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GENERAL AND WEIGHTED AVERAGES OF ADMISSIBLE
SUPERADDITIVE PROCESSES

DO’AN .0MEZ

ABSTRACT. It is shown that if {n is a sequence of measures good a.e. or resp. in the p-mean for
additive processes, then it is good a.e. or resp. in the p-mean, for the class of strongly bounded admissible
superadditive processes. Using the method developed, it is shown also that weighted averages of strongly
bounded admissible superadditive processes converge a.e. or in the p-mean for weights that are good a.e.
or in the p-mean for additive processes.

I. Introduction

Using some techniques ofharmonic analysis, Bellow, Jones and Rosenblatt [BeJR2]
and Rosenblatt [R] studied the behaviour of weighted and general averages and ob-
tained various conditions on (probability) sequences {/zn} that ensure the a.e. and
norm convergence. In particular, moving averages sequences satisfying the cone
condition are good a.e.(and in the p-mean, _< p < o) [BeJRI]. It is proved in
[F] and [(F] that such sequences are also good a.e. and in the 1-mean for bounded
superadditive processes, respectively. Recently, in [(] it was shown that moving av-
erages sequences are good in the p-mean for admissible superadditive processes (see
the definitions below). In the spirit of these results, it is natural to ask the following
questions:

If {ttn} is a sequence ofprobabilities which is good a.e. or in the 2-mean (hence
good in the p-mean), is it also good a.e. or in the meanfor superadditive processes?
Ifnot, for what type ofsuperadditive processes (ifany is the answer affirmative?

The question of which sequences {# are good in the p-mean (a.e.) for superaddi-
tive processes is a delicate problem: there are some simple sequences [/zn which are
good in the 2-mean (a.e.) for additive processes but not so for superadditive processes
(see the example below as well as the ones in [gF]). For some class of superadditive
processes, however, one can obtain an affirmative answer to this question. In this
article, we show that if {ttn] is good in the p-mean (a.e.), then it is good in the p-mean
(a.e.) for some classes of bounded superadditive processes.

Let (X, E, m) be a probability space and T: X - X an invertible measure-
preserving transformation (MPT). Given a probability measure/z on Z, and f: X -C, define tzf (x) Iz(T)f (x) .,k=_lz(k)f(Tt’x) for all x X. If f Lp,
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then lzf Lp, with II#fllp Ilfllp, for all < p < o. The Fourier transform of
is defined by/(z) k- lz(k)k for z F, the unit circle in the complex plane C.
If n {nk} is a sequence of positive integers, then the averages
along n can also be defined as/Zv f(x) using the sequence of probabilities/z,9v

N-I-=0 8",k where j is the unit (point) mass at j Z, Similarly, if a ,{ai} is aN

sequence of weights, the weighted averages ai f(x) are defined by the
N-lsequence of(signed) measuresvf(x), where =0 aii. In this paper, the

averages nf will be refeed to as general averages, whereas f will be refeed
to as weighted averages. We will write T f instead of f o T For technical reasons,
eac{ is assumed to be uniformly dissipative, i.e., lim(supi (i)l) 0.
A sequence {n} is called good in the p-meanfor T if limn n(T)f(x) exists in

Lp-norm for all f Lp, and is called good a.e. in Lp for T if limn n(T)f(x)
exists a.e. for all f Lp. If {} is good a.e. (good in the p-mean) in Lp for all
MPTs, it is called good a.e. in Lp (good in the p-mean), We will say that {n admits
a maximal inequali if m{x" SUPn I,f(x)l > } < llfll for f E LI u > 0,
when p 1, or if SUPn Inf(x)lllp Cpllfllp for f Lp when < p <
where C, Cp are constants (which may not be the same at each appearance below).
A family F F, },z C Lp is called a T-superadditive process if Fn+m F, +

T Fm for all n, m 0. If the equality holds, it is called %additive, and if the reverse
inequality holds, it is called T-subadditive, T-additive processes are necessarily of

n-Ithe fo F, i=0 T F. A T-superadditive process F C L is called bounded
n-I Tif sup,z Fn I1 < . If F is a T-superadditive process, then F, i=0 F

n-I Tfor all n 1, hence F F i=0 F is a positive superadditive process (and
necessarily increasing). It also follows that,, if a result is valid for additive processes,
then the same holds for F if and only if it holds for F’.

