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THREE VIEWPOINTS ON THE INTEGRAL GEOMETRY
OF FOLIATIONS

R. LANGEVIN AND YU. NIKOLAYEVSKY

ABSTRACT. We deal with three different problems of the multidimensional integral geometry of foliations.
First, we establish asymptotic formulas for integrals of powers of curvature of foliations obtained by
intersecting a foliation by affine planes. Then we prove an integral formula for surfaces of contact of an
affine hyperplane with a foliation. Finally, we obtain a conformally invariant integral-geoxﬁetric formula
for a foliation in three-dimensional space.

1. Introduction

As the extrinsic geometry of hypersurfaces is easier to understand than the ge-
ometry of submanifolds of codimension greater than one, in the integral geometry
of foliations in a Euclidean space a great deal of attention was paid to the case of
hyperfoliations [3], [12], [14] (but compare with [15], [16]), where generalizations
of many classical results were developed.

The present paper deals mainly with the integral-geometric invariants of foliations
and submanifolds of codimension greater then 1. It consists of three principal parts.

The classical integral-geometric formulas concerning foliations deal with curva-
ture integral of “weight” bounded by a dimension of a section. In the first part we
obtain asymptotic formulas for divergent integrals of powers of curvature of foliations
constructed by intersecting a given foliation with affine subspaces. The main result of
that part is that the coefficient of the principal term of the asymtotics does not depend
on an exponent, but only on the extrinsic geometry of foliation in a nice way (for the
precise formulations see Theorems 1 and 2).

In the second part (see Theorem 3) we consider surfaces of contact of a foliation
with affine hyperplanes. It turns out that the total absolute curvature of a foliation can
be expressed in terms of the integrals over surfaces of contact of certain functions of
angles between such a surface and a leaf.

The third part of the paper is devoted to the conformal integral geometry of a two-
dimensional foliation in a three-dimensional conformal space of constant curvature.
We obtain a formula which connects an integral of a local conformal invariant of
a foliation and the numbers of proper points of its contact with spheres in a spirit
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Fig. la. One leaf of F2. The foliation is invariant by vertical translations in R>.

of the exchange theorem [3], [11] for the metric case (Theorem 4). The integrand
lky — ki1 dV can be viewed as a foliation analogue of the well-known Willmore
integrand.

All the objects (foliations, manifolds, maps) are considered to be smooth enough
(C®, for instance), all the integrals are computed with respect to the standard measure
of a corresponding space, if it is not indicated explicitly. We often use Sard’s lemma
to omit “bad sets” of measure zero without references. Normally we do not compute
constants C; depending only on dimensions.

The authors would like to thank Professor A. M. Naveira for a series of valuable
comments. This article was written when the second author had a post doctoral grant
from the Conseil Régional de Bourgogne.

Asymptotic formulas for integrals of powers of curvature. Let F' C U C R"*P
be a smooth foliation in a domain U in a Euclidean space R"*” (n > 2, p > 1). For
any (p + 1)-dimensional affine subspace & in R"*7? consider the intersection 7t N F".
We obtain a foliation by curves in 7 (in general, with singularities).

Figure 1 (a, b, c, d) shows two generic types of singularities arising when one
intersects a foliation 72 C R* with 3-dimensional affine subspaces. The foliation
is obtained by a vertical parallel translation of a leaf in R* (Fig. 1a, Ic) and then by
multiplying that by a line. The intersection with 1 = H x R in a neighbourhood
of a singular set is shown in Fig. 1b, 1d. It can be seen that these two cases are the
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Fig. 1b. Intersection of F2 with m = H x R.

ye \\

/t

Fig. 1c. One leaf of F2. The foliation is invariant by vertical translations in R?.
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Contact points between
Fand E

Fig. 1d. Intersection of 72 withm = H x R.

only generic cases for 72 C R*. Indeed, the set of tangent subspaces to leaves is a 4-
dimensional submanifold in an affine Grassmannian .A(2, 4) of dimension 6, while the
set of 2-dimensional affine subspaces in 7 is a 3-dimensional affine Grassmannian
A(2,3). In general, these two sets intersect in a curve and the structure of the
intersection looks like Fig. 1b or 1d depending on an index of a point of contact of
F? with .

Let k be the curvature of curves of this induced foliation in smooth points. We are
interested in studying the behavior of the integral

F,, =f (f K" (w ﬂ]’)dﬁ) drn,
A(p+1,n+p) \JrnU

where A(p + 1, n + p) is the manifold of all affine (p + 1)-dimensional subspaces in
R™"+? with its standard measure dr [17], the inner integral is computed with respect
to Lebesgue (p + 1)-dimensional measure dCin7 NU and m > 0.

Similarly we will study the integral

Sm = / (/ k'”ds) dn
A(p+1,n+p) NS

for a smooth n-submanifold S” in a Euclidean space where the inner integral is
computed with respect to the arc length ds of the curve of intersection.
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Notice that in the case p > 1 the curvature is always nonnegative, but in the case
p = 1 we shall consider both the integrals of |k|™ and of k™ when m is an odd integer.
In the last case we suppose the foliation to be transversely orientable and fix a normal
vector field to F” (to S” in the case of one submanifold respectively). Then the sign
of curvature can be defined in a standard way.

