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THE FLOW CATEGORY OF THE ACTION
FUNCTIONAL ON LGN,N+K(C)

DAVID E. HURTUBISE

ABSTRACT. The flow category of a Morse-Bott-Smale function fa: Gn (C) ] is shown to be related
to the flow category of the action functional on the universal cover of Gn,n+k(C) via a group action. The
Floer homotopy type and the associated cohomology ring of fA: Gn(Coo) --+ 1R are computed. When
n this cohomology ring is the Floer cohomology of Gl.l+k(C).

1. Introduction

In [8] Floer defined cohomology groups associated to a perturbed action functional
on the loop space of a monotone symplectic manifold. In related papers Floer defined
cohomology groups for the Chern Simons’ functional on a 3-manifold [6] and for
the intersection of Lagrangian submanifolds [7]. Floer’s cohomology groups were
defined using infinite dimensional Morse theoretic techniques, but in several aspects
his methods were fundamentally different from those in traditional infinite dimen-
sional Morse theory. For example, the critical points in his theory all have infinite
index (although the relative index between any two critical points is finite); also, the
higher dimensional spaces of piecewise gradient flow lines in Floer’s theory may be
non-compact.

Recently Cohen, Jones, and Segal have been studying the properties that a function
on an infinite dimensional manifold must have in order to define Floer cohomology.
Furthermore, in several cases they have studied, the "Floer function," i.e., a function
which can be used to define Floer cohomology groups, can actually be used to define
an inverse system of spectra (a pro-spectrum). They call this inverse system of spectra
the "Floer homotopy type" and the Floer cohomology groups can be recovered from
the Floer homotopy type. One of their goals is to discover what additional properties
(if any) a Floer function must satisfy in order to define the Floer homotopy type.
A basic component of their theory is that one can encode the dynamics of a Floer

function in terms of a topological category which they call the "flow category". The
objects ofthe flow category are the critical points ofthe function and the morphisms are
the unparameterized piecewise gradient flow lines ofthe function. In finite dimensions
the flow category is compact (i.e., the morphism spaces are compact) and framed (i.e.,
there is a stable framing of each morphism space). The geometric realization of the
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flOW category ofan arbitrary Morse function on a finite dimensional compact manifold
is homotopy equivalent to the manifold, and if the function satisfies the Morse-
Smale transversality condition then the geometric realization of the flow category is
homeomorphic to the manifold [4]. In infinite dimensions the Floer homotopy type
is constructed from the flow category of the action functional on a covering of the
manifold. For instance, the Floer homotopy type of the action functional on ZCPk
is constructed from the flow category of the action functional on the universal cover
of Z:Cpk.

In [5] Cohen, Jones, and Segal announced some results concerning the Floer
homotopy type of the action functional on .CPk. In this paper I generalize their
results by proving a theorem that relates the flow category of the action functional on
the universal cover of ff-Gn,n+k(C) to the flow category of a Morse-Bott function on
Gn (C). One difficulty which arises with the flow category ofthe action functional on
the universal cover of .Gn,n+k(C) is that the morphism spaces are not compact. In [5]
Cohen, Jones, and Segal note that the Donaldson-Uhlenbeck compactification of the
space of (parameterized) gradient flow lines of the action functional between any two
critical submanifolds in the universal cover of Z:CP (i.e., the space of holomorphic
maps CP ---> CPk of degree d) is homeomorphic to CP(k+l)(d/l)-I Moreover,
they note that for every k e Z+ one can construct a natural compactification of the
flow category by embedding it into the flow category of a Morse-Bott-Smale function

fA: CP --> ]. The Floer homotopy type of the compactified flow category of the
action functional on :Cpk is

Cp +- (Cp)-(l+k)r’,
__

(Cpo)-2(l+k)/ +._

where ?’1 denotes the Hopf line bundle over CP.
When n > there is a Morse-Bott-Smale function fa" Gn(C) I (for every

k Z+) which generalizes the function fa" CP used by Cohen, Jones,
and Segal, but the flow category of the action functional on the universal cover of
ZGn,,,+ (C) does not embed into the flow category of this function. There is however
an -equivariant fiber bundle which relates the two flow categories. In this paper I
prove that there exists a Morse-Bott-Smale function fa" G,, (C) such that for
an open dense subset L/c_C_ Vn (C) the topological group GL, (C[z, z-1 ]), consisting
of n x n matrices with Laurent polynomial entries whose determinant is a non-zero
constant, acts on L/and induces a flow category on l.t/GL(C[z, z-l]) from the
gradient flow lines of fa" G,,(C) . The induced flow category is isomorphic
to the flow category of the action functional on the universal cover of ff-.Gn,n+k(C).
That is, we have the fiber bundle

GLCn(C[Z, z-1])/GLn(C) I./ GLn(C)

LI/GLCn (C[z, z-I ])
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whose projection map rr is N-equivariant with respect to the restriction of the gradient
flow of fA" Gn (Coo) --* I to Lt/GLn (C) __. Gn (C). Later in this paper H c_
Vn(Coo) is identified as the space of all polynomial maps C* -- V,,,n+k(C). Note
that when n 1 we have zr id and this reduces to the result announced by Cohen,
Jones and Segal in [5].

