by the column vectors of the matrix

M
lp-I
0

-BM-D

where M is an n x (p I) matrix such that AM + C 0 and 0 is a row of zeros.
The tangent space of the submanifold S, C zr at the point x zr is spanned by the
column vectors of the (n + p 1) x (p 1) matrix

Therefore the volume element of the submanifold S,r c zr at the point x is equal
to /det tRR/det tTT times the volume element of P- (zr) at (x, n) (here denotes
the transposition). Since AM + C 0, IIJac(P)ll equals detAI multiplied by
/det Q tQ, where Q is the (n + p 1) x (2n + p 2) matrix

0)D Ir,_

Subtracting the first "row" of Q multiplied by B from the left from the second "row"
one can check that /det Q Q /det RR. Hence

IIJac(P)ll det A IV’det ’R R.
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Now the coarea formula (I) with the function f (det tRR)-I/2 gives

ft1(f IdetAIdn) dV=fAN, . (n+p- .n+p (fs (det tTT)-!/2) dzr.

Since the matrix A is just the matrix of the shape operator of " at the point x with
respect to the normal n, the inner integral on the left-hand side is the total absolute
curvature at x multiplied by the volume of pl,-. Moreover, at the point x zr
there are two n-dimensional subspaces: the normal space of the submanifold ,S crr
spanned by the column vectors of the (n + p- 1) x n matrix

T=

and the tangent space to the foliation spanned by the column vectors of the (n + p
I) x n matrix

Therefore the squared tangents of the principal angles {i }’i’--- between these sub-
spaces are equal to the eigenvalues of the matrix M tM (see [2], for example). Since
det tTT det tTT det(l,, + M M), we are done. I-i

ProofofTheorem 4. Apply the coarea formula (I) (in the case of equal dimen-
sions) to the map P from the bundle of generalized spheres tangent to .T" to the space
B of generalized spheres. More precisely, consider the normal line bundle N.T" and
construct a map sending a point (x, t) to the sphere of radius Itl centered at the point
x / tn, where and n is a unit normal to .T" at x. Define P to be this map with
the domain restricted to those values of (x, t), for which the the sphere P (x, t) has a
saddle contact with the foliation.

Taking into account that the density of the measure/z on/ at the sphere of radius r
centered at the point (x i, x2, x3) is equal to r-4 dxl dx2 dx3 dr one can easily obtain

IIJac(P)ll I(1 kt)(I k2t)l -4.

The values of with a saddle contact form an arc between /k and / k2 which
does not contain a sphere ofzero radius. Integrating IIJac(P)II along the corresponding
set of the fiber one obtains

ft3 N-(E) dlz(E) fu (ftl_ltltl_lEtl<o I(1 klt)(l k2t)ldt)t4
dV,

which gives the desired formula.



INTEGRAL GEOMETRY OF FOLIATIONS 249

3. Proofs of lemmas

ProofofLemma I. We are going to compute the Jacobian of the map P for
both the case of a submanifold and the case of a foliation simultaneously (see the
remark after Lemma in the previous section). Let S" be a smooth submanifold in
a Euclidean space v (we allow the case n N), G(k, N, TV)ls a Grassmann
bundle of k-subspaces tangent to/v at the points of S, and .A(k, N) the space of
all k-dimensional affine planes in/1v. We assume n + k > N. The map P sends
a point (x, 7r)

_
G(k, N, TN)Is to the plane in .A(k, N) parallel to rr and passing

through x.
To compute the Jacobian IIJac(P)II identify the bundle G(k, N, TV)ls with the

bundle G(N k, N, TV)ls and .A(k, N) with the tautological bundle over G(N
k, N) in the standard fashion. Then P sends a point (x, rr +/-) of the Grassmann bundle
to the point (prlx, :r +/-) of the corresponding tautological bundle. Choosing an
orthonormal frame {Ua} in llv such that rr +/-

uk+/x.../ us, one can rewrite this
as follows:

where <i <k, k-t- <c < N, < A < N.
The tangent space to G(N-k, N, TV)ls is spanned by n vectors {ej, }’j’,= tangent

to S which we choose to be orthonormal and (N k)k vectors T/, uk+ A A

u_ /x ui /x u+ /x / us tangent to the fibre G(N k, N) and orthonormal by the
choice of the frame {UA }. Notice that since the bundle is isometric to the Riemannian
product the vectors {e, and {T/, are mutually orthogonal and hence {e,, T/, form
an orthonormal frame in the tangent space to the Grassmann bundle.

The tangent space to the tautological bundle over G(N -k, N) is spanned by N -k
vectors {u,,} tangent to a fibre and (N k)k vectors T tangent to the Grassmann
manifold G(N k, N). These vectors form the parallelohedron of volume in the
standard measure on the bundle [17].