The geometric meaning of the integrals Fyy and Sy both for a foliation 7" C U and
for a submanifold S” C R"*7 (that is, the integral over A(p + 1, n+ p) of the volume
or of the length of the curve of intersection respectively) is well known: it is just the
volume of the domain U or of the submanifold S” respectively up to dimensional
constants [17].

The integral F for the case of codimension 1 was studied in [3] and [12]. It was
proved that

F, =const/ hdV,
U

where h is the integral of the absolute value of a normal curvature over the unit

sphere in the tangent space and dV is the volume element. For submanifolds the
similar equality

S| =const/ hdvV
S

can be deduced from [12] (see also [18], [19]).

For a surface S? ¢ R? and m = 2, it was proved in [6] using a kinematic
approach that the integral S is equal to [¢(3H 2 — K)dS up to a constant, where
H and K are the mean and the Gauss curvatures of S respectively. The similar
formula S, = f sGIH 1> - %Scal)dS, where Scal is the scalar curvature of S, holds
for multidimensional case as can be seen below (formula (6) and Lemma 5). The
kinematic formulas for powers of the mean curvature of hypersurfaces have been
given in [24]. If m is not an integer and the integrals S,, and F,, converge, they are
equal to const [ ||2(X, X)||™ where the integrals are computed over the unit tangent
bundle of the foliation and of the submanifold respectively.

It is clear that in general for large m, the inner integral in F,, and the integral S,,
may diverge. For these cases the integrals

F(M) = f ( f P ]:)dﬁ) dn
A(p+1.n+p) \JrNik<M})

S (M) = f ( / k"’ds) drn
Ap+1ntpy \Jrnpesmins

are considered and the asymptotic formulas for M — oo are obtained (the similar
idea of truncating the integrand was used in [1]).
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Introduce the following local invariants of a foliation F and of a submanifold S:

®(x) =/ Ka(X) |K,(X)|dX forthecase p =1
PT, F

®5(x) = / Ih(X, X)PdX
PT.S

where PT, F and PT, S are the projective spaces over the tangent spaces to the foliation
and to the submanifold respectively at the point x , X takes values in these projective
spaces, K, (X) is the normal curvature of the leaf passing through x with respect to
the fixed field of normal vectors, and |4 (X, X)|| is the length of the normal curvature
vector in the direction X.

The main resilts of this part are the following theorems:

THEOREM 1 (FOLIATION CASE). Let F" C U C R be a smooth foliation with

a bounded second fundamental form in a bounded domain U in a Euclidean space
R"*P. Then:

(1) For m < 2 the integral F,,(M) converges to F,, (where Fy = const Vol(U)
and Fy = const [;, hdV) when M — oc.

(2) For m > 2 the integral F,, (M) diverges and when M — o0 we have the
asymptotic formulas

(M) = logM (C./ (3||H||2— nz—zScal)dV +5(I))
U

Fo(M) = M™2 (sz (3||H||2— %Scal) dV+5(l)) for m>2,
U

where || H || is the length of the mean curvature vector, Scal is the scalar curvature of
the foliation and dV is the volume element on U. In the case that p = | and m is
an odd integer the last formula holds for the absolute value of curvature. Taking into
account the sign one has

/ ((/ k™ nf) dc) dmr = M"? (c3/ &,dV +0o(1)).
A(p+1l.n+p) aN{lkl<M} U

THEOREM 2 (SUBMANIFOLD CASE). Let 8" C R"*P be a regular bounded sub-
manifold with a bounded second fundamental form in a Euclidean space R**P and
dV its volume element. Then:

(1) For m < 3 the integral S,,(M) converges to S,, (wWhere Sy = const Vol(S) and
Si = const [ hdV) when M — oo.
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(2) For m > 3 the integral S,,(M) diverges and when M — 00 we have the
asymptotic formulas

S3(M) = logM(C4/ D,dV +0(1))
S

Su(M) = M"3(Cs / ®,dV +0(1)) for m >3,
S

In the case that p = | and m is an odd integer, for the curvature with sign we have

kds | dn
A(p+1l.n+p) \nn{lk|<MINS

= logM (C(,‘/(Scrl3 — 12010, + 803)dV +6(l)) s
S

k"ds | dn
A(p+1l.n+p) \nn{k|I=MINS

= Mm-S (c7f(50,3 — 12010, + 803)dV +6(1)) m >3,
S

where the o;’s are the corresponding symmetric functions of principal curvatures

of §".

In the both theorems, the C;’s are constants depending only on diménsions and
powers.

Surfaces of contact. Let F" C U C R"*P be a smooth foliation in a domain
U in a Euclidean space R"*” (n, p > 1). For any (n + p — 1)-dimensional affine
hyperplane 7 in R"*” consider the set of its contact with 7. We obtain a submanifold
Sy of dimension p — 1 in 7 (in general, with singularities).