The Floer homotopy type of fA" Gn (Coo) IR has

Gn (Coo) Gn (Coo) -(n+k)I’n <--- Gn (Coo) -2(n+k)’n <---

as a cofinal system where Yn denotes the tautological n-plane bundle over Gn(Coo)
and the maps are induced by certain bundle inclusions. Applying H* and using the
Thom Isomorphism Theorem we have the direct system

uc,+ H,+2n(n+k) Oc+k

H*(Gn (C)) " (Gn (Coo)) ---->

The direct limit of this system is H*(Gn(COO))[c2(n+k)]. When n 1 this ring is the
Floer cohomology of CP.

2. Flow categories

The flow category of a Morse function on a finite dimensional compact smooth
Riemannian manifold M was first defined by Cohen, Jones, and Segal in [4]. As they
note in [5] their definition readily extends to a Morse-Bott function [2] on a finite
dimensional compact smooth Riemannian manifold.

Definition 1. Let f: M ---> N be a Morse-Bott function on a finite dimensional
compact smooth Riemannian manifold M. The flow category of f, denoted Cf, is
the topological category whose objects are the critical points of f topologized as a
subspace of M and whose morphisms are the unparameterized piecewise gradient
flow lines of f. That is, for any two critical points a and b, Mor(a, b) is defined to
be the space of all continuous maps w: [f(b), f(a)] --+ M satisfying:

1. w(f(b)) b.
2. w(f(a)) a.
3. Away from the critical points of fa the map w is smooth and satisfies the

differential equation

dw V(f)
dt IIV(f)ll 2"

Mor(a, b) is topologized as a subset of the space of all continuous maps from the
closed interval [f(b), f(a)] to M. This space of continuous maps is given the
compact-open topology. Composition in Jf is given by concatenation.
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In [4] Cohen, Jones, and Segal prove the following theorem for a Morse function

f defined on a finite dimensional compact smooth Riemannian manifold M, and in
[5] they note that their proof generalizes to the case when f is Morse-Bott.

Definition 2. Let f: M I be a Morse-Bott function defined on a smooth
Riemannian manifold M. f is said to satisfy the Morse-Bott-Smale transversality
condition if and only if for any two critical submanifolds M and N, Wu (m) fn W (N)
for all rn M.

Let BCf denote the geometric realization of Cf.
THEOREM 3. (1) If f: M is a generic Morse-Bott function (one whose

gradientflow satisfies the Morse-Bott-Smale transversality condition) then there is a
homeomorphism

BCf-- M.

(2) For any Morse-Bottfunction f: M -- there is a homotopy equivalence

BCf
_
M.

The above definition of the flow category is sufficient for finite dimensional com-
pact manifolds, but in infinite dimensions the equation

dw
dt IlV(f)ll z

may not give a well posed initial value problem. Moreover, we would prefer a
definition of the flow category which makes sense in the more general setting of an
R-action on a space X where X is not necessarily a manifold. The following definition
is general enough to apply to a wide variety of problems.

Definition 4. Let X be a metric space with an action R x X -- X. Let a, b e
Ob(Cx). Define Mor’(a, b) to be the space of all piecewise flow lines on X from a
to b, i.e., R-equivariant subsets of X which are the images of continuous injective
paths from a to b. The topology on Mor’(a, b) is the topology induced from the
sup-inf-metric dsi; i.e., if ll, 12 Mor’(a, b), then

dsi(ll,/2) sup inf d(xl,x2)-t’- sup inf d(Xl,X2)
xl Ell x2q.12 x26.12 xl ll

where d is the metric on X.

THEOREM 5. For afinite dimensional compact smooth Riemannian manifold M
there is a homeornorphism

b: Mor(a, b) -- Mor’(a, b)

for any a, b Ob(Cf) defined by sending a map in Mor(a, b) to its image.
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Proof. It is clear that b is a bijection. Let 0)1,0)2 Mor(a, b). Since

di(b(0)), (0)2)) _< dsup(0)l, 0)2),

q is continuous.
Now assume that lj --> Mor’ (a, b). To show that b-1 is continuous it suffices

to show that q-i (lj) --+ q- (l). To prove this we will use the fact that for a compact
finite dimensional manifold M the space Mor(a, b) is compact [3]. Ascoli’s Theorem
then implies that Mor(a, b) is uniformly equicontinuous.

Pick any > 0. Choose > 0 such that

[tl -t2[ < t implies d(0)(tl), 0)(t2)) < /2

for all t, t2 6 [f(b), f(a)] and for all 0) Mor(a, b). Since f is uniformly contin-
uous there exists 3 > 0 such that

d(Xl, x2) < 3 implies If(x1) f(x2)l < 3

for all xl, x2 6 M. Choose J such that j > J implies

dsi(lj, l) < min{31, /2}.

Then for any 6 [f(b), f(a)] and for all j > J we have

d(4- (l)(t), 4- (l)(t)) < d(4- (l)(t), xj) + d(xj, 4- (lj)(t))

where x) lj is the point closest to b-1 (/)(t). Sinced(dp-(l)(t), xj) < min{3l, /2}
and f(qb-l(l)(t)) we have

It- f(xj)l < 8

which implies d(xj, -l(lj)(t)) < e/2. Therefore,

d(- (lj)(t), - (l)(t)) < /2 -I- /2

for all e [f(b), f(a)] and for all j > J. E3

The assumption that X is metrizable is not essential. Given any topological space
X with an action ]R x X --+ X we can take as a basis for the topology of Mor’(a, b)
the sets

B(U Un) {l Mols(a, b)ll 71Uj :/: 13 for all j 1 n}

where U Un are open sets in X. It is easy to see that the topology defined by
this basis agrees with the topology defined above on Mor’ (a, b) when X is a metric
space.

