DISJOINT PAIRS OF SETS AND INCIDENCE MATRICES

BY
MARvIN Marcus! aAND HENrRYK MInc?

In a recent paper [1] investigating the repeated appearance of zeros in
the powers of a matrix the following purely combinatorial problem arose. Let

Z1, -+, To be n distinct objects, and let S;, ---, S, be n subsets of these
objects satisfying the following two conditions:

(a) Fornos,s=1,---,n — 1, does the union of some s of the sets
Si, -+, S, contain s or fewer elements.

(b) No two of the sets S; intersect in precisely one of the z; .

Question: What is the maximum possible number w(n) of nonintersecting
pairs of sets, S, and S;,1 = p < ¢ = n?

As usual we reformulate the problem in terms of the incidence matrix of
the configuration: let A be an n-square (0, 1)-matrix whose (¢, 7) entry is 1 or 0
according as x; belongs to S; or not. The conditions (a) and (b) simply state
respectively that A hasno s X (n — s) submatrix of zeros,s =1, --- ,n — 1,
and AA’ has no entry equal to 1.

An n-square matrix is said to be partly decomposable if it contains
an s X (n — s) zero submatrix for some s. Otherwise it is called fully inde-
composable. Let Q(n) denote the totality of fully indecomposable n-square
(0, 1)-matrices such that AA’ contains no entries equal to 1. Let z(M)
denote the number of zeros in a matrix M. Then the number of zeros above
the main diagonal in AA’, where A is fully indecomposable, is z(AA")/2.
In our problem we consider the number

w(n) = maxsam 2(44")/2,

i.e., the maximum number of zeros above the main diagonal in 44" as 4
varies over (n). Marcus and May obtained in [1] the following results:

w(2) = w(3) =0, w(4) = 1, w(b) = 2;
w(n) < n(n — 3)/2 for n = 4;
w(n) = n(n — 6)/2 if n s even,
w(n) = (n(n — 6) — 3)/2 if nis odd.
The main result of the present paper is Theorem 6 which states:
w(n) = n(n — 4)/2 if n s even and n = 6,
w(n) = (n(n —4) —3)/2 ifnisodd andn = 7.
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THEOREM 1. A fully indecomposable n-square matriz can contain n(n — 2),
but no more than n(n — 2), zero entries.

Proof. Clearly a row of a fully indecomposable matrix cannot contain
more than n — 2 zeros, and hence the matrix cannot contain more than
n(n — 2) zeros. It remains to show that this bound can be achieved. Con-
sider the matrix I 4+ P, where I is the n-square identity matrix and P is the
n-square permutation matrix with ones in the superdiagonal. It contains
n(n — 2) zeros. We assert that it is fully indecomposable. For suppose
that Z is ans X ¢ zerosubmatrix of I + P, and that the entries of Z are located
in the rows of I + P numbered 4;, ---, %, where¢; < --- < 1,. If4, & n,
the columns numbered 4;, %4 + 1,%,% + 1, ---, %:, 7. + 1 cannot contain
entriessof Z. Buti; <4 +1=56<4+1=5---=214 <14+ 1, andat
least s + 1 of these numbers are distinct. Therefore t < n — (s + 1), i.e,,

s+t=n-—1.

If 45 = n, then the columns numbered 1, %;, % + 1,4, % + 1, - - -, % cannot
contain entries of Z. If 4; 5 1, then the number of distinet columns is, as be-
fore,atleast s + 1. If#; = 1,thent,q % 4o + 1forsomea (1 £ a < s — 1),
and thus at least s 4+ 1 of the numbers ¢;, %1 + 1, %2, %2 + 1, - - -, 7; are dis-
tinct, and, as before, s + ¢t < n — 1.

Alternatively we can show that I + P is fully indecomposable by applying
the techniques used in the proof of Theorem 4 in [1].

CoroLLARY. Let B be any nonnegative n-square matrix. ThenI + P + B
8 fully indecomposable.

TaroreM 2. If A is a fully indecomposable nonnegative matriz, and if AA’
contains an s X t zero submatriz, then s + t does not exceed n — 2.

Proof. Assume for simplicity that the s X ¢ zero submatrix is in the right
top corner of AA’. Let the submatrix consisting of the first s rows of A
have exactly k zero columns. Since 4 is fully indecomposable, s + & < n — 1.
Now, each of the first s rows of A is orthogonal to each of the last ¢ rows, and
therefore all columns of A containing a nonzero entry in any of their first
s positions must have zeros in all of their last ¢ positions. Thus the last
trows contain a ¢ X (n — k) zero submatrix. Since 4 is fully indecomposable,
t+n—k=<n—1. Thereforet <k —lands+t=n— 2.