At each smooth point of S, one has two n-dimensional subspaces lying in =,
namely its normal subspace and the tangent space to the foliation. Let {¢;}]_,,
0 < ¢; < 7/2 be n principal angles between these subspaces [2], [23]. Recall that
the total absolute curvature of a submanifold (or of a foliation) at a point is an integral
over the unit sphere in the normal space of the absolute value of the determinant
of its shape operator with respect to a normal normalized by the volume of that
sphere.
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Figure 2. Set of contact of a foliation on curves in R* with a plane.

THEOREM 3. Let F" C U C R"*? be a smooth foliation in a domain U in a
Euclidean space R"*P. Then

/ IK(x)dV = Cg[ (/ l—[cosq),-) dm,
U An+p—Lan+p) Sy

i=1

where || K ||(x) is the total absolute curvature of the foliation F".

In particular, in the case n = | and p = 2, the integral of the curvature of curves
of foliation over the domain in R? equals the integral over A(2, 3) of integrals over
curves of contact of the sine of the angle between that curve and the leaf.

On the other hand, for the case of a hyperfoliation (p = 1), the sets S, are in
general discrete and all the angles ¢; vanish. In this case the theorem asserts that the
total absolute curvature of a hypersurface equals the integral over A(n, n + 1) of the
numbers of points of contact [12].

Integral of conformal invariant of foliation. Let S? be a smooth surface in a
three-dimensional conformal space, that is in S (or in R?) equipped with a group of
conformal transformations keeping the curvature constant. It is well known that the
Willmore integrand (ky — k,)*dS is invariant under this group [5], [21], [22] where
ki, ko are principal curvatures of the surface.

Moreover, identify S* with a positive light half-cone in a Lorentzian space R**!,
and consider a unit Lorentzian sphere Q* C R**!, that is the set of vectors of unit
Lorentzian length. Then the group of conformal transformations of $3 is the group
SO (4, 1) of isometries of R**! and Q% can be canonically identified with a set of 2-
spheresin S3. In [4] a conformal Gauss map y : S* — Q* was constructed, assigning
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k< ks ko <k < ky ki <k

Figure 3. The sphere ¥ has a saddle tangency with a leaf of
the foliation F?2 if its curvature k is in between the principal
curvatures k| and k; of the leaf at the point of contact.

to every point x € S the tangent sphere with the same mean curvature vector. It can
be easily seen, that for two surfaces which differ by a conformal transformation the
conformal Gauss maps differ by a motion in Q*.

The unit sphere Q* induces a pseudo-Riemannian structure from R**! and an
invariant volume element ;. Moreover, the conformal Gauss map y is an immersion
outside umbilical points, the induced metric on y (S) is Riemannian and

Area(y(S)) = % fs (ky — k)2dSS,

as shown in [4].

We obtain the analogue of this formula for foliations in a three-dimensional con-
formal space. Though the theorem is formulated for foliations in R?, it is clear that
it remains true for any 3-space of constant curvature by the conformal invariance
arguments.

Let 2 c U c R? be a smooth foliation in a domain U in a Euclidean space R>.
For any 2-dimensional generalized sphere (that is, a sphere or a plane) T in R? denote
by N~(X) the number of its negative contacts with the foliation F 2 j.e., the number
of points of a saddle tangency of ¥ and 2 (Fig. 3). Itis clear that the number N~ (Z)
is conformally well defined.

Identifying R? with S? via stereographic projection, one can identify the set B of
generalized spheres in R? with Q* and equip it with the same conformally invariant
measure u. Then the following theorem holds

THEOREM 4. Let F2 C U C R? be a smooth foliation in a domain U in a
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Euclidean space R>. Then

1
= / ki — kaodV = f N~ (2)du(X).
6 Ju B
Since the right hand side is conformally well defined, one obtains the following:

Corollary. Let F?> C U C R? be a smooth foliation in a Euclidean space R.
Then the 3-form

lky — k2dV,

where k; are the principal curvatures of leaves and dV is the volume element, is a
conformal invariant.

2. Proofs of the theorems

In this section we prove Theorems 1 and 2 (modulo a number of technical lemmas
moved to section 3) and also Theorems 3 and 4.

Proof of Theorems 1 and 2. In the proofs of both theorems we are going to use
the coarea formula [8). Recall that for a Riemannian manifold M’ and a manifold
N4 (I > q) with ameasure element dy, a smooth map P : M — AN and a measurable
function f: M — R, we have

(M f f(x) [Jac(P)|| dx = f ([ f(x)dx)dy,
M N \JP-1(y)

where the inner integral in the right hand side is computed with respect to the
(I — g)-dimensional Hausdorff measure induced on P~!(y) from M and ||Jac(P)||
is the Radon derivative of the measure on N with respect to the image under d P
of the g-dimensional measure on M. In the case of Riemannian manifolds the
measure elements involved are Riemannian volume elements. To evaluate the Ja-
cobian ||Jac(P)|| at a point x € M one can choose orthonormal frames in 7, M
and in Tp(,)N and consider the rectangular g x [-matrix Q of the linear operator
d P with respect to these frames. Then |Jac(P)|| = +/det Q'Q, where ! indicates
transposition.