From now on we will define the flow category C.f by taking Mor’(a, b) as the space
of morphisms from a to b. The main advantage to this approach is that the flow
category is now defined for every topological space X with an action 1 x X --+ X.
The following theorem follows immediately from the definition.
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THEOREM 6. Let X and Y be ,-spaces and let g: X --+ Y be an -equivariant
map. Then g induces afunctor G: Cx Cr. Ifg is continuous, then G is continuous.

3. The relationship between the two flow categories

Let (Gn,n+k(C), co) denote the complex Grassmann manifold of n-planes in Cn+k

with its standard symplectic form co. Since Gn,n+k(C) is simply connected,
7j(ff-,Gn,n+k(C)) 7j+l(Gn,n+k(C)) for all j 6 Z+ where Gn,n+k(C) denotes
the free loop space. The universal cover of the free loop space consists of equivalence
classes [y’, co] where ,: S Gn,n+k(C) is in Gn,n+k(C) and 0: D2 --+ Gn,n+k(C)
is an extension of y’ well defined up to homotopy rel S 1. The action functional
.Ao," -.Gn,n+k(C) ] is defined by

([]) / 0*co.

This descends to a function
In [8], Floer defined cohomology groups graded mod 2N for a monotone sym-

plectic manifold (M, co) where N is the minimal Chern number of M. Floer’s chain
complex is generated by the critical points of a perturbation of the action functional
on M. He defined an index for these critical points which is well defined mod 2N.
In [17], Salamon and Zehnder defined a Maslov index for the critical points of a
perturbation of the action functional on the universal abelian cover of a symplectic
manifold (M, co). Their index can be used to define Floer cohomology groups graded
over g and periodic with period 2N (see Section 10.1 of [14]). The universal abelian
cover of M is the covering space of/2M whose group of deck transformations is the
image of the Hurewicz homomorphism r2(M) H2(M) modulo torsion. Since
Gn,n+k(C) is simply connected and 7r2(Gn,n+k(C) Z is torsion free, the universal
abelian cover of Gn,n+k(C) is the universal cover -.Gn,n+k(C).

The boundary operator in Floer’s chain complex is defined by counting the number
ofgradient flow lines ofthe perturbed action functional on/2M connecting two critical
points. In [14] McDuff and Salamon define the boundary operator by counting the
number of gradient flow lines of the perturbed action functional on the universal
abelian cover of/2M connecting two critical points. The projection from the universal
abelian cover ofM to/2M is -equivariant and hence maps critical points to critical
points and gradient flow lines to gradient flow lines.

In this section we will study the flow category of the unperturbed action functional
on the universal cover of .Gn,n+(C). The gradient flow lines are lifts of the gradient
flow lines of the action functional .Ao,: Z2G,,,+(C) --+ /g. Floer cohomology for
the unperturbed action functional on the universal cover of a symplectic manifold was
defined using spectral sequences by Ruan and Tian in 16].

Definition 7. Define , Gn,n+k(C) (or .Gn,n+(C)) to be an algebraic point
if and only if , lies on a gradient flow line which begins and ends at critical points.
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The gradient flow lines of Ao are holomorphic curves from R x S C/iZ
to Gn,n+k(C) [8]. Thus ’ 6 .Gn,n+k(C) is an algebraic point if and only if there
exists a holomorphic curve h: CP --+ Gn,n+k(C) such that h(eis) ,(s) for all
s [0, 2rr]. A holomorphic curve h: CP Gn,n+k(C) determines a gradient flow
line h’: R Z..Gn,n+k(C) by h’(t)(s) h(et+is) and these flow lines lift to gradient
flow lines on_/2G..+k(C). It is the images of these lifts which determine the flow
category of A,o: ff.Gn,n+k(C) ]1.

Definition 8. The flow category of.Ao" .Gn,n+(C) --+//Z (or ..)is defined
to be the flow category of the space of algebraic points in .Gn,.+ (C)(or/G,,,.+ (C))
where the -action is given by the gradient flow.

The object space of the flow category of .A: .Gn,n+k(C) "+ consists of a
single critical submanifold, Gn,n+k(C) C_ Gn,n+k(C). Since Gn,n+k(C) is sim-

p_ly co.....nnected and Zrl (.Gn,n+k(C)) , the object space of the flow category of
t: Gn,n+k (C) -- ] is Z Gn,n+k (C). A gradient flow line of the action functional
R --+ G,n+(C) which begins and ends at critical points is given by a holomor-
phic map h" CP Gn,n+k(C). Such maps can be represented by equivalence
classes of n x (n + k) matrices with polynomial entries (for instance, see [13]). As
we will see later in this section, the lifts of the corresponding gradient flow lines to
Gn,n+k (C) can be represented by equivalence classes of n x (n + k) matrices with
Laarent polynomial entries.

Let C[z, z-1 be the ring of Laurent polynomials. As a vector space over C,

C[z, z- C.
We will use the notation Vn,n+k(C[z, z-l]) to denote the Stiefel manifold of n-tuples
of linearly independent vectors in the infinite dimensional complex vector space

and

C[E, z-l]n+k C[E, z-1] x C[E, z-1] ,- Cx

n+k

an,n+k(C[z, z-l]) Vn,n+k(C[z, Z-])/GLn(C) Gn(C)

to denote the infinite dimensional complex Grassmann manifold of n-planes in
C[z, z-l]n+k.