The tangent map dP maps the vectors e, to the vectors ()-’, (e,, u)u, 0) and
the vectors T/,, to the vectors ((x, ui)u, Ti) respectively. The matrix of the linear
operator dP with respect to the frames chosen looks like

(a, 0)a lv_,

where A is the matrix of N k rows and n columns with the elements (e,, u,) in the
a-th row and/z-th column (recall that N k < n), ltv_) is the identity matrix of the
corresponding dimension, and is some matrix. In view of the choice of frames, the
Jacobian of the map P just equals /det Q tQ, where means the transposition. By
simple linear algebra, /det Q Q /detA A. The rows of the matrix A are exactly
the coordinates of projections of vectors u on T.S with respect to the orthonormal
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frame {e in T.S. Therefore /det A tA is the (N k)-dimensional volume of the
1.projection of {u, on TxS. Since the vectors {u form the orthonormal frame in

we are done. Notice that in the case n N the above volume is just 1.

ProofofLemma 2 (multidimensional Meusnierformula). With the notation of
Lemma 2, let X be a unit vector field tangent to the curve S" t3 zr. We have to
compute the length of the vector VxX where V is the Euclidean connection in R"+P.
In the case p we assign plus or minus to that expression if the angle between
TxX and the chosen normal vector field is less or greater than 90 respectively. Let
u, cos ,,n, + sin Y,,, where Y, are orthogonal vectors in T.S, some of them
are unit and some can be zero if the corresponding angle , is 0. By the Weingarten
formula one has

xX Z(xX, uo,)uo, ((VxX, Ya)sina + (h(X, X),na)cos ,)u,

where V is the induced connection on S. Taking into account that the vectors
(-sin q,,n,, + cos q, Y,) are orthogonal to the plane rr containing the curve of in-
tersection, one gets (xX,- sinq,n + cosb,Y,) 0 ct. Hence (VxX, Y,)
(h(X, X), n,,) tan. Substituting this in the above formula one obtains

TxX E(h(X, X), n,) / cos

Since the vectors {u, are orthonormal, the lemma is proved. 121

The last formula in particular confirms the invariant geometric description of k
given in the previous Chapter (Fig. 4). We will use (and prove) that description in the
proof of Lemma 4 below.

ProofofLemma 3. Let X be a unit vector of the line in the intersection of zr
and T". Choose an arbitrary orthonormal frame {u}P_ in the subspace zrP or-
thogonal to X in ,*t’+ ,,

and the orthonormal frame {ui }i= in the orthogonal com-
plement of rr t’+ in I’’+’ such that the projections of its vectors on T" are mu-
tually orthogonal. So ui cos $i Yi + sin ini for some angles {$i }, some vec-

t"-t which form an orthonormal frametors {nil normal to T" and for vectors {Yi
in T" together with X. Let ooia (dui, ua), ooxi (dX, ui). Then the vol-
ume element of the Grassmann manifold G(p + 1, n + p) is the exterior product
/itoxi Ai,, to,. The second product is actually the volume element of the Grass-
mann manifold G(p, n + p 1) of p-dimensional subspaces in the Euclidean space
]1’’+p-I X -I-. Consider the first product. By the choice of the frame {u}, one
obtains ooxi (dX, ui) (dX, cosiYi + sinini) cosqbi(dX, Yi). Now the
exterior product of l-forms (dX, Yi) is the volume element on the projective space
ltrT, while the product of cosines is the volume of the projection of a unit cube in
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(rrP+) +/- on T". This volume equals the volume of the projection of a unit cube in
zr t,+ on T+/- which is the same as that for zr P since the projection of the vector X
vanishes. I-’1

Another proof can be obtained applying the coarea formula to the map G(p /
1, n + p) -- T sending rr p+ to X.

ProofofLemma 4. We are going to compute the integrals

Am(M) fcp.,,+p-) #’" (rcP) Ilpru.,szrPll X(I/z(rrt’)l _< M)drc p

and

BIn(M) fG(p.n+p-I) #’"(re p) Ilprzv, srcP[I 2 X(Itz(zrP)l _< M)drc I’,

where the function #(r t’) is defined as follows (see Lemma 2): choose the or-
thonormal frame {u}= in zr zrt’ such that the projections of its vectors on the
p-dimensional space N NxS are orthogonal. Let {n}P= be the unit vectors of
these projections and 4, /(u, n). Let n be an arbitrary unit vector in N. Then

#(rr) v/yPa=l(n, na)2/cos2$u if p > and/2,(7l"1) -I-l/cosq if p 1. The
last expression is obviously the same up to a sign and we will deal with the general
one. Notice that Ilpruzrll I-IP=t cos4.

Let be an (n- l)-dimensional plane in "+P- passing through the endpoint ofn
and orthogonal to N and y zr /. Then the length of the vector y is precisely #(zr).
This holds because decomposing y by the frame {u}= in rr one gets y Y-], s%u
and since ot y n_l_n one easily obtains cos4 (n, n). Hence [[yl[ #(zr).