For our purposes in the foliation case, we use the following notation.

M is the Grassmann bundle G(p + 1,n + p, TU) of all (p + 1)-dimensional
linear subspaces in the tangent bundle over U C R"*”. It can be equipped with a
standard Riemannian structure which is in fact just the structure of the Riemannian
product U x G(p + 1,n + p) with the homogeneous metric on the Grassmannian
G(p+1,n+ p)[10].
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Nis A(p + 1, n + p) with its standard measure.

P is a map which sends a point (x, ) to the plane through x parallel to 7 in R"+7,

f is the function such that fip-1r) = k" (w N F) x (k| < M), where x is the
characteristic function.

In the case of a submanifold we just change U and F to S in the above paragraph.

Now the right hand side of the formula (1) is exactly the integral F,, (M) (respec-
tively S,, (M)) and our goal is to evaluate the left hand side. Moreover, all the measures
involved are just the corresponding Riemannian volume (or length) elements.

First we compute the Jacobian of the map P.

LEMMA 1. 1. In the case of a foliation, ||Jac(P)| = 1.

2. In the case of a submanifold, ||Jac(P)||(x, ) = || prr,sm* |, where n* is the
subspace orthogonal to 7 at x, pr is the projection operator, and its norm is the
(p + 1)-dimensional volume of the projection of a unit cube in n+ on T,S.

Notice that for the foliation case the norm of the projection of 7+ on 7, U is 1 and
so both the cases in the Lemma 1 are basically the same. Moreover, it is clear that
lprr.sttll = lpra,sml.

To evaluate the left hand side in the formula (1) express the function f in terms
of local invariants. Lemma 2 below in fact states the multidimensional version of the

Meusnier formula (compare [7], [9], [13]). It can be also derived from the Meusnier
Euler-type Theorem in [7].

LEMMA 2 (MULTIDIMENSIONAL MEUSNIER FORMULA). Let 8" C R"*” be a reg-
ular submanifold in a Euclidean space R"*P and let h be its second fundamental
form. Let 1 C R"*P be a (p + 1)-dimensional plane passing through a point x € S
and intersecting TS in a line. Let X be a unit vector on that line and let {u,} L’:, be
orthonormal vectors in w normal to X and such that their projections pry siy on
the normal space are also mutually orthogonal. Denote unit vectors of pry suy by

ny and let cos ¢y = (Ug, ny), where {, ) is the Euclidean inner product. Then for
p>1,

14

) k(S" Ny = | Y (h(X, X), ng)?/ cos? ¢,
a=1

and for p =1,

3) k(S" Ny = (h(X, X),n)/cos ¢,

where h(X, X) is a normal curvature vector in the direction X.

The above formula for the case p > 1 has the following geometric meaning (for
details see the beginning of the proof of Lemma 4): let L be an n-dimensional plane
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Figure 4. Multidimensional Meusnier formula.

parallel to 7, S and passing through the endpoint of the vector £(X, X). It intersects
7 in a line parallel to X. The curvature k(S" N ) is just the distance between this
line and the point x (Fig. 4). Also note that with the above notation the Jacobian of
the map P for the case of a submanifold equals | []7_, cos @q .

Taking into account that the domain of integration in the left hand side in (1) is the
Riemannian product of U (resp. S) and the Grassmann manifold G(p + 1,n + p),
one has to compute the following integrals at every point x of U (resp. S):

@ / k"G N 8) x (k| < M)dn
G(p+1l.n+p)

for the foliation case, substituting k from (2) or (3), where S is a leaf of F passing
through x; and

) f K"(r 0. S) x (K < M)llpry,s7ldx
G(p+l.nt+p)

for the submanifold case, substituting k from (2) or (3).
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To this end we first decompose each of these integrals into repeated integrals over
PT..S of the integral over the Grassmann manifold G(p, n+ p—1) inthe (n+ p —1)-

dimensional subspace R"*”~! = X' orthogonal to X € PT,S using the following
lemma (compare with Chern’s linear kinematic formula [7]).

LEMMA 3. Let T" C R"*? be a fixed n-dimensional subspace in a Euclidean
space R"*" and let g : G(p + 1,n + p) — R be a function. Then

/ g(aPtHdmrt! =/ de g? A X) |\ preem?|\dr?,
G(p+l.an+p) PT nreG(p.n+p-—1)

where PT is the projective space over T, G(p, n+ p — 1) is the Grassmann manifold

of p-dimensional subspaces in R""~! = X1 and X € PT.
Notice that in terms of Lemma 3, ||prrin?|| = || prrom?*!|| where n7*! =
P’ AX.

If g() = k™ (r N S), homogenity arguments, like those of Chern in the proof of
the linear kinematic formula, will allow us to separate the curvature type contribution
and the angle type contribution.