Let Mn,,,+(C) be the set of all n x (n + k) matrices with entries in C and let
M,,,n+k(C[z, z-]) be the set of all n x (n + k) matrices with entries in C[z, z-i].
For every w C* we have an evaluation map eo: Vn,n+(C[z, z-i]) - Mn,,+k(C)
defined by evaluating the Laurent polynomial entries ofM Vn,n+(C[z, z-]) at the
point w. We define

Pn,n+k(C[z, z-I]) A e (V.,.+(C))
wC*
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to be the elements of Vn,n+k(C[z, z-l]) which are pointwise linearly independent
on C*. In other words, Pn,n+k(C[z, z-l]) is the space of polynomial maps C*
Vn,n+k(C) (see Section 3.5 of [15]).

Let GLn(C[z, z-]) be the group of all n n matrices with Laurent polynomial
entries whose determinant is invertible in C[z, z-] and let GLCn(C[Z, z-]) be the
subgroup consisting of those matrices whose determinant is a non-zero constant. The
main theorem in this paper can now be stated precisely as follows.

THEOREM 9. Theflow category of: .,’n,n+k(C) is isomorphic to aflow
category on Pn,n+ (C[z, z- ])/GL, (C[z, z-1 ]) inducedfrom the gradientflow ofa
Morse-Bott-Smalefunction fa Gn(Cc) . en,n+k(C[z, z-l]) is an open dense
subset ofVn,n+k (C[Z, Z ]) and theflow category on the orbit space Pn,n+k (C[z, Z ])/
GL, (C[z, z- ]) is induced via thefollowing ]-equivariantfiber bundle:

GLCn(C[z, Z-I])/GLn(C) Pn,n+k(C[z, Z-1])/ GLn(C)

en,n+k(C[z, Z-1])/ GLCn (C[z, z-])

The function fa" Gn,n+k(C[z, z-l]) is the direct limit of a system of Morse-
Bott-Smale functions defined on finite dimensional Grassmann manifolds consisting
of n-planes inside the (n + k)-product of the finite dimensional complex vector space
of Laurent polynomials whose degrees are bounded by some integer j Z+.

For each j Z+ define C[z, z-1 ]j to be the collection of all Laurent polynomials
of the form

a-jz
-j -q- a-j+lZ-j+l d- q- aj-lZj-1 q- ajzj.

We have a smooth action

GLn(C) x Vn,n+(C[Z, Z-1]j) Vn,n+k(C[z, z-1]j)

given by matrix multiplication on the left by an element of GLn (C) (for instance, see
[10], pp. 193-194 or [9], pp. 94-95) and the quotient space is

Vn,n+k(C[z, Z-1]j)/GLn(C) Gn,n+(C[z, z-1]j) Gn,(n+k)(2j+l)(C)

the Grassmann manifold of n-planes in C[z, z-]+k. Taking a direct limit over j we
have the infinite dimensional complex Grassmann manifold

Vn,n+k(C[z, Z-1])/GLn(C) Gn,n+(C[z, z-]) Gn(CC).

G,,,,,+ (C[z, z- ]j) is diffeomorphic to the orbit of the adjoint action of the unitary
group Un+.j+l whose spectrum is (1, 1) x (0 0) ]1n X (n+k)2j+k (for



THE FLOW CATEGORY OF THE ACTION FUNCTIONAL 41

instance, see [1] pp. 54-55). Choosing a diagonal matrix in this orbit, x0, we have
defined a unique Un+k2j+l)-equivariant diffeomorphism

qb: Gn,n+k(C[z, z--l]) U(n+k)(2j+l) XO.

For every j e Z+ let Mj be the (2j + 1) x (2j + 1) diagonal matrix whose ruth
diagonal entry is mZT where -j < m < j (we are indexing the entries of Mj by
{-j,-j + 1 j- 1, j}). Let

M 0

u((n + k)(2j -+- 1))

be the skew-Hermitian diagonal matrix with n + k blocks of Mj along the diagonal.
These matrices define Morse-Bott-Smale functions fat: Gn,n+k(C[z, z-1]j) "+ ]

given by fat (P) (qb(p), Aj) for all p Gn,n+k(C[z, Z-1]j) where (., .) denotes the
Killing form.

For every p Gn,n+k(C[z, z-1]j) the gradient flow line of fat through p, with
respect to the pullback under q of the Killing form, is ,p(t) Lt(p) where Lt" C[z,
z-1]+k --+ C[z, z-1]+ is the linear map determined by the matrix exp(-itAj)
[12]. This flow lifts to Vn,n+(C[z, z-l]j) because exp(-itAj) acts on Vn,n+(C[z,
z-1 ]j) by matrix multiplication on the right and GLn (C) acts by matrix multiplication
on the left. If M Vn,,,+k(C[z, z-1]j) has lij(z) C[z, z-1] in its (i, j) entry, then
the matrix M exp(-itAj) Vn,n+k(C[z, z-1]j) has lij(etz) C[z, z-1] as its (i, j)
entry. That is, the gradient flow of fat is given by composing lij(Z) with the map
z i- etz for all i, j Z. The function fa" Gn,n+k(C[z, z-l]) --+ referred to in
Theorem 9 is defined by fa limj fat" The gradient flow lines of fa are given by
composing each Laurent polynomial entry of an element of Vn,n+(C[z, z-l]) with
the map z - e z.

