THE EXTENSION PROBLEM FOR POSITIVE-DEFINITE FUNCTIONS'

BY
WaLTER RUupIN

Introduction

Although we shall be primarily concerned with positive-definite functions
on euclidean spaces and on groups of lattice points, we begin by stating the
extension problem in a more general context.

If S is a subset of a locally compact abelian group G, we define PD(S) to
be the class of all continuous complex-valued functions ¢ on S — S (the set
of all points x — y € G, with z € S, y € S) which satisfy the inequality

(1) 2ohim1 (i — 25) Z 0

for every positive integer N, for every choice of complex numberse; , -+, ¢y,
and for every choice of points z;, - -+ , zy in S. If S is a finite set, the above
requirement may also be written in the form

(2) 2oewes c(@)e(y)e(z — y) 2 0

for every complex function ¢ on S.

We emphasize that the members of PD(S) are functions defined on S — S,
not on S (unless S is a subgroup of G). Also, PD(G) is precisely the class
of all continuous positive-definite functions on @, in the usual terminology.

If a function ¢ ¢ PD(G) is restricted to S — S, we clearly obtain a member
of PD(S). We are concerned with the following question: Under what
circumstances do these restrictions cover PD(,S)? In other words, under what
circumstances is it true that every ¢ ¢ PD(S) has an extension which lies in
PD(@)?

In this direction, M. G. Krein [7] proved that if I 7s an interval on the real
line R, then every ¢ e PD(I) has an extension which lies in PD(R).

The main contribution of the present paper is a proof that the analogue of
Krein’s theorem fails to hold in euclidean spaces of higher dimensions:

TurorEM. Ifn > 1, and if I" is an n-dimensional cube in R", there exists a
Sunction ¢ e PD(I"™) which cannot be extended to a member of PD(R™).

For recent literature on Krein’s theorem, in particular on the question of
the uniqueness of the extension, we refer to Akutowicz [1], [2] and Devinatz
[4]. Applications to information theory have been discussed by Chover [3].
Higher-dimensional situations are also discussed in [4].

Our method of attack is quite different from the ones used by the above-
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named authors. In Section 1 we consider a finite set S in a discrete group G,
and we show that the extension problem can be rephrased as the problem of
representing certain positive trigonometric polynomials on the dual group
of G as sums of squares. In Section 2 these considerations are used to prove
that our extension problem always has a solution if G = Z, the additive group
of all integers, and if S is a finite arithmetic progression in Z. This in turn
leads to an easy proof of Krein’s theorem. In Section 3 we use a theorem of
Hilbert [6], which states that there exist positive polynomials of 2 real variables
which are not sums of squares of polynomials, to derive an analogous result
for trigonometric polynomials on the 2-dimensional torus 7%, and hence prove
that our extension problem may fail to have a solution if G = Z°, the group
of all lattice points in the plane, and if S is a square of lattice points (with at
least 16 points). An interpolation theorem transfers this negative result from
Z* to R*, and hence to R”, for any n = 2.

After completion of the present paper the author learned that one of its
main results (Theorem 3.3, the possible nonexistence of a positive-definite
extension in Z*) was proved earlier by Calderén and Pepinsky [8], in a publica-
tion devoted primarily to crystallography, and that the two methods of proof
are the same. As far as new results are concerned, the main contributions of
the present paper are therefore contained in Theorems 3.4 and 3.5. Theorem
1.4 is new in the generality in which it is stated here, but the same idea is
used in [8].

1. Connections with sums of squares

In this section, G is a discrete abelian group, S is a finite subset
of G, A = 8 — 8, Tis the (compact) dual group of @, and the symbol (z, v)
denotes the value of the character v e I' at the point e G. Functions of the
form

(3) () = Dses c(@)(x,7) (yel)

will be called S-polynomials; A-polynomials are defined similarly. If (3)
holds, we have

(@) (@) = f@) = [ 1) (=2, am,

where dy denotes the Haar measure of I'; f is the Fourier transform of f.

We let X5 be the real vector space consisting of all real A-polynomials,
we let Ps be the set of all nonnegative members of X, and we let Qs be the
set of all finite sums f of the form

(5) f = ZJ' ] gi IZ;
where each ¢, is an S-polynomial.