It is clear from (2) or (3) that in our case(s) the integral over G(p,n + p — 1) of
the function g(r” A X) in Lemma 3 does not depend of the direction of the normal
vector (X, X), but only on its length and on M (although, as the referee pointed out,
the function g(” A X) itself may depend on the direction of 4(X, X)). To be more
precise, the integral (4) equals

©) f ( / W) IR XN L pra, s
PT. S G(p.n+p-1)

xR X, X ln@@?)| < M)dzr”) dx,

a=|
and n is an arbitrary fixed unit normal vector. In the case of the curvature with sign,
one gets (') = 21/ cos ¢. The same is true for the integral (5) (that is, in the case
of the submanifold) with || pry sm? |? instead of just || pry.s?|| in (6).
Denoting the inner integral in (6) by I (||h(X, X)||, M) one can easily see that for
apositive A, x and y, I(Ax,Ay) =A"I(x,y). So

where the function w (7 ”) in the notation of Lemma 2 equals \/ P (n,ng)?/ cos? gg

I(lh (X, X1, M) = [|h(X, X)I™ I (1, M/|IR(X, X))

and it is sufficient to compute the two integrals

An(M) = f w" (@) Ipry sl x((u(x )| < Mydn”
G(p.n+p-1)
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and
B, (M) =] p" @) I pra sl 1? x(u’)| < Mydn”
G(p.n+p-1)

for the case of the foliation and for the case of the submanifold respectively. This
computation is contained in Lemma 4.

LEMMA 4.
M n=3
An(M) = C9/ (2 = DT x""dx
I
and
M n-3
B, (M) = C]()/ (xz — ])Txm_"_ldx
!
where Cq and C\g are certain constants depending on n, p and m.

Naturally, the integrals in Lemma 4 can be computed explicitly (in the case of
integer m). To prove the theorems we only need to notice that for M — oo, A,,(M)
converges when m < 2, diverges as constlog M when m = 2 and as const M" 2
when m > 2. Similarly, B,,(M) converges when m < 3, diverges as constlog M
when m = 3 and as const M~ when m > 2.

Substituting this in the above formulas we obtain the desired results modulo the
following lemma.

LEMMA 5. 1. Let x be a point of a regular submanifold 8" in a Euclidean space.
Then

2
[ o orax = cum (3||H||2 - —ZScal) ,
PT, S n

where h is the second fundamental form, H is the mean curvature vector, and Scal is
the scalar curvature of S at x.

2. Let x be a point of a regular hypersurface 8" in a Euclidean space. Then
f h(X, X)}dX = C12(n)(50; — 120,05 + 803),
PT,S
where o; are the corresponding symmetric functions of principal curvatures of S at x.

Proof of Theorem 3.  To prove the theorem, one applies the coarea formula (1) to
the map from the projective normal bundle PN F of the foliation to A(n+p—1, n+ p)
sending a unit normal to F at a point to the corresponding hyperplane passing through
that point. In other words, the map P : PNF — A(n+ p — 1, n+ p) acts as follows:
P(x,n) = ({x,n), n) for x € U with the usual identification of A(n 4+ p — 1,n + p)
with a tautological bundle over RP"+r~!,



INTEGRAL GEOMETRY OF FOLIATIONS 247

Choose orthonormal frames {e,}_, tangent to F at x and {ni}}:,' normal to F
and to n.

The mapd P (x, n) sends the vectors e, tangent to U to the vectors ({x, ﬁun) s Veun);
the vectors n; tangent to U to the vectors ({x, @,,,.n), 6,,,,n); the vector n tangent to U
to the vector ((x, 6,,;1) + 1, V~7,,n); and the (lifts of) vectors n; tangent to the fiber of
PN F to the vectors ({x, n;}, n;), where V is the Euclidean connection in R"+”,

With respect to the frames chosen, the matrix of the linear operator d P at the point
(x, n) is a matrix with n 4+ 2p — 1 columns and n + p rows. By standard orthogonal
transformations with rows it can be reduced to the form

o 0 1 O
dP=|A C *x 0
B D x I,,_|

where A is an n x n matrix with the elements (ﬁ,an, eg); Bisa (p — 1) x n matrix
with the elements (ﬁan, nj); Cisann x (p — 1) matrix with the elements (ﬁ,,in, eg);
Disan (p — 1) x (p — 1) matrix with the elements (6,,,.n, n;); I,— is the identity
matrix of the corresponding dimension, and * is a column of some elements.

The preimage (S, , 7+) = P~! () of the (regular) point 7 = P(x,n)isa(p—1)-
dimensional submanifold in PN F, whose tangent space at the point (x, n) is spanned
by the column vectors of the matrix

M
I,_,
0
—-BM - D

R =

where M is an n x (p — 1) matrix such that AM + C = 0 and O is a row of zeros.
The tangent space of the submanifold S, C 7 at the point x € 7 is spanned by the
column vectors of the (n + p — 1) x (p — 1) matrix

7= (i)

Therefore the volume element of the submanifold S, C 7 at the point x is equal
to /det 'RR/det TT times the volume element of P~'(;) at (x, n) (here ' denotes
the transposition). Since AM + C = 0, |[Jac(P)|| equals | det A| multiplied by
Jdet Q'Q, where Q isthe (n + p — 1) x (2n 4+ p — 2) matrix