Claim 10. Pn,n+k(C[z, Z-l]) is an open dense subset of Vn,n+(C[z, z-l]).

Proof. M .. Vn,n+k(C[z z-l]) is in Pn,n+k(C[z, z-l]) if and only if for every
to C* the determinant of at least one n x n minor of M(w) is non-zero. The
determinants of the n x n minors of M are Laurent polynomials and hence have
only finitely many roots. By perturbing the entries of M slightly we can insure

that these (n nq-k ) polynomials do not have a root in common. This shows that

Pn,n+k(C[z, z-l]) is dense in Vn,n+k(C[z, Z-l]). If M Pn,n+k(C[Z, z-l]) then the
determinants of the n x n minors of M do not have a root in common. If we perturb
the entries of M slightly then the determinants of the n x n minors of the perturbed
matrix won’t have a root in common either. This shows that P,,,+k(C[z, z-1 ]) is open
in V.,n+k (C[z, z-1 ]). [--]
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GLn(C[z,z-1]) acts on the left of Mn,n+k(C[z,z-1]) by matrix multi-
plication. This action does not restrict to Vn,n+k(C[z, Z-1]), but it does restrict to
Pn,+k(C[z, z-l]). The proof of the following claim is similar to that of the preced-
ing.

Claim 11. There exists an action

GLn(C[z, z-l]) x Pn,n+l(C[z, z-l]) en,n+k(C[z, z-l])

given by matrix multiplication on the left by an element of GLn(C[z, z-l]).

Note that this action corresponds to Laurent polynomial row operations on an
element of P,,,+ (C[z, z-1 ]). That is, by multiplying an element of P,,,,,+ (C[z, z-1 ])
on the left by an element of GLn (C[Z, Z- ]) we can interchange rows, multiply a row
by a unit of C[z, z- ], or add a Laurent polynomial multiple of one row to another.

GLn(C[z, z-l]) is the kernel of the homomorphism GLn(C[z, z-l]) Z which
sends a matrix to the degree of its determinant. Hence, GLC(C[z, z-l]) is a normal
subgroup of GL(C[z, z-l]), the quotient group GLn(C[z, Z-])/GLCn(C[z, z-l])
Z, and the restriction

GLCn(C[z, z-]) x en,nq_k(C[z, z-l]) en,n+k(C[z, z-l])

of the GLn (C[z, z-1 ]) action is free and gives the following fiber bundle"

GLCn(C[Z, Z-])/GLn(C) Pn,n+l(C[z, Z-1])/GLn(C)

P,,,+(C[z, z-I)/GL(C[z, z-l).

The reader should note that GLn(C) is not a normal subgroup of GLCn(C[z, z-l]).
The following lemma is an immediate consequence of the fact that the gradient flow
of fA" Gn,n+k(C[z, z-l]) -- ] is given by composing Laurent polynomials with the
map z - e z.

LEMMA 12. The gradientflow of fa" Gn,n+k(C[z, z-l]) ]1 restricts to aflow
on Pn,n+k(C[Z, z-I])/GLn(C). This flow descends to a flow on Pn,n+(C[z, z-l])/
GLCn (C[z, z-l]) such that zr is -equivariant.

Let Cn,n+ be the flow category on en,n+k(C[Z, Z-1])/GLCn(C[Z, z-]) induced
from the gradient flow of fa" Gn,n+k(C[z, z-l]) --+ . Theorem 9 asserts that Cn,+k
is isomorphic to Cn.n/k, the flow category of the action functional .A: ff.Gn,n+k (C) --. Before giving a rigorous proof of the theorem we give the following heuristic
argument.
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Recall that Pn,n+k (C[z, Z-1]) is the space of all Laurent polynomial maps C* --Vn,n+k (C). We can define a continuous injective map

Pn,n+k (C[z, z-l ])
__

/Vn,n+k (C)

into the space of all continuous maps S -- Vn,n+k(C) by restricting an element of
Pn,n+k(C[z, z-l]) to S 1. Similarly, GLCn (C[z, z-i]) maps into the identity component,
I0GL,,, of the space of all continuous maps S - GLn(C) and the map

Pn,n+(C[Z, Z-])/GLCn(C[Z, Z-I]) ff-,Vn,n+k(C)/oGLn ’n,n+k(C)
is continuous, injective, and surjects onto the space of algebraic points in ,Gn,+(C).
This map is I-equivariant with respect to the flow induced from fA: G,n+k(C[z,
z-1 ]) -- on the left and the flow of the action functional on the right.

If the above map was a homeomorphism onto the space of algebraic loops, then
we would have an induced isomorphism of flow categories

Cn,n+k Cn,n+k
by Theorem 6. However, the above map is definitely not a homeomorphism onto
the space of algebraic loops as can be seen even in the simple case n k 1
studied by Cohen, Jones, and Segal in [5]. For example one can find sequences in
Pn,n+k(C[z, Z-1])/GLCn(C[Z, z-l]) that do not converge but whose images do con-
verge to algebraic loops. Even though the above map is not a homeomorphism onto
its image, it does induce an isomorphism of flow categories. This is possible because
the morphisms in the flow category are "lines on the manifold" rather than individual
points in the manifold.