It is clear that X is finite-dimensional (dim Xg = cardinality of A)
that Ps and Qs are convex cones in X g, and that Pg contains Qs .
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If ¢ is a function on A such that ¢(—2) = ¢(x), the equation

(6) pr(f) = ZzeA ﬂo(x).f(x)

defines a real linear functional on Xg. Conversely, every real linear func-
tional on X is L, for some such .

1.1 Lemma. A function ¢ on S — 8 belongs to PD(S) if and only if
Lo(f) = 0 for every f e Qs .

Proof. If g(v) = 2 ¢(z)(x, v) is an S-polynomial, then

(7) l g('Y) |2 = Zx,yes C(x)c_(lj)-(x - Y 'Y),
so that
(8) Lo(| g ) = 2enes c(@)e(@e(z — y).

The lemma, follows from (2), (5), and (8).

1.2 LEmma. A function ¢ defined on S — S can be extended to a member
of PD(Q@) #f and only if L,(f) = O for every f ¢ Ps .

Proof. If ¢ e PD(@®), Bochner’s theorem shows that there is a nonnegative
measure u on I' such that

O o@) = [ (=2,7) duly) (2¢6).

For f e X5, we then have

(10) L) = T h@e@) = @) [ (=9 autr) = [ s,

so that L,(f) = 0if f ¢ Ps .

Conversely, suppose L,(f) =2 O for all fe Ps. If feX and -1 =f =1,
the relation L,(1) = ¢(0) shows that | L,(f) | £ ¢(0). If ¢(0) =0, it
follows that L, = 0 on X, and hence that ¢ = 0 on A. Otherwise, we may
assume without loss of generality that ¢(0) = 1. Then L, is a linear fune-
tional of norm 1 on Xy (relative to the supremum norm). By the Hahn-
Banach theorem, L, extends to a linear functional of norm 1 on the space of
all real continuous functions on T, and by the Riesz representation theorem
there is a measure u on T, of total variation || u || = 1, such that

(1) L) = [ (=) aut) (f X

Since 1 = Ly(1) = u(T) = ||n]|| =1, we have u = 0. Applying (11) to
f(x) = (z,7v) + (—=,v) and to f(z) = i[(z,v) — (—=,v)], with x € S, we
conclude that

(12) o(@) = [ (=a,7) du(v) (z ).
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The right side of (12) defines a member of PD(G), since u = 0, and hence
furnishes the desired extension of ¢.

1.3 LEmMA. The cone Qg 1s closed in X g .

Proof. Let d be the number of points in A. Then dim X5 = d. Suppose
r > d and

(13) f=2ilgl,

each g; being an S-polynomial. Each | g;|”is in X4, and since r > d, there
is a nontrivial relation

(14) 2iNilgiP=0

with real coefficients A; . Renumbering the ¢;, if necessary, we may assume
that A\, = \; for j <r. We solve (14) for | g, |* and substitute into (13)

f= 2271 =N/ L gi I

obtaining

Since N;/Ar £ 1, we have shown that every sum of r squares | g;|* is also

a sum of 7 — 1 such squares. Hence every f € Qs is a sum of d squares | g; |*.
If now f,eQs (n =1, 2,3, ---) and f. — f uniformly on T, there are

S-polynomials g;,, such that

(15) fo= 25| gim |’ (n=1,23,--).

The f, are uniformly bounded on T'; hence so are the g, .., by (15). It follows
that there is a sequence {n.}, n;— o, such that

(16) limgsw G0, () = cij(x)
exists for 1 £ 7 < d and for all z ¢ S. Putting

(17) g:(v) = Daes () (2, 7) (1=j=d, vel)
we see that f = > | gj|®. Thusf eQs, and this proves that Qs is closed.

1.4 TaeorEM. The following two conditions on a finite set S in a discrele
abelian group G are equivalent:

(A) Pg = Qs .

(B) Every ¢ e PD(S) can be extended to a function in PD(G).

Proof. If ¢ e PD(S), Lemma 1.1 shows that L,(f) = 0 for all fe@Qs.
If (A) holds, it follows that L,(f) = 0 for all f ¢ Ps, and then Lemma 1.2
shows that (B) holds.