In order to define the general averages ofa T-superadditive process F Fn along
a sequence {n }, it will be convenient to view F as a sequence of functions {f}z0 C

n-ILp with paaial sums F i=0 fi satisfying TmFn Fm+n Fro, m, n 1.
Thus, if F is positive, fi 0, for all 0. Fuaheore, F is called strongly
bounded if sup IIf lip < . If { is a sequence of measures on Z, and F is a T-
superadditive process, we will define F e (k)A (for k < 0, let A 0.)
If F is a T-superadditive process, a sequence of measures {n} is called good in the
p-mean (a.e.)for F if limn nF exists in Lp-nO (a.e.)

2. Convergence of general averages

In [DK], Derriennic and Krengel constructed examples of superadditive pro-
ncesses in L2 satisfying sup,, F I1 < such that/nF does not converge in the

norm, where n is the full sequence of positive integers. Hence, one needs some
stronger hypotheses to obtain the norm convergence of superadditive processes when
p > 1. Indeed, as the following example shows, the problem of obtaining subse-
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quential results for superadditive processes seems more intricate than expected (see
also [F]).

Example. Let fn (-1)n, n > 0. Clearly F {Fn} is a bounded subadditive
process (on a one point space). If n is the sequence of odd (or even) integers or the
the sequence of squares or primes, then clearly/ZnnF converges. Now, we will define,
inductively, a sequence {nk} such that limN tv-tYk=0 fnk fails to exist. To see this, let
no 0, n 1, n2 2, n3--4, n4--5, n5 7, and

if 0 < j < 3i2, let n3,2+j be the next 3i2 even numbers after n3i2_1,

if 0 < j < 3i2, let n3,4+j be the next 3i2 odd numbers after n3i4-1.
N-IThen ’=0 fn, 0 if N 3 2, and is 1/2 if N 3i4. Hence, lim infer Y’=0v-I fn,

N-I0, whereas lim sup =0 fn 3"

These examples suggest that if a sequence {#n is good in the p-mean (a.e.), we
cannot expect it be good in the p-mean (a.e.) for superadditive processes. Below,
we will show that this pathology does not exist for some classes of superadditive
processes.

Definition. A sequence {fn }n>_0 C Lp of functions is said to be a Chacon T-
admissiblefamily, (or simply T-admissible) if Tfi < fi+ for > 0.

Clearly, if {f} is a T-admissible family, then the sequence {F, }n>_, where F,
n-I)-’i=0 f/, is a T-superadditive process, called a T-admissible process. Observe that

the process F in the example above is not admissible.

Remarks. 1. When p 1, strong boundedness follows from the boundedness
and admissibility [F]. However, when p > 1, the condition supn g F lip < and
admissibility need not imply that suPn f lip < o. One condition that implies strong
boundedness is sup g F lipp < , which, on the other hand, is too strong to include
any nonconstant positive superadditive processes.

2. If a superadditive processes is strongly bounded, then supn>_ g F lip < oo.
However, as remarked above, when p > 1, the converse implication is not valid, even
if F is admissible. As it is written, in Proposition 2.7 of [] such a claim was made,
hence the proof of that statement is incomplete. Nevertheless, there, the proofs of all
the norm convergence results for p > follow without any change if the processes
are assumed to be strongly bounded. (Or they can be obtained as a corollary of
Theorem 2.1 below.)

By the remarks above, strong boundedness and boundedness are the same for the
admissible processes in L. That is why, in the following, when p 1, if we make the
assumption of strong boundedness for an admissible process, it will not be a further
restriction than boundedness.
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THEOREM 2.1. Let F C Lp be a strongly bounded T-admissible process, <
p < cx. If {#n is a sequence of uniformly dissipative probabilities good in the
2-meanfor T-additive processes, then #n F converges in the p-mean.