ProofofTheorem 9. LetN= (n n+k ). The Plticker embedding Pl" Gn,n+(C)-’
CpV-1 is defined by sending a plane to the homogeneous coordinates given by the
determinants of the n x n minors of any element of Vn,n+g (C) whose rows span the
plane. We have a similar map

PI" Pn,n+k(C[z, Z-1])/GLCn(C[Z, z-l]) (C[z, z-l]N)

defined by sending an equivalence class [M] to the N-tuple of Laurent polynomials
(mod C*) given by the determinants ofthe n x n minors ofM. This generalized Pliacker
embedding is well-defined because multiplying M by an element of GLCn (C[z, z-1])
can only change the determinants of the n x n minors of M by an element of C*.

LEMMA 13.
bedding.

PI" Pn,n+k(C[z, Z-])/GLCn(C[z, z-]) "-+ (C[z, z-]v) isanem-

Proof. AssumethatthedeterminantsofthenxnminorsofM1, ME Pn,n+k(C[z,
z-l]) are the same up to multiplication by an element of C*. Since the standard
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PRicker embedding Gn,n+k(C) -- CPN-1 is injective, there exists a matrix of
functions G(z) (gij(z)) (i.e., gij" C* C for all 1 < i, j < n) such that
G(w)Ml(W) M2(w) for all to C*. Since Mx . Pn,n+k(C[z, z-x]) there exists
a minor of M, say (Mx)l, whose determinant is not the zero polynomial. For every
< j < n the jth row of G gives a system of n equations and n unknowns in

glj, g2j gnj,

(gjl, gj2 gjn)(M1)l (ljl, lj2, ljn),

where ljl lj2 tin are the entries in the jth row of the minor (m2) Ifwe multiply
both sides of the above equations by a high enough power of z to clear the negative
powers of the Laurent polynomials, then we have an equivalent system of equations
in the sense that the functions gij which solve one system also solve the other. This
new system of equations is a linear system of n equations and n unknowns over the
field of rational functions. Moreover, since the determinant of (M1)t is not zero this
new system of equations has a solution over the field of rational functions. That
is, the functions gij are rational functions that can only have poles at zero. So as
functions the gij are Laurent polynomials. Hence, G a__ GLCn (C[z, z-X]). This shows
that Pl" Pn,n+:(C[z, z-1])/GLCn(C[z, z-l]) I?(C[z, z-X]re) is injective.

It’s clear that PI" Pn,n+,(C[z, z-1])/GLCn(C[z, z-l]) --+ ]?(C[z, z-X]re) is contin-
uous. To see that the inverse map is continuous it suffices to show that the composite

Pn,n+k(C[z, z-I]) -- en,n.l_k(C[z, Z-1])/GLCn(C[z, z-l])
Pl
--+ Pl(Pn,n+(C[z, Z-x])/GLCn(C[z, z-X])) _C IP(C[z, z-]v)

maps open sets to open sets. But every point M en,n+k(C[z, Z-I]) has an open
neighborhood given by perturbing the coefficients of the entries of M which maps
onto an open neighborhood of Pl o zr(M). That is, Pl o n’(M) . I?(C[z, z-X]u) has
homogeneous coordinates which are linear functions in the coefficients of the Laurent
polynomial entries of M and since a linear function of several variables is an open
map Pl o rr is an open map. if]

The map Pl" Pn,n+,(C[z, z-])/GLCn (C[z, z-l]) "-+ ]?(C[z, z-l]v) is lt-equivar-
iant, i.e., both the flow on Pn,n+k(C[z, Z-l]) GLCn (C[Z, z-l]) described in Lemma 12
and the flow of fa: I?(C[z, z-X]) --+ lt restricted to the image of the generalized
Plticker embedding are given by composing Laurent polynomials with the map z
etz. Hence by Theorem 6 the flow category on Pn,n+k(C[Z, Z-X]) GLcn(C[z, z-l]) is
isomorphic to the subcategory of fa: I?(C[z, z-l]) -- IR consisting of those critical
points and flow lines which lie in the image of Pl. Note that the object space of C,n,n+k
is homeomorphic to Z x G,+(C).

Every point [,_M] Pn,n+(C[z, z-1])/GLCn (C[z, z-l]) determines,. a unique alge-
braic point in 12Gn,n+k(C) as follows. Recall that a point in 2Gn,n+(C) is given by
a map S -- Gn,n+k(C) together with an extension DE -- Gn,n+l(C) well defined
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to homotopy rel S. First we label the critical submanifold in ’n,n+k(C)algup
consisting of constant extensions of constant loops to D2 by Co. The other critical
submanifolds are then labeled in relation to Co, i.e., the critical submanifold on sheet
j e Z of the universal cover is labeled Cj. The preceding lemma implies that every
element of P,,n+k (C[z, z-1 ])/GLCn (C[z, z-]) determines a unique holomorphic map
CP -- Gn,n+k(C) and hence a gradient flow line of the action functional from a
constant loop at some point a E G..n+k (C) to a constant loop at some b Gn,n+ (C).
We lift this flow to a map/R -- EGn,n+ (C) beginning at a Cj Gn,n+ (C) and
then evaluate at zero where j is the unique element of Z such that multiplying each
entry in the N-tuple Pl ([M]) by z-j gives a collection of elements of C[z] with no
common roots in C. This defines a continuous bijective map

in,n+k’. Pn,n+k(C[z, Z-1])/GLCn(C[Z, z-l]) n,n+k(C)alg.
It’s clear from the definition that this map is -equivariant with respect to the

induced flow from fA: Gn,n+g(C[z, z-]) - on the left and the gradient flow of
the action functional on the right, i.e., on both sides the flow is given by z - etz.
Therefore, by Theorem 6, in,n+k induces a continuous bijective functor

In,n+k: Cn,n+k Cn,n+k.
It is clear that In,n+k: Ob(Cn,n+k) Ob(CAn,,+) is a homeomorphism because in,n+k
is continuous and bijective and the object space of C,,,n+k has compact components
(i.e., each component is Gn,n+,(C)).