CoRrOLLARY 1. If A is a fully indecomposable nonnegative matriz, then AA’
18 fully indecomposable.

CorOLLARY 2. If A is a fully indecomposable nonnegative n-square matrix,
then no row of AA" can have more than n — 3 zero entries.

TuEorEM 3. I A is a fully indecomposable nonnegative matriz and AA" has t
(t > 0) zeros in its t*® row, then the number of zeros in the ™ row of A is greater
than t.
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Proof. Suppose that the ¢*» row of 4 contains s zeros (which can be as-
sumed to be in the last s columns of 4). Since A4’ has t zeros in its ¢* row
the #*» row of A is orthogonal to ¢ rows of 4, and therefore the first n — s
entries in these ¢ rows are all equal to 0. Hence the first n — s columns of A
contain a ¢ X (n — s) zero submatrix. Since A is fully indecomposable,
t + n — s < n, and therefore ¢ < s.

THEOREM 4.
w(n) = n(n — 4)/2 if n s even,

w(n) = (n(n —4) —3)/2 if nisodd.

Proof. The theorem is trivial forn < 5. It holdsforn = 5 since w(5) = 2.
For n = 6 we exhibit for any even n a matrix A ¢eQ(n) such that
2(44") = n(n — 4) and for any odd n a matrix B eQ(n) such that
2(BB") = n(n — 4) — 3.

(i) m = 2k. Let A be an n-square (0, 1)-matrix with ones in the follow-
ing positions:

(%27’—1)7 (1727')7 $=1,,k,
t=k+1,:---,2k — 1;

(n; 1)’ (n) 2)7 (n; n — 1), (’IL, n)’

and zeros elsewhere, i.e.,

11 00 00 00 00

00 11 00 00 00

00 00 00 11 00

A = 00 00 00 00 11
111 11 00 00 00

00 11 11 00 00

00 00 0O 11 11

1100 00 00 11|

Each of the top k rows is orthogonal to n — 3 rows, while each of

the bottom & rows of A is orthogonal to n — 5 rows. Hence 2(4A’) =
k(n — 3) + k(n — 5) = n(n — 4). Clearly all nonzero entries in AA4" are
equal to 2 or 4. We assert that A is fully indecomposable and thus A e Q(n).
Let @ be the n-square permutation matrix with ones in the following positions:

(2% — 1,7), (2, k+ 1), i=1,--,k

Then QA = I + P + B where B is a (0, 1)-matrix, and, by the Corollary to
Theorem 1, the matrix QA, and therefore A4, is fully indecomposable.
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(i) » =2k + 1. Let A be the (2k)-square (0, 1)-matrix described in
(1), and let

so that the only nonzero entries in the last row and in the last column of B
are in the (n — 1, n), (n, n — 2), (n, n — 1), and (n, n) positions. We
show that B is fully indecomposable. Let Z be an s X ¢ zero submatrix of B.
If Z has no entries in 4, it must be fully contained in the last row or in the
last column of B, and then s 4+ ¢ < n. If Z has entries in 4, then A contains
an (s — 1) X torans X (£ — 1) zero submatrix, and since 4 is a fully
indecomposable (n — 1)-square matrix,s +¢{ — 1 <n — 1,ie., s + t < n.
Hence B is fully indecomposable.

This can be also proved directly by a method similar to the one employed
in case (i). Clearly BB’ has no ones in it, and therefore B eQ(n). The
off-diagonal entries in the top left principal (n — 1)-square submatrix of BB’
are those of A4 which contains (n — 1)(n — 5) zeros. In addition to these,
BB’ contains n — 4 zeros in its last row and n — 4 zeros in its last column.
Therefore z2(BB') = n(n — 4) — 3.

TaEOREM 5. w(6) = 6, w(7) = 9.