Proof We will employ the idea in [tF]. By assumption {#n} is good in the
p-mean for additive processes, hence we can assume (if necessary by passing to
F’)thatfi > 0foreachi > l. Let Pi fi- Tfi_, where P0 f0. Hence
Pi > 0 for > 1. Then by Clarkson’s inequalities (when p > 1) and admissibility,

f Pi
p <_ Cp(lifi lipp IIjS- lipp) < o, where Cp is a constant depending on p only

[{]. Fix k Z+, and define

gki (X [ fk(Ti-lX) for > k
fi(x) for 0<i <kI

Then, it follows that

l0 if 0<i <k
mfi(x) gki(x) | Yj=l Pk+J (Tm-jX) for > k, where m k.

Now, define

Dn(x) Ixn(i)(fi(w) g)(x).
i=0

o TThen D,,(x) < _,i=o #n(i) "r----k+l Pr( -rx), where the terms on the void sets are
zero. If

bk,s(tO)’-- er(Trto) and bk(tO)--lim bk,s(w),
r=k+

s---o

then b,, > 0, b > 0. Using the Lebesgue monotone convergence theorem and
strong boundedness, we obtain

b dm lim fx bkp’s dm <_ Prp < Cp lim I1 11; < .
r=k+l

j---}o

Because b,. b and b, Lp we conclude that Tjb,,s " Tjb, in Lp, for all j,
since T is strongly continuous. Therefore,

Dn(x) <_ -l.tn(i)Tibk.
i=O

Consequently, liD. lipp

By assumption, Gk := Lp lim. Yi=o lzn(i)gi exists. Since, for all n >
1, g _< o.,k+l we also have Gk _< GTM Therefore, {Gk is a monotone increasing
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bounded sequence of functions in Lp, and consequently, G limk_, Gk exists in
Lp. Now, given 6 > 0, find a positive integer K such that for k >_ K, Ilbk lipp <
e/3, i=ogki Gllpp < 6/3, and IIG Gkll < 6/3. Then,

un(i) fi G
i=0

_< n(i)(fi g/k)
p i=0 p

+
i=0 p

+ IIa- a llp

proving the assertion.

Remarks. 1. If/z 1/2(30 + 3), then the sequence of measures {]d,n} is good in
the p-mean, < p < x, where/zn denotes the n times convolution of/2. by itself.
Hence it is good in the p-mean for strongly bounded admissible processes.

2. Sequences of probabilities having asymptotically trivial transforms, i.e., {/zn
with /.t(,) - 0 for all , F, , 1, are good in.the p-mean [BeJR2], hence
they are good in the p-mean for admissible processes as well. By the same token, if
/z is strictly aperiodic, then {/zn is good in the p-mean for additive processes, hence
good in the p-mean for strongly bounded admissible processes. Another interesting

n-lexample is the sequence/znn Y=0 3tvl studied in [JW]. (Using Lemma 2.3 in
[JW], and applying the idea employed in Example 2.4 there, it is straightforward to
show that {/.tn has asymptotically trivial transforms.)

The main result in [F] states that if a sequence of strictly increasing positive
integers n is good in the p-mean for superadditive processes relative to MPTs, then
it is good in the p-mean for T-superadditive processes, where T is a positive Lp-
contraction when < p < o, or a Dunford-Schwartz operator on L. The same
result also holds if the processes involved are admissible. Theorem 2.1, combined
with this observation gives:

COROLLARY 2.2. If n is good in the 2-mean, then it is good in the p-mean for
strongly bounded admissible T-superadditive processes, where T is a positive Lp-
contraction, < p < cx, or a Dunford-Schwartz operator on L.

In [(F] it has also been proved that moving averages sequences satisfying the cone
condition are good a.e. for admissible processes relative to MPTs. This result has
been extended in [] to superadditive processes relative to positive Lp-contactions,
< p < cx,. It turns out that same conclusions can be drawn for the general averages

of admissible processes:

THEOREM 2.3. Let F C Lp be a strongly bounded T-admissible process, <
p < o. If {#n is a uniformly dissipative sequence ofprobabilities that admits a
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maximal inequality and is good a.e. for T-additive processes, then {lzn is good a.e.

for F.