The Plticker embedding Pl: Gn,n+k(C) -- CPN-1 also induces an embedding
,Pl: ff-.Gn,n+k(C) CPv- and since 7rl(lGn,n+k(C)) :rt’l(/CPN-l) Z
this induces an embedding

..PI: ff-.Gn,n+k(C)) ,CPN-1.

Chasing through the definitions of the maps involved one sees that we have the
following -equivariant commutative diagram:

in,n+k
Pn,n+tc(C[z, Z-1])/GLCn(C[z, z-l]) lGn,n+t(C)alg

lPI ll?l
z_l])/C,

i,,,v
P1,N(C[z CPV-lalg.

The preceding diagram induces the following commutative diagram offlow categories
by Theorem 6.

In,n+k
Cn,n+k Cn,n+k

II,N
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where the vertical arrows are inclusion functors induced by the Pliicker embeddings
in the preceding diagram.

One of the results announced in [5] is that the functor ll,u: Cl,v CAI,N is
an isomorphism of categories. In particular, for any a, b Ob(Cn,n+k) we have a
homeomorphism

I1,N" Mor(a, b)ct,N --+ Mor(il,v(a), il,v(b))cA,,u
where Mor(a, b)c,,, is a morphism space in the flow category of the function fA"
(C[z, z-]N) --+ ]R and Mor(il,v(a), il,lv(b))c.,u is a morphism space in the flow

category of the action functional on

In,n+k" Mor(a, b)c.,.+k ---> Mor(in,n+k(a), in,n+k(b))cA.,.+k
is simply a restriction of 11,o and hence is a homeomorphism. Therefore In,n+k"
C.,n+k CA.,.+ is an isomorphism of flow categories.

One should note that our definition ofMor(a, b) as the space ofpiecewise flow lines
on the manifold immediately gives the result of Cohen, Jones, and Segal announced
in [5]. We have seen that

il,N" P1,N(C[z, z-1])/C* --> ff-,CPN-1 alg

is a continuous bijective map whose inverse is discontinuous. However, restricted to
the space of critical submanifolds this map is a homeomorphism. Hence by Theorem
6 there is an induced continuous bijective functor

I1,N" C1,N -’ CA,
that is a homeomorphism on the object spaces.

To see that the inverse map on the morphism spaces is continuous fix any two
critical points a, b 60b(CA.u) and assume lj Mor(a, b)c.at,N is a sequence of

piecewise gradient flow lines converging to 6 Mor(a, b)c.a If 1-1 (lj) did not1,N

converge to I-l,v(l) then there would be a sequence ofpoints pj 1-1 (lj) that stayed1,N

some finite distance from 1-11,v (l). But by assumption II,u(pj) approaches and since
is compact there is a subsequence of ll,lV(pj) approaching some point ll,lV(p) l.

Hence to show that 1-11,v (lj) converges to l,u(l)1 it suffices to show that for every
ll,lV(p) and every sequence of points ll,lV(pj) lj converging to ll,lV(p), pj
converges to p.

Pick any ll,V(p) 6 and assume that l,N(pj) lj is a sequence converging to
l,lV(p). Applying the projection map

7r" .,CPN-1 -’-> CPN-1
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we have a sequence zr(l,N(pj)) converging to zr(ll,N (p)). Since all these points are
algebraic there exist holomorphic maps

hi" CP CPN-1

and

h: CP -- CPN-1

such that hj(eis) 7r(ll,N(Pj)) and h(eis) 7r(ll,N(p)). These holomorphic maps
are specific parameterizations for segments of the piecewise gradient flow lines zr (lj)
and zr (l) and because of the way the parameterizations were chosen hj approaches h
on S (the image of eis) as j -- 0. In other words, h is a "bubble" in the limit of
hj where the bubbling can only occur at 0 and o because the zr (lj) are all piecewise
gradient flow lines ofthe action functional. Since these maps are holomorphic hj (z)
(p)(z) p (z)) for every j Z+ and h(z) (pl(z) pV(z)) where the
entries are polynomials with no root in common in C. As elements of (C[z, z-l}N),

(p)(z) pfd(Z)) Zm(pl(z) pN(z))

as j o where rn Z is determined by what sort of bubbling occurs. After
multiplying by an appropriate power of z, determined by what sheet in the universal
cover I,N(p) lies, we have pj and p. Hence pj

4. Floer homotopy type and Floer cohomology

Definition 14. Fixing any critical submanifold Co cc_ Ob(Cfa) we define the Floer
homotopy type of fa: Gn,n+k(C[z, z-l}) I (following [3]) to be

li__m{(BCfAIcs)-VC}c,
BI

where

and

I {Ba component of Ob(CfA)lW(Co, B)isa manifold}

Is {C a component of Ob(CfA)lCo <_ C and W(C, B) is a manifold}
and vc is the normal bundle of

BCz, BCz B

The maps in the above systems are all inclusion maps.
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LEMMA 15. P E Gn,n+k(C[z, z-l]) Vn,n+k(C[Z, Z-I])/GLn(C) is a criti-
cal point of fa: Gn,n+i(C[z, z-l]) if and only if there exists some M
Vn,n+k(C[z, Z-]) lying above P such that the th row of M consists of entries of
theform aij zmi for some aij C and some mi