Conversely, if (A) is false, there exists fo e Ps such that fo¢ @s. Since
Qsis a closed convex cone in X g (Lemma 1.3), there is a hyperplane IT through
the origin of X such that f; is on one side of II and Qs is on the other. In
other words, there is a reallinear functional L on X s such that L(f,) < 0 but
L(f) =z Oforallf e Qs. Then L = L, for some function ¢ on A. Lemma 1.1
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shows that ¢ e PD(8), and Lemma 1.2 shows that ¢ cannot be extended to a
function in PD(G). Thus (B) fails if (A) fails.
2. A proof of Krein's theorem
2.1 TugorEM. If S ={m,m + 1, ---,m 4+ N} C Z, the group of integers,
then every ¢ e PD(S) has an extension to a function in PD(Z).

Proof. I f(e”) = X Yy a, e""‘f and f(e”) = 0 for all real 9, then f = | ¢ &
for some g of the form g(e”) = D .csbne™ (Fejér-Riesz [5]). Thus
Pgs = Qs, in the terminology of Section 1, and Theorem 1.4 completes the
proof.

2.2 Lemma. If ¢ e PD(Z), and if
(18) @) =(n+1—e(n) + (t—n)e(n+1) (neZ,n=t=n-+1),
then ® e PD(R), and ®(n) = ¢(n) forn e Z.

Proof. It is evident that ® coincides with ¢ on Z. If we set

(19) K(t) = max (1 — |¢],0) (teR),
(18) is equivalent to

(20) 2(t) = 2onez o(n)K(t — n) (teR).
For 0 < r < 1, define

(21) B, (t) = Dnezo(n)r'™K(t — n) (teR),
and note that

(22) D onez o(n)r'™e™ = 0 (z eR)

since ¢ e PD(Z). Since the Fourier transform K of K is nonnegative, and
since

(23) 2.() = [ R(@){Toer oln)r™e™ e da,
we see that ®, is the Fourier transform of a nonnegative function. Hence
®, e PD(R), for 0 < r < 1, and the same is true of ® = lim,», ®, .

2.3 TueoreEM (Krein). If S is an open segment in R, every ¢ e PD(S) can
be extended to a function tn PD(R).

Proof. Fork =1,2,3, -, let Gy be the subgroup of R which is generated
by the number 1/k, and put Sy = Sn G, . If ¢ e PD(S), its restriction ¢y
to S, — S belongs to PD(S;), and since Gy, is isomorphic to Z, Theorem 2.1
shows that ¢, can be extended to a function in PD(G;). By linear inter-
polation (Lemma 2.2) we obtain functions ®, ¢ PD(R) which coincide with
oon S — Sy. If Jis a closed subinterval of S — S, the continuity of ¢
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shows that {®:} tends to ¢ on S — 8, uniformly on J, and that {®;} is an
equicontinuous sequence on J.

Each &, is the Fourier-Stieltjes transform of a nonnegative measure u; on
R. Hence

(24) () — @) [ = [ 6 = o] du(0)

and the Schwarz inequality yields
(25) | ®(z) — Bi(y) | < 284(0) | 3:(0) — Bu(z — y) |

for any z, y ¢ R.

Since {®;} is equicontinuous on J, (25) shows that {®;} is equicontinuous
on all of R, and therefore a subsequence {®;;} will converge to a function
® ¢ PD (R) which coincides with ¢ on S — S. This completes the proof.

3. The extension problem in R”, for p > 1

We begin with a statement of the theorem of Hilbert which was alluded
to in the Introduction.

3.1 TurorEM. If N = 3, there are polynomials F(s,t) of degree 2N which
are posttive for all real (s,t) and which are not sums of squares of polynomials.

Hilbert worked with homogeneous polynomials; hence the number of
variables in his statement is 3. He also obtained analogous results for
polynomials in more variables, for N = 2. For simplicity in writing the
proof of Theorem 3.2 we restrict ourselves to 2 variables.

We let Z° be the group of all lattice points in the plane, i.e., the set of all
points in R® with integer coordinates. For N = 1,2,3, ---, we let Sy be
the set of alln = (4, 7) e Z° whose coordinates satisfy 0 < ¢ < N,0 < j < N.