Proof Since {/zn is good a.e. for T, we can assume that F is positive. We will
use the same setup as in Theorem 2.1 and consider the cases p and < p <
separately. First assume p 1, and let

f* (x) lim sup/Zn F(x) and f, (x) lim inf/.tn F(x).
n n

Given c > 0, define E |x" f*(x) f,(x) > t}. In order to prove a.e. con-
vergence of #xF it is enough to show that m(E) 0. To do this, let Hk(x)
lim i=o #(i)fk(Ti-kx), which exists a.e. by assumption. Furthermore, the uni-
form dissipativity of {#x} implies that Hk(x) limn _,i=olZ(i)gki(x) a.e. Now,
since Dn(x) < ’4=ot.tn(i)Tibk,

E C x" supDn(x)> - C x" sup #n(i)Tib(x) > -n n i=0

n-IBy hypothesis, the additive process {’i=0 T b} admits a maximal inequality along
{#z }. Therefore,

m(E)<_m x" su tZn(i)Tibk(x)> - <, kdm<_ Prdm.
n i=O

Ol Ol r=k+l

By letting k --> ex, we obtain m (E) 0.
Next, assume < p < ex. In this case, for a fixed integer k > 1, consider the

n-I"additive" process G {i=0 g/}. Then

o<_f(f*-f,)dm<_2flimsupluF-u,Gldm
< 2f SUPn I,, F I,,G dm

_< 2/supI.Fn "nGIP dm < 2 f sup ,Dn. dm

ex) P

< 2 f sup l.tn(i)Tibk dm <_ Cp IIbllpp,
n i=0

where the last inequality follows from the hypothesis that {/z, admits a maximal
inequality. Since IIb lip $ 0, lim, #xn F exists a.e. I
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3. Convergence of weighted averages

In this section we will obtain another consequence of the machinery employed in
the previous section, namely, a.e. and norm convergence of the weighted averages of
admissible processes.

For < p < oo, the class Wp of complex sequences is defined as

lall p < ooWp a (ai): limsup

which contains unbounded sequences as well. Woo is the class of all bounded se-
quences. On Wp we have a seminorm, called p-seminorm, defined by Ilall p

n-I iplim supn -]k=0 lak (We will also write Ilallw Ilalloo.) Clearly, Wq C Wp if
< p < < oo. A sequence a of complex numbers is said to have a mean if7",n-limn z..,i=0 ai exists.
If F is a T-superadditive process and a {at} is a sequence of weights, then

we define the weighted averages of F along the sequence of weights a by #nF
n--I-]k=0 af. a {ak is called good in the p-mean (a.e.)for F if lim/xF exists in

Lp-norm (a.e.)

THEOREM 3.1. Let F C Lp be a strongly bounded T-admissible process, <
p < oo. Assumethataa__ Woo whenp= l, ora_ Wq when < p < oo, where
+/- + +/- 1. Ifa is good a.e. for additive processes, then it is good a.e. for FP q

Proof Again, we will assume that F is positive and use the same setup as in the
proof of Theorem 2.1 Let f* lim SUPn/xaF and f. lim infn/xa F. When p

0<f*-f, <21i UP n

n-I

’-] ai(fi gk
i=O

< 2 Ilalloo sup
n

T b
i=O

If E Ix: (f* f.)(x) > tz}, ct > 0, then

m(E)<m({x" sup
n

_< Ilbkll>
2 Ilall a

Since IIbll $ 0 as k --+ oo, we have m(E) O.
When < p < oo, observe first that the sequence {vi C Lp, where vi T-i fi,

is increasing. Hence vi v for some v Lp, and fi < Tiv for all > 1. Define
sequences w by wi(x) =,fi(x), and wk by wki(x) gi(x), k > 1. Then, by the
maximal inequality (2.11) in [BO] for the measure preserving case, for any > 0,

tzm x" sup 13’] p > .tz < om x: sup Tiv p

n
i=0

n .=
<_ Cp Ilvll,,
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which shows that w Wp a.e. Similarly, wk Wp a.e., k >_ 1. On the other hand,

n-!