,.
Proof. The critical points of fa: Gn,n+k(C[z, z-l]) --+ R are the fixed points of

the gradient flow. Recall that this gradient flow is given by composing the Laurent
polynomial entries of M Vn,n+(C[z, z-1 ]) with the function z - etz. Assume
that M Vn,n+t(C[z, z-X l) is of the form described above. Then composing the
entries of M with z etz multiplies the ith row by emit. Hence, the equivalence
class does not change in Vn,n+k(C[z Z-1])/GLn(C) Gn,n+k(C[z, z-l]).
Now assume that P Gn,n+k(C[z, Z-I]) is fixed point. Choose M Vn,n+k(C[z,

z-1 ]) lying above P and in reduced row echelon form. Since the rows ofM(e z) span
the same plane as the rows of M(z) the first row of M(etz) is a multiple of the first
row of M(z). Thus the first row of M(z) must consist of entries of the form aljzml

for some m Z. By repeating the argument for rows 2, 3, n we see that every
row of M must consist of entries of the form aijzmi for some mi . I--I

The preceding lemma shows that the critical submanifolds of fa: Gn,n+k(C[z,
z-]) N are indexed by n-tuples of integers (m,..., mn). We will denote these
critical submanifolds by C(m m,). If m m2 mn, then C(m mn)

G,,,,,+(C). In general, C(m mn) is a product of Grassmann manifolds, e.g., if
of the integers (ml m,,) are the same, then C(ml mn) will have Gl,n+k (C) as a
factor. From this point on we will fix Co C(0,0 0/.

THEOREM 16. The Floer homotopy type of fa: Gn,n+k(C[z, z-l]) ] has

Gn (C) +-- Gn (COX:)) -(n+k)Yn 4-- Gn (C)-2(n+k)’n 4"-

as a cofinal system where Yn denotes the tautological n-plane bundle over Gn (C).

Let Cj C(j,j j for all j 6 Z. Then for j < 0 we have BCfa ICc -Proof
W(Co, Cj) Gn,n+k(C[z, z-l]Ij’j+ 01) where C[z, z-l]{j’j+l 0} denotes the col-
lection of all Laurent polynomials of the form

ajz
j q- aj+lZj+ +... + a-z-1 + ao.

Co BCfaI is mThe normal bundle of the embedding BCfa G (n + k)yn for all

m E Z+. Hence {(BC/a IcC2) -vc }Ctc has

Gn (C[z, z-ll {j’j’l’l 0}) 4_. Gn (C[z, z-ll {j’j-t’l 0}) -(n+k))’n "
as a cofinal system.
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Taking a direct limit j -oo we see that

Gn (C) +-" Gn (Coo) -(n+k)r" +-" Gn (Coo)-2(n+k)vn *--

is a cofinal system of the Floer homotopy type.

Ifwe apply H* to the above pro-spectrum and use the Thom Isomorphism Theorem
we get the direct system

Uc,+* H,+2n(n+k) t3c+*H*(Gn(Coo)) "+ (Gn(Coo)) --+ ....
The direct limit of this system is

H*(Gn (Coo)) [(n+k)].
The reader should note that the above cohomology groups are graded over Z and
periodic with period 2(n +k) where n +k is the minimal Chern number of Gn,n+k (C).
This is consistent with the grading on Floer’s cohomology groups.

For the case n 1, Theorem 9 implies that the flow category Cfa is a compactifi-
cation of the flow category of the action functional on the universal cover of Z;cpk.
We define the Floer homotopy type of the action functional to be the Floer homotopy
type of Cfa. Looking at the proof of Theorem 16 we see that the Floer homotopy type
of the action functional on the universal cover of Z;CPk is

CPoo ,t-- (CPoo)-(l+/)w -- (CPoo)-2(1+/)1 +-...

where ’ denotes the Hopf line bundle over CPoo.
The Floer cohomology ring of cpk is well known [14].

THEOREM 17. The Floer cohomology ring ofCP is

nF.(Cp,) Zip, q, q-l]
(p+k q, q-q 1)

where p has degree 2.

Note that HF* (CP*) is isomorphic to

]
One reason-that HF* (CP*) is usually written as in the above theorem is to stress
the 2N-periodicity of the Floer cohomology groups where N + k is the minimal
Chern number of CP*. Another reason is that it exhibits the action of r2(CP*) on
HF*(CP).
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7[2 (Cpk) w1(Cpk) is the group ofdeck transformations ofCP This action
induces an action on the Floer chain complex. A e 7t’2 (Cpk) sends a critical point of
Maslov index/z to a critical point ofMaslov index/z +2cl (A) (see [14], Section 10.1).
If A is a generator of zr2 (Cpk), then the induced action of A on the Floer cohomology
ring is multiplication by either q or q-1 in Theorem 17.

The group of deck transformations 7t2 (Cpk) sends critical points to critical points
and gradient flow lines to gradient flow lines. Thus there is an induced action of
7t"2 (Cpk) on the flow category ofthe action functional on the universal cover ofCP.
This action has the effect of reindexing the critical submanifolds in Definition 14, but
other than that it does not change the Floer homotopy type. In particular, we see that
the Floer homotopy type of the action functional on the universal cover of cpk is
independent of the basepoint chosen in Definition 14.
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