Introduce Cartesian coordinates {x x,,+p_} in/1’’+t’- such that n is the unit
vector ofthe axisx and N is the coordinate subspacespanned by {x xt, }. Almost
all subspaces r t’ in n+t,- (except those projecting on N with degeneracy) can be
defined by n- explicit equations, {Xp+ E=I Zxtin-lji= and the p x (n- I) matrix

/n-I PZ {z’ Ji=t ,=1 can be taken as the local parametrization of the Grassmann manifold
G(p, n + p I). Actually it parametrizes precisely the subset in G(p, n + p 1)
we are computing the integrals over.

In the coordinates {z} the Riemannian metric element on G(p, n + p- 1) looks
as follows [23]:

ds2 Tr((Ip -k- ZZ)-dZ(I,,- + ZZ)-dZ)
+ +

ijaJ

where Tr is the trace of a matrix, is the transposition and lq is the identity q q
matrix. The volume element of the Grassmann manifold G(p, n -+- p 1) is the
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square root of the determinant of the p(n 1) x p(n 1) matrix of the metric
tensor. This matrix is in fact the Kronecker product of the matrices (It, + tZZ)-
and (I,,_ + Z tZ)-. It is known from linear algebra that its determinant equals
(det (It, + ’ZZ)-)"-I(det(l,,_ + ZtZ)-)p det (It, + tZZ) -’’-t,.

The function #(zr) is the distance between the origin and the point of intersection

of zr with the plane/, {x 1, x2 xt, 0}. So/z(rr) V/I + Yi(z])2.
Moreover considering the polyhedron in zr projecting onto the unit cube in N, one

easily derives Ilpruzr det (It, + tZZ)-/2.
Therefore we have to compute the integral

A,,, (M) (I -- i(Z)2)m/2 )(Ei(Z])2 < M2- l)det(It, + tzz)-’+P)/2dZ

and the integral B,,,(M) whose integrand differs by the factor det (11, + tZZ)-I/2.
Let z] r(i where ( { (,,_ is a unit vector running over a sphere S’’-2

and denote by . the (p 1) x (n 1) matrix obtained from Z by crossing out the
first column. One has

det (It, + ’ZZ) (r2 + 1) det(/t,_ + ’22) rZ((/t,_ + t2)v t2’,
det (I,,_ + 2’) + r2((11,_1 -F 2’2)v’, ’),

where V is the adjoint matrix and we have used the fact that

Substituting this in the above integral one obtains

A,’,(M)=fo/M2-fs f (l + r2)m/2r"-2 dr d( d
.-2 ,,,-,,,,,-,, (det (I,,_ + ’2)+r2 ((I,,_ + ’2)v ’, .>)(n+p)/2

Now the inner integral (over Ittt,-)’-)) is the same for all ( Sn-2. So we can
choose 1,0 0} and multiply the whole integral by the volume of an (n 2)-
dimensional unit sphere. For every fixed r consider the inner integral

,,,-’,,,,-’, (det (I._ + ’..)+ r2(In_l-- t)l)("+P)/2

and make the change of variable ,. W, where all the columns of the matrix W but
the first one are the same as in and the first column of W equals the first column of

multiplied by /r2 + 1. Then d (r2 + l)tt,-)/2dW and

det (I,,_ + ’) + r2(In_l + t)l (r2 + I) det(l,,_ + rWW).
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Therefore the above integral equals (r2 -+- 1) (-"-1)/2 multiplied by a constant. Hence

n/M-
Am(M) const Jo (1 -+- r2)(m-n-I)/2rn-2dr.

Substituting x 4’1 + rz we get the result.
Calculations for Bm (M) are word for word the same. The only difference is that

after substituting , W we get (r2 + 1)(-n-2)/2 multiplied by a constant. That gives
the exponent of x in the final result to be one less than that for Am (M). I"1

ProofofLemma 5. 1. Choose orthonormal frames {el} in TxS and {n in
and denote the elements of the second fundamental form with respect to these frames
by hi. (h(ei, ej), n). Following H.Weyl [20] consider the integral

e-ZX hixixj

On one hand in spherical coordinates it equals the integral we are computing up to a
constant. On the other hand the direct calculation shows

e-ZX hiSxixj e-X hiSh;xixjxx
ijkr

i .i<j

+ 2 e- hiinjx x
,i <j

since all the integrals containing odd powers of x vanish. The last sum equals

cnst (2 hi]hj + 4 (hi)2 + 3 (hi])2)i<j

Substituting

IlnHll (hi)2 + 2 hi.hjj Scal 2 hiihjj (hij)2
i<j i<j

we get the result.
2. Choose the orthonormal frame {el} of principal directions in TxS and let

Xi h (el, el). Consider the integral
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Again, changing to spherical coordinates we get a constant multiple of the required
integral. Computation in Cartesian coordinates as above gives

Expressing this in terms of symmetric functions we get the formula. I’-I
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