Proof. By Theorem 4, w(6) = 6 and w(7) = 9. We show that the as-
sumptions w(6) > 6 and w(7) > 9 lead to contradictions. Suppose then
that there exists a matrix S ¢ 2(6) such that 2(SS’) = 14. Since, by Corol-
lary 2 to Theorem 2, no row of S8’ can have more than 3 zeros, at least two
rows of SS’ have exactly 3 zeros, and therefore at least two rows of S have
exactly 2 ones. There exist therefore permutation matrices P, @ such that

110 0 00
001 10 0
1 1]
PSQ =1 1£ ’
0 0] X
0 01

where X is a 4-square matrix whose first two columns are, with a suitable
choice for P and @, either

0

(a) or (b)

O = =

(=]
- = O O
- -0 O
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Note that the 4 zeros in the first two columns of X cannot all be in the bottom
two rows, for the last two rows of PSQ would then contain a 2 X 4 zero sub-
matrix. Now, SS is assumed to have at least 14 zeros. Therefore, by
Theorem 3, S must have at least 20 zeros, and the last two columns of X must
contain at least 4 zeros. If X is of the form (a), none of these 4 zeros can be
in the last row, and only the second row of X can have both its entries in the
last two columns equal to zero. But then exactly one of the last two entries
in the first row of X, i.e., the third row of PSQ, is zero, and the (3, 6) entry in
(PSQ)(PSQ)" is equal to 1. This contradicts the assumption that S e 2(6).

If X is of the form (b), then at least one of the last two entries in each row
of X must be nonzero. Since the last two columns of X must contain at least
4 zeros, exactly one of the last two entries in each row of X must be zero.
Moreover, these zeros, with a suitable choice for @, must be the (3, 5), (4, 5),
(5, 6), (6, 6) entries in PSQ; otherwise (PSQ)(PSQ)’ would contain entries
equal to 1. But then PSQ contains a 3-square zero submatrix and is there-
fore partly decomposable. Contradiction.

We now prove that w(7) = 9. Since, by Theorem 4, w(7) = 9, it suffices
to prove that T e Q(7) and 2(TT’) > 18 are contradictory. Suppose then
that there exists a matrix T ¢ Q(7) such that 2(TT’) = 20. We shall con-
sider three cases.

(i) TT has at least two rows with 4 zeros in each, i.e., T has at least two
rows with 5 zeros in each. There exist therefore permutation matrices P, @
such that

11 ; 00000
00111000
11 :
PTQ=|11 : ,
00 [ Y
0 0!
L0 0!
where for a suitable choice of P the first two columns of Y are either
00 00
11 00
(a) |1 1 or (b) |1 1
00 11
00 00

If (a) is the case, let W = Y + Ey; + Ey, where E;; is the matrix of ap-
propriate order with 1 in the (7, ) position and zeros elsewhere. Then W is
fully indecomposable. For if W were partly decomposable, then PT'Q, and
therefore T, would also be partly decomposable. Thus z2(WW') < 4. Now
let B = PTQ + Es + Es. Then 2(TT') = 2(BB’) + 2 as (PTQ)(PTQ)’
has zeros in the (2, 3) and (3, 2) positions, while the corresponding entries in
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BB’ are equal to 2, and, it is easily seen, all other zeros in (PTQ)(PTQ)’
and in BB’ match. But 2(BB') = 8 4+ 4 4+ 2(WW') £ 16, and therefore
2((PTQ)(PTQ)") = 2(TT') = 18. Contradiction.

Note that the same method could have been used to prove that z(SS’)
cannot exceed 12 if PSQ is of the form (a). We shall also use the same
technique in the proof of our main theorem.

If Y is of the form (b) we can use the method employed in the previous case
setting W = Y + Ey; + Epor Y + Ey + Es ,ete.  Alternatively we observe
that if Y is of this form, then we can choose two permutation matrices P and @
such that

’

1100000
0011000
1100011y

PTQ =111 00 1 1 y|,
001111y
001111y
0 0001 1y

where at least two of the entries marked y are equal to 1. But then
2(TT") = 2((PTQ)(PTQ)') = 14.

(ii) TT' has exactly one row with 4 zeros; the corresponding row of T
has 5 zeros. If T has another row with 5 zeros, then there exist permutation
matrices P and @ such that

1 1}0 0000
0011000
11
PTQ =|1 11 ,
0 0| Y
0 0|
0 0]
where the first two columns of Y are one of
00 00 1 1
1 1 0 1 1
(a) |1 11, () |1 1}, (e) {1 1}.
11 11 0 o
00 1 1 0 0

If Y is either of the form (a) or of the form (b), then we show that z(TT")
cannot exceed 18 as above in the case (1). If Y is of the form (c), then it is

fully indecomposable, for otherwise 7 itself would be partly decomposable.
Therefore 2(YY') < 4, and