L, -M O
B D I,,)
Subtracting the first “row” of Q multiplied by B from the left from the second “row”

one can check that </det Q'Q = +/det 'RR. Hence
[[Jac(P)|| = |det A|v/det 'RR.
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Now the coarea formula (1) with the function f = (det ‘RR)~'/? gives

f(/ |detA|dn)dV=/ ( (det ’TT)"/z)dn.
U PN, F A(n+p—1.n+p) Sy

Since the matrix A is just the matrix of the shape operator of F at the point x with
respect to the normal n, the inner integral on the left-hand side is the total absolute
curvature at x multiplied by the volume of RP?~!. Moreover, at the point x € 7
there are two n-dimensional subspaces: the normal space of the submanifold S, C =
spanned by the column vectors of the (n 4+ p — 1) x n matrix

- I,
7= ()

and the tangent space to the foliation spanned by the column vectors of the (n + p —

1) X n matrix
l"
o)

Therefore the squared tangents of the principal angles {¢;}7_, between these sub-
spaces are equal~t9 the eigenvalues of the matrix M 'M (see [2], for example). Since
det 'TT = det 'TT = det(l, + M'M), we are done. O

Proof of Theorem 4.  Apply the coarea formula (1) (in the case of equal dimen-
sions) to the map P from the bundle of generalized spheres tangent to F to the space
B of generalized spheres. More precisely, consider the normal line bundle NF and
construct a map sending a point (x, t) to the sphere of radius || centered at the point
x + tn, where t € R and 7 is a unit normal to F at x. Define P to be this map with
the domain restricted to those values of (x, ), for which the the sphere P(x, t) has a
saddle contact with the foliation.

Taking into account that the density of the measure  on B at the sphere of radius r
centered at the point (x;, x3, x3) is equal to r ~* dx| dx, dx3 dr one can easily obtain

IBac(P)Il = |(1 = ki) (1 = kat)| 174,
The values of ¢ € R with a saddle contact form an arc between 1/k; and 1/k; which

does not contain a sphere of zero radius. Integrating ||Jac(P)|| along the corresponding
set of the fiber one obtains

fN‘(E)du(z)-_-/ (/ l(l_klt)(i—kztﬂdt)dv’
B U \J=kit)(1—kyt)<0 t

which gives the desired formula. O
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3. Proofs of lemmas

Proof of Lemma 1. We are going to compute the Jacobian of the map P for
both the case of a submanifold and the case of a foliation simultaneously (see the
remark after Lemma 1 in the previous section). Let S” be a smooth submanifold in
a Euclidean space RV (we allow the case n = N), G(k, N, TRV )is a Grassmann
bundle of k-subspaces tangent to RV at the points of S, and .A(k, N) the space of
all k-dimensional affine planes in RY. We assume n + k > N. The map P sends
a point (x, ) € G(k, N, TRV )is to the plane in A(k, N) parallel to 7w and passing
through x.

To compute the Jacobian ||Jac(P)|| identify the bundle G(k, N, TRV )is with the
bundle G(N —k, N, TRV )is and A(k, N) with the tautological bundle over G(N —
k, N) in the standard fashion. Then P sends a point (x, 1) of the Grassmann bundle
to the point (pry.x, w') of the corresponding tautological bundle. Choosing an
orthonormal frame {u4} in R such that 7+ = uz4| A - - - A uy, one can rewrite this
as follows:

P(x,uppt Av- Auy) = (Z(xv“a)uaaukﬂ /\"'/\MN)

o

wherel <i <k, k+1<a<N,1<A<N.

The tangent space to G(N —k, N, TRV )is is spanned by n vectors {e, };, _, tangent
to S which we choose to be orthonormal and (N — k)k vectors Ty = gy A -+ A
Ug—1 ANUj ANUgyy A+ - Auy tangent to the fibre G(N —k, N) and orthonormal by the
choice of the frame {u 4}. Notice that since the bundle is isometric to the Riemannian
product the vectors {e, } and {T;, } are mutually orthogonal and hence {e,,, T, } form
an orthonormal frame in the tangent space to the Grassmann bundle.

The tangent space to the tautological bundle over G(N —k, N) is spanned by N —k
vectors {uy} tangent to a fibre and (N — k)k vectors T;, tangent to the Grassmann
manifold G(N — k, N). These vectors form the parallelohedren of volume 1 in the
standard measure on the bundle [17].