dm f limnsup
_1 - w w

p
dm

n
i=o

< sup- Ifi(x)- gi(x) dm
n n i=o

_< sup- Tibk pdm --> 0 as k - x.
n /’/

i=0

Thus, Ilw wll w, 0 a.e. as k --+ oo. By assumption, Wka has a mean a.e., hence,
Lemma 2.2 in [JO] implies that the sequence aw has a mean a.e., i.e. Na F converges
a.e.

THEOREM 3.2. Let F C Lp be a strongly bounded T-admissible process <

p < oo. Assumethata Woo whenp= l, ora Wq when < p < oo, where_.- 1. If a is good in the mean for additive processes, then it is good in the
p-meanfor F.

Proof A simple calculation shows that

y. ai(fi gi) < Ilall IIbll if p 1,
n

i=o

ai(fi gi)
n

i=o

Therefore, for < p < cxa,

_< Ilallw Ilbkllp if < p <

n-Iwhere Gk is the process {Yi=o g/}- Now, it follows that {IxnF}n is Cauchy in the
{" aGp-mean, since Ilbkllp --+ 0, < p < oo as k --+ xa and txn }n is Cauchy in the

p-mean, for every k > 1.



590 DOriAN t0MEZ

Remark. Many sequences studied in [BeL], [CLO] and [JO], in particular the
class Bp ofp-Besicovitch sequences, satisfy the hypotheses of Theorems 3. and 3.2.
Furthermore, in [CLO] it has been established that the sequences a e Wp having
Fourier coefficients, < p < , and 1-Besicovitch sequences are good in the
p-mean for contractions T on Lp induced by MPTs.

The tools utilized in the proofs above can (almost verbatim) be repeated for positive
invertible Lp-isometries, < p < o. Hence Theorem 2.3 and Theorem 3.2 are valid
if F is assumed to be a T-admissible process, where T is positive invertible Lp-
isometry. For Theorem 3.1, however, while the proof of the case p is the same,
in the case p > one needs the maximal inequality (2.11) of [BO] for isometries.
Since this is the only modification needed for the proof of the statement analogous to
Theorem 3.1 for positive invertible Lp-isometries, we will state the theorem only:

THEOREM 3.3. Let T be a positive invertible Lp-isometry, and let F C Lp be a
strongly bounded T-admissible process, < p < o. Assume that a Wo when
p 1, or a W,. where s > q and + +/-q 1, when < p < o. Ifa is good a.e.

for T-additive processes, then it is good a.e. for F.

By Bourgain’s returntimes theorem [BoFKO], the weights associated with return
time sequences are bounded sequences of weights which are good a.e for T-additive
processes, where T is a MPT. Thus Theorem 3.1 immediately implies:

COROLLARY 3.4. Let F C L be a bounded T-admissible process, and a be a
return time sequence. Then it is good a.e. for F.

Lastly, we observe an interesting feature of admissible processes: let a {ai be a
dynamically generated sequence of weights, that is, ai dp("log) for some to fl,
and p L(f2) of a dynamical system (, E’, u, r). If b L+(fl) and F is a
positive bounded T-admissible process,

m+n-I m-I m+n-I

Sam+n f aifi > -aifi 4r Tm aifi-m SamF d-UmSa.f,
i=0 i=0 i=m

where U" X x fl ---> X x is the m x u-measure preserving transformation T x r.
Therefore, the "process" {Sna F}n is a U-superadditive process. By assumption, this
process is bounded. Hence, by the results in [AS], for a.e. to e fl, limn/zF
lim SnaF exists m-a.e, and in the 1-mean. It should be remarked here, however, that
the null set in 2 that is involved in this argument depends on T and F.

Acknowledgement. The author would like to thank the referee for various com-
ments and corrections on the original version of the paper and suggesting the idea
that improved the proof of Theorem 3.1.
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