#(TT') = 2((PTQ)(PTQ)') = 8 + 4 + 2(YY') < 16.
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Suppose now that all rows of 7' but one have less than 5 zeros each. Then
at least four of them must have 4 zeros. We can again find permutation
matrices P and @ such that

PTQ =

J

Clearly neither the third nor the fourth row of PTQ can have 4 zeros. For
if the first or the second row of Y had a single nonzero entry, then either one
entry of TT" would be equal to 1, or, if each row had a single nonzero entry
in the same column as the other, PT'Q would contain a 3 X 4 zero submatrix.
Thus each of the last three rows must have exactly three ones, at least two of
which must be in the first three columns of ¥. Observe that the last three
rows cannot be identical; otherwise they would contain a 3 X 4 zero sub-
matrix. Therefore at least one of the last two columns, say the last,
has exactly one nonzero entry in the last three rows. Now, neither the third
nor the fourth row of P7Q can have a nonzero entry in the last column, for
in that case TT" would contain an entry equal to 1. Therefore the last
column of PTQ has only one nonzero entry, and 7 is partly decomposable.
Contradiction.

(iii) TT' has no rows with 4 zeros. If T has a row with 5 zeros, then the
proof is similar to the proof of the case (ii). If no row of T has 5 zeros, then
at least six rows must have 4 zeros each. Now these rows must either be
orthogonal to each other or have an inner product equal to 2 or 3. Moreover
no three of them can be identical, for PTQ would then contain a 3 X 4 zero
submatrix. Let P and @ be permutation matrices such that

11 1;0 0 0:0
000111110
0 0 0! |
I O I A
10 0 0!
Ts 1o 0 ol
R

Now, neither T, nor T, can be a zero matrix; otherwise PTQ would contain
a 3 X 4 zero submatrix. But if T, and T’y have nonzero entries, say in the
third and in the fifth row of PTQ respectively, then the (3, 5) entry of
(PTQ)(PTQ)" is equal to 1. Contradiction.
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THEOREM 6.
w(n) = n(n — 4)/2 if n is even and n = 6,
w(n) = (n(n —4) —3)/2 ¢ynisoddandn = 7.

Proof. Let
f(n) = n(n — 4)/2 if » is even,

f(n) = (n(n — 4) — 3)/2 if nis odd.

Since, by Theorem 4, w(n) = f(n) forn = 6, it remains to prove that
w(n) > f(n) is impossible. We use induction on n. By Theorem 5,
w(6) = f(6) and w(7) = f(7). Suppose now that for some n > 7 there
exists a matrix 4 ¢ Q(n) such that 2(44") > 2f(n). Observe that if n is
even, then z(AA4") = n(n — 4) + 2, and A4’ must contain at least two rows
with n — 3 zeros in each. If n is odd, there is apparently a possibility of A4’
containing less than two such rows. We shall first assume that A4’ has at
least two rows with exactly n — 3 zeros and therefore that A has at least two
rows each with exactly two entries equal to 1, without assuming anything about
the parity of n. Let P and @ be permutation matrices such that

1 110 00 0
00,1 10 -+ 0.
1 1]
PAQ=|1 1] ,
0 0| X
|
|
0 0!

where the first two columns of X are either
s

R

00 00
1 1 00
1 1 11
(a) |0 O or (b) |1 1
00 00
00 0 0

If (a) isthecase,let Y = X + Eyy + Enand B = PAQ + Ep + Es. Then
Y is a fully indecomposable (n — 2)-square matrix and 2(YY") £ 2f(n — 2)
by the induction hypothesis. Also 2(44’) < 2(BB’) + 4 as (PAQ)(PAQ)’
has zeros in the (2, 3), (3, 2), and possibly in the (3, 5), (5, 3) positions,
while the corresponding entries BB’ are equal to 2; all other zeros in
(PAQ)(PAQ)" match those in BB". Now

2(BB') = 2(n — 3) + 2(n — 5) + 2(YY")
< 2f(n — 2) + 4n — 16.
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Therefore
2(44") £ 2f(n — 2) + 4n — 12.
If n is even,

2(44") £ (n —2)(n — 6) + 4n — 12

I

n(n — 4) = 2f(n),
and if » is odd,

2(44") = (n —2)(n — 6) — 3+ 4n — 12 = n(n — 4) — 3 = 2f(n).
Thus in both cases 2(44’) £ 2f(n), contradicting our assumption that
2(AA") > 2f(n).