The tangent map d P maps the vectors e, to the vectors (3_, (e, Ua)uq, 0) and
the vectors T;, to the vectors ({x, u;)uy, Tjy) respectively. The matrix of the linear
operator d P with respect to the frames chosen looks like

A 0
Q= (* Ik(N—k))

where A is the matrix of N — k rows and n columns with the elements (e,,, u,) in the
a-throw and p-th column (recall that N — k < n), Iy —x) is the identity matrix of the
corresponding dimension, and * is some matrix. In view of the choice of frames, the
Jacobian of the map P just equals v/det 0 'Q, where ' means the transposition. By
simple linear algebra, /det O 'Q = +/det A‘A. The rows of the matrix A are exactly
the coordinates of projections of vectors u, on 7T, S with respect to the orthonormal
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frame {e,} in 7,S. Therefore +/det A’A is the (N — k)-dimensional volume of the
projection of {u,} on T, S. Since the vectors {1, } form the orthonormal frame in 7+
we are done. Notice that in the case n = N the above volume is just 1. O

Proof of Lemma 2 (multidimensional Meusnier formula). With the notation of
Lemma 2, let X be a unit vector field tangent to the curve S" N 7. We have to
compute the length of the vector Vy X where V is the Euclidean connection in R"+7.
In the case p = 1 we assign plus or minus to that expression if the angle between
Vx X and the chosen normal vector field is less or greater than 90° respectively. Let
Uy = COS Pouny + sin ¢, Y,, where {¥,} are orthogonal vectors in 7, S, some of them
are unit and some can be zero if the corresponding angle ¢, is 0. By the Weingarten
formula one has

VX =) (VxX,ua)ua = I_((VxX, Vo) sin o + (h(X, X), ng) cOS o)t

where V is the induced connection on §. Taking into account that the vectors
(—sin ¢ ny + cos @, Yy) are orthogonal to the plane 7 containing the curve of in-
tersection, one gets (6XX. —singyng + cos@,Y,) = 0 Va. Hence (VxX,Y,) =
(h(X, X), n,) tan ¢,. Substituting this in the above formula one obtains

VxX =) (h(X, X), ng)/ c0S Pulta.
Since the vectors {u,} are orthonormal, the lemma is proved. O

The last formula in particular confirms the invariant geometric description of k
given in the previous Chapter (Fig. 4). We will use (and prove) that description in the
proof of Lemma 4 below.

Proof of Lemma 3. Let X be a unit vector of the line in the intersection of 7+
and T". Choose an arbitrary orthonormal frame {u,}"_, in the subspace 7" or-
thogonal to X in 7”+! and the orthonormal frame {ui};';,' in the orthogonal com-
plement of 77*!' in R"*” such that the projections of its vectors on T” are mu-
tually orthogonal. So u; = cos¢;Y; + sin¢;n; for some angles {¢;}, some vec-
tors {n;} normal to 7" and for vectors {Y,~}§'=",' which form an orthonormal frame
in T" together with X. Let wi, = (du;,uqs), wxi = (dX,u;). Then the vol-
ume element of the Grassmann manifold G(p + 1, n + p) is the exterior product
Aiwxi Niq Wio. The second product is actually the volume element of the Grass-
mann manifold G(p, n + p — 1) of p-dimensional subspaces in the Euclidean space
R"P=! = XL, Consider the first product. By the choice of the frame {u;}, one
obtains wyx; = (dX, u;) = (dX,cos¢;Y; + sing;n;) = cos¢;(dX,Y;). Now the
exterior product of 1-forms (dX, Y;) is the volume element on the projective space
PT, while the product of cosines is the volume of the projection of a unit cube in
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(wP*")L on T". This volume equals the volume of the projection of a unit cube in
P! on T+ which is the same as that for 77 since the projection of the vector X
vanishes. O

Another proof can be obtained applying the coarea formula to the map G(p +
1,n+ p) — PT sending 7”*' to X.

Proof of Lemma 4. 'We are going to compute the integrals
Ay (M) =f w" @) lpra sl x (u(x™)| < M)ydn?
G(p.n+p—1)
and
B,,(M) =/ w" Py | pry,sm” I x ()| < Mydz?,
G(p.n+p-—1)

where the function u(m?”) is defined as follows (see Lemma 2): choose the or-
thonormal frame {u,}’_, in 7 = 7P such that the projections of its vectors on the
p-dimensional space N = N, S are orthogonal. Let {n,}"_, be the unit vectors of
these projections and ¢, = Z(uy, ny). Let n be an arbitrary unit vector in N. Then

w(m) = \/ P _(n,ng)?/cos? ¢, if p > 1 and pu(n') = £1/cos¢ if p = 1. The

last expression is obviously the same up to a sign and we will deal with the general
one. Notice that || pryw| = []7_, cos ¢,.

Let L be an (n — 1)-dimensional plane in R"*7~! passing through the endpoint of
and orthogonal to N and y = N L. Then the length of the vector y is precisely (7).
This holds because decomposing y by the frame {u,}._, inw one gets y = 3, &,uq
and since Yo y —n_Ln, one easily obtains &, cos ¢, = (n, ny). Hence ||y|| = u(x).

Introduce Cartesian coordinates {xi, ..., X,4,-1}in R"+P=1 such that n is the unit
vector of the axis xj and N is the coordinate subspace spannedby {x, ..., x,}. Almost
all subspaces m” in R"*7~! (except those projecting on N with degeneracy) can be
defined by n— 1 explicitequations, {x,+; = Y _, 2%x, )/, and the p x (n— 1) matrix
Z={z}_ l' J_, can be taken as the local parametrization of the Grassmann manifold
G(p,n + p — 1). Actually it parametrizes precisely the subsetin G(p,n + p — 1)
we are computing the integrals over.