3.2 TeEOREM. Fiz N = 3. IfS = Syand G = Z*, then (in the terminology
of Section 1) Qs # Pg .

Proof. Let X be as in Section 1, let ¥ be the space of all polynomials
(26) F(s,t) = ZZJPO g 871 (@pq real),

and let ¥ be the linear map of X5 into Y given by

(27) N (s, 1) = (14 (1 + )7 (i T j) .
(This change of variables was suggested by A. P. Calderén.) Since dim X =
(2N + 1)* = dim Y, and since ¥ evidently preserves linear independence,
it follows that ¥ is a 1-1 map of X onto Y.

Suppose now that f ¢ Qs. Then f = > |g;|’, each g; being an S-poly-
nomial. Setting
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(28) Gi(s, ) = (s — )" (¢ — )"y, (m t+ i)’

s—1t—1

we see that G; is a (complex) polynomial of degree at most N in each of the
variables s, ¢, and that

(29) (\I,f)(s7 t) = Zi l Gi(s7 t) |2‘

Setting F = ¥f and G; = u; + @; (u;, v; real for real arguments), we have
F €Y, u; and v; are polynomials, and F = > (uj + v}).

Hence, if Ps and Qs were equal, every positive F of the form (26) would
be a sum of squares of polynomials, in contradiction to Hilbert’s theorem.

3.3 TurorEM. For N = 3, there exists ¢ ¢ PD (Sy) which cannot be extended
to a member of PD (Z%).

Proof. This follows immediately from Theorems 1.4 and 3.2.

3.4 TuuorEM. Let S = Sy, A =8 — 8, both in Z*. Let 8* be the convex
hull of S in R*. To each ¢ e PD (8) there corresponds a ® ¢ PD (8*) such
that ®(n) = o(n) for all n € A.

Proof. The proof is suggested by the construction in Lemma 2.2.
Let U be the open square with vertices at (&3, =%), let A be a measurable
function which vanishes outside U, such that [ | A |* = 1, and put

(30) K@) = [ M+ )N) dy (v e BY),

(31) @(x) = ZneA (o(n)K(x - n) (x €R2)'

(It is understood that integrals without subscripts are extended over R’
with respect to Lebesgue measure.)

If meZ*and m # 0, then K(m) = 0,and K(0) = 1. Hence®(n) = ¢(n)
for neA. Also, ® is clearly continuous. To show that ® ¢ PD (8*) we
have to prove that

(32) Zi,i c; 6;P(x; — x,-) =0

for every choice of finitely many complex numbers ¢; and points z; e S*,
If we set o(n) = 0 outside A and

(33) Aly) = 2oiciMy — =) (y ¢ B,
substitution of (30) into (31) shows that the left side of (32) is equal to

(34) S o(n) [ Aly + m)E() dy.
The integrals in (34) are equal to

(35) Tt [ Ay 4+ m)EG F ) dy;
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since A = 0 outside 8* 4 U, only finitely many terms of the sum in (35)
are different from zero. It follows that (34) is equal to

(36) [ @ e Ay + DRGF 0o = m).

IfyeUandy -+ reS*+ U, thenr e 8* + U — U, since
Zn(8*4+U—-U) =8,

(36) is not changed if we restrict m and r to lie in S. But ¢ ¢ PD (8), and
hence (see (2)) the integrand in (36) is nonnegative for every y e U. This
establishes (32) and completes the proof.

3.5 TurorEM. Let S* be a closed square in R*. There exists ® ¢ PD (S*)
which cannot be extended to a function in PD (R?).

Proof. Assume, without loss of generality, that S8* is the convex hull of
Sz , in the notation of Theorem 3.2. By Theorem 3.3 there exists ¢ e PD (S3)
which cannot be extended to a function in PD (Z*). By Theorem 3.4, there
exists ® ¢ PD (S™) such that® = o on S; — S;. If ® could be extended to a
function ®* ¢ PD (R"), the restriction of ®* to Z* would be an extension of ¢
and would be in PD (Z*), which is a contradiction. The theorem follows.

3.6 Remarks. (a) In Theorem 3.4 we could have replaced the square Sy
by a rectangle of lattice points in the plane or in R” for any p = 2, without
any change in the proof.

(b) The fact that the extension problem may fail to have a solution in R?
(Theorem 3.5) implies immediately that the same is true in R” for any p = 2,
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