If X is of the form (b), we assert that it can always be reduced, with a
suitable choice for P and @, to the form (a). Suppose that this cannot be
done and that A4 has exactly ¢t rows with n — 3 zero entries in each. Clearly
t cannot exceed n/3. We can assume therefore that the 1st, 4th ... |

(3t — 2)% rows of A4’ contain n — 3 zeros each. Then there exist permuta-
tion matrices P and @ such that PAQ has ones in the following positions:

(3 —2,% — 1), (3 —2,2),
(3 —1,2% — 1), (3 — 1, 20),

(32,2t — 1), (31, 27), 1=1,--+,¢
and all other entries in the first 2¢ columns are equal to 0. Note that the
(3¢ — 1)t and the (32)™ (¢ = 1, - - - , ¢) rows must have at least 4 ones each;

otherwise A4 could not be fully indecomposable, or AA” would have an entry
equal to 1. Thus the three rows of AA’, the (3¢ — 2)*, the (3¢ — 1)*, and
the (3¢)*, have between them at most (n — 3) + 2(n — 5) = 3n — 13
zeros. Therefore the first 3t rows of A4’ contain at most ¢(3n — 13) zeros,
and since z(AA") is assumed to be greater than n(n — 4) — 3, the remaining
n — 3t rows must contain at least
nn—4) —1—4tBn—13) = (n —3t)(n —4) +t—1

zeros. In this part of the proof we assume that ¢ = 2. Hence at least ¢ — 1
rows among the last » — 3t rows must have n — 3 zeros each. This contra-
dicts our assumption that A4’ has exactly ¢ such rows.

To conclude the proof we show that if A eQ(n), n is odd, greater than 7,
and 2(44") = n(n — 4) — 1, then AA’ must have at least two rows with
n — 3 zeros in each. Suppose that 44 has only one row with n — 3 zeros.
Let P and @ be permutation matrices such that

(1 1,00 --- ( 0.
11|
RIS
PAQ =10 oi
(:) Oi Ao
0 0
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Then, as above, each row of A; must have at least two entries equal to 1.
Therefore AA’ has at most (n — 3) + 2(n — 5) = 3n — 13 zeros in the
first three rows, and the remaining n — 3 rows must have at least
nin —4) — 1 — (3n — 13) = (n — 3)(n — 4) zeros. Thus, unless A4’
has another row with n — 3 zeros, the second and the third row of A4’ have
exactly n — 5 zeros each, and each of the last n — 3 rows has exactly n — 4
zeros. It follows that each of the last n — 3 rows of 4 has at most 3 ones in
it and a nonzero inner product with exactly three other rows. Since n = 9,
there must be at least two rows of A orthogonal to each of the first three
rows. Suppose that the last row is orthogonal to all but the last four rows.
Not all these rows can contain only 2 ones since this would imply that the last
four rows of A contain a 4 X (n — 2) zero submatrix. Let the last row
have 3 ones in the last three columns. Then at least two of the nonzero
entries in each of the other three rows must be confined to the last three
columns. The remaining nonzero entry, if any, may be in another column,
but the column must be the same for all three rows. In any case the last
four rows of A contain a 4 X (n — 4) zero submatrix.

We now show that the alternative that AA’ has no rows with n — 3 zeros
is also untenable. Suppose then that 2(44’) = n(n — 4) — 1 and no row of
AA’ contains more than n — 4 zeros. Since the number of zeros in AA’
clearly must be even, one row of AA’, say the first, contains n — 5 zeros, while
each of the remaining rows has exactly n — 4 zeros. But then the first row
of A has at most 4 ones and an inner product greater than 1 with four other
rows each of which contains at most 3 ones and has an inner product greater
than 1 with exactly three other rows. This is impossible unless A is partly
decomposable.

A matrix A is decomposable if there exists a permutation matrix P such that
PAP' is a subdirect sum; otherwise A is indecomposable.
Using the methods in [1] we can conclude with the following result:

TrEOREM 7. Let N(n) be the set of n-square indecomposable normal matrices
with distinct eigenvalues. Let 7(n) be the largest integer m for which there exists
an A € N(n) with m positions (z,7), 1 £ i < j £ n, such that (4*%)i; = 0 for
all positive integers k. Then

7(2) =73) =0, (4) =1 7(5) =2
and

(n) £ n(n — 4)/2 if n1s even and n =

v
&

7(n) £ (n(n —4) — 3)/2 ifnisoddandn

v
-

We omit the proof which is essentially contained in [1].
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