In the coordinates {z{} the Riemannian metric element on G(p, n + p — 1) looks
as follows [23]:

ds* = Tr((I, + '22)7'd"Z(1,- + 2'2)7'dZ)

N Uy + '22) 7 Uyes + 2'2);' d2id2E
ijaB

where Tr is the trace of a matrix, ' is the transposition and I, is the identity g x ¢
matrix. The volume element of the Grassmann manifold G(p,n + p — 1) is the
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square root of the determinant of the p(n — 1) x p(n — 1) matrix of the metric
tensor. This matrix is in fact the Kronecker product of the matrices (I, + 'Z Z)~!
and (I,_, + Z'Z)~". It is known from linear algebra that its determinant equals
(det (1, + '1ZZ)"Yy'=Y(det(I,-1 + Z'Z)" ") = det (1, + 1zz)\"r,

The function () is the distance between the origin and the point of intersection
of  with the plane L = {x; = 1, xp = --- = x, = 0}. So u(w) = NAE DI CH

Moreover considering the polyhedron in 7 projecting onto the unit cube in N, one
easily derives || prym|| = det (I, + izzZ)7'2.

Therefore we have to compute the integral

An(M) = f (1 + ZiEH)"? x(Zi(z))? < M2~ D) det (I, + '22)""*"%az
Rptin=h

and the integral B,,(M) whose integrand differs by the factor det (1, + 17Z )_'/ 2,
Let z,.' =r¢; where ¢ = {1, ..., {y—1} is a unit vector running over a sphere S" 2

and denote by Z the ( p — 1) x (n — 1) matrix obtained from Z by crossing out the
first column. One has

det(l, + '22) = (r* + det(poy + 'ZZ) — r*(Up-1 + '22)7 '2¢, 'Zt)
= det (L1 + Z'2) + r* (-1 + 2'2)"¢, ¢),

where V is the adjoint matrix and we have used the fact that
Z(por + '22)"'Z = det Uy + Z2) 1y — Uy + '22)".

Substituting this in the above integral one obtains

) / /Mz—l‘/ f (1 + r2)m/2rn—2 drd¢ d2
" - 0 sn-2 JRp-Dn-1 (det (In—l + '22)-1—"2((1,,_1 + 122)\7;’ ;))(n+p)/2 ’

Now the inner integral (over R/”7~D"=Dy is the same for all ¢ € §"~2. So we can
choose { = {1, 0, ..., 0} and multiply the whole integral by the volume of an (n —2)-
dimensional unit sphere. For every fixed r consider the inner integral

dzZ
fnw—nm—n (det (Iy—1 + 'ZZ) + r2(Iy—y + 'ZZ)},) 4012
and make the change of variable Z = W, where all the columns of the matrix W but
the first one are the same as in Z and the first column of W equals the first column of

Z multiplied by ~/7Z + 1. ThendZ = (r2 + 1)?"Y/2dW and

det (Iy—t + "Z2) + r2(Ly—1 + '22)Y, = (r* + V) det (I,—, + 'WW).
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Therefore the above integral equals (% + 1)(~"~"/2 multiplied by a constant. Hence
M
An(M) = const/ (1 4 pHym—n=D72pn=24,

Substituting x = /1 + r2 we get the result.

Calculations for B,,(M) are word for word the same. The only difference is that
after substituting Z = W we get (2 + 1)="~2/2 multiplied by a constant. That gives
the exponent of x in the final result to be one less than that for A,,(M). O

Proof of Lemma 5. 1. Choose orthonormal frames {e;} in T, S and {n,} in N, S
and denote the elements of the second fundamental form with respect to these frames
by h;’j = (h(e;, ¢;), ns). Following H.-Weyl [20] consider the integral

2
/ e‘z"fZ(Zh;’jx,'xj) .
" ~ \ 5

On one hand in spherical coordinates it equals the integral we are computing up to a
constant. On the other hand the direct calculation shows

2
—Xx? o . —%x? o0
f”e i E (E h,-jx;xj) —/’,e i E h{hgxixjxix,
(4 ij

aijkr

___/ —Zx} Z(ha)2x4+4f -XTx} Z(ha)Z

n
oi<j

—Zx a o
2 [ e Y wagaad
n

oi<j

since all the integrals containing odd powers of x vanish. The last sum equals

constz (2 DB+ 43 () +3 Z(h")z)

i<j i<j
Substituting
InH|l = Z (Z(h")2 +2) h;’,h;’l) Scal =2 Z (Z hhS, — Z(h;'jf)
i<j i<j i<j

we get the result.

2. Choose the orthonormal frame {e;} of principal directions in 7,S and let
Ai = h(e;, e;). Consider the integral

3
f o % (Z)\ix'?) .
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Again, changing to spherical coordinates we get a constant multiple of the required
integral. Computation in Cartesian coordinates as above gives

3
f e = Z )»,x,-z =const {5 Z )»? +3 Z A.,-Z)\.j +2 Z Aidjhi
" i i

i i<j<k

Expressing this in terms of symmetric functions we get the formula. O
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