THE EQUIVALENCE OF TWO AREAS FOR NONPARAMETRIC
DISCONTINUOUS SURFACES

BY
J. H. MicHAEL!

1. Introduction

Casper Goffman has made an extensive study of the area of a discontinuous
nonparametric surface. He had defined this area by starting with a class of
surfaces for which an area is already known, choosing a suitable metric for the
class, showing that the area is lower semicontinuous on this class and satisfies
a requirement that he calls property A, and then extending the area to the
completion of the class by the Fréchet process. By taking different classes
and different metrics he obtains various ‘“‘areas’, and he has shown that most
of these areas are the same.

In [3] he considers several of these areas, one of which is the following. Let
S be the space of polyhedral functions on the unit square [0, 1] X [0, 1],
metrized by the £, metric

o0, 0) = [ 106, 9) = ata, )| do dy

and with elementary area functional E. The completion T of S consists of
all equivalence classes of summable functions, and the Fréchet process extends
E to a functional ® on 7. Thus

®(f) = inf [lim inf,., E(p.)],

where the infimum is taken over all sequences {p,} of polyhedral functions
such that 6(f, p) — 0asr — ». He carries out an exhaustive investigation
of the functional ® and shows that it forms a very satisfactory area.

In [3] Goffman also considers the following area. Let C be the class of
continuous functions on I with metric

d(f, 9)

defined as the measure of the set where f > g. He shows that the Lebesgue
area functional 4 is lower semicontinuous on C and has property A, and hence
it extends by the Fréchet process to a functional ¥ on the completion of C,
which by Lusin’s theorem is the set of equivalence classes of measurable
functions.

Tt has been conjectured by Goffman that

(1) () = ¥(f)
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for every summable f, and it is the purpose of this paper to prove this con-
jecture. In fact, we prove a little more than this. We take the subclass K
of C, consisting of all Lipschitz functions, let K; be the completion of K with
respect to d, show that K; contains all equivalence classes of summable func-
tions with finite ® area, extend A = FE to a functional A on K; by the Fréchet
process, and then prove

(2) A(f) = 2(f)

for every feK:. We prove the formulas (1) and (2) for functions on the
unit cube in n-dimensional space.
The proof of the above formulas makes important use of some of the results
of Fleming [2].
2. Preliminaries

We will denote by & the class of all real-valued functions f on R" such
that
(1) f vanishes outside a compact subset of R";
(ii) fis summable on R"; and
(iii) for each %, the 7t partial derivative of f, considered in the sense of the
Schwartz distribution theory, is a bounded measure p; .
D denotes the set of all infinitely differentiable functions on R" with compact
support.
Let 5° be the set of all transformations ¥ = (1, - - -, ¥&) of R* into R* such
that y; e D for< =1, --- ; k. Define

[ = supeean [| $(2) .

Following Fleming [2] we let, for each Borel subset E of R”, I(f, E) be the
total variation on E of the vector-valued measure (u1, ---, un); ie.,

I(f, B) = inf [sup > i wi(¥s)),
where the infimum is taken over all open sets U containing E, and the su-
premum is taken over all ¢ € 3" such that || ¢ || £ 1,spty S U.
For a fixed f, I(f, E) is thus a completely additive, nonnegative bounded
Borel measure.
When E = R", we write I(f) for I(f,R").
We also associate with f € B, the vector-valued measure

v = (m)NI’/J’?, "'7:“'%)7

where m denotes the Radon measure corresponding to ordinary n-dimensional
Lebesgue measure. For each Borel set F of R, we let L(f, E) be the total
variation of » on E; i.e.,

L(f, B) = infy [sup {m(¥) + 2215 pia(¥)}l,

where the infimum is taken over all open sets containing E, and the supremum
is taken over all ¥ € 3" such that || ¢ || < 1 and spty S U.
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For a fixed f, L(f, E) is a completely additive, nonnegative, Borel measure
that is finite on every bounded E.

£ denotes the set of all real-valued functions that are summable on R".

For each f e £; and each positive integer r, we shall use the symbol 4,(f) to
denote the well-known integral mean

s@ = [ e

n

®, I, L, and g have the following properties:
2.1. ® 1is a vector space over the real numbers.
2.2 I(f +¢,B) = I(f, B) + I(g, B), and
I(of, B) = |a|I({, B),
where o is a real number, and B a Borel set.

2.3. If U is a fixed open set of R”, then I(f, U) and L(f, U) are lower semi-
continuous on & with respect to the £ topology.

24. I(f,B) = L(f, B) for every f ¢ ® and every Borel set B.
2.5. Iff e &£, then {9,(f)} (x) is continuous with respect to x.

2.6. If f is continuous, then 9,(f) has continuous first-order partial deriva-
tives.

2.7. If f € £ and is bounded, then 9.(f) is Lipschitz.
2.8. If f is Lipschilz, then

s =, ("’—f)

ox;
almost everywhere.

2.9. Iff e Ly, then 9.(f) approaches f almost everywhere.
2.10. If f is Lapschitz with compact support, then
Iif — 9.(/)] = 0 as r— ©,

2.11. If f s continuous with compact support, then 9,(f) approaches f uni-
formly on R".

2.12. If f, g ¢ ® and B is a Borel set, then
L(f+ ¢, B) = L(f, B) + 1(g, B).
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2.13. If f vs Lipschitz with compact support and E s a Borel set, then

(i) 16,m = [ [; (%)jmdx, and
(i) L, E) = fE[l > (ﬁiﬂw da.

im1 \0x;
2.14. If f e ®, then 9,(f) € B, and for each compact set B of B"
lim supr.. 1{9.(f), B} = I(f, B), and
lim supr.. L{9:(f), B} = L(f, B).
2.15. Iffe®, N = 0 and we define,
fy(z) = f(z) o —N =f(x) =N,
= —N 4 f(z) < —N,

=N if f(x) > N,
then fy € ®, and

I(fN:B) éI(faB); L(fNaB) éL(fyB)
for each Borel set B of R".

2.16 THEOREM. If hi, he € ® and are bounded, he is Lipschitz, B is a
bounded Borel set with finite perimeter, | hi(x) — ho(z) | = K for all x ¢ R*, and
Xz 8 the characteristic function of B, then (1 — xz)hy + xzhe € B, and

L{(1 — xs)h + xshe, B} £ L(h, E) + I(he, BnE) + K-P(B)
for every Borel set E (where P(B) denotes the perimeter of B).

Proof. (i) Suppose to begin with that h; is also Lipschitz and F is open.
Using integral means we can construct a sequence {x} of functions such that

(A) each x“ has continuous first-order partial derivatives and
0= x"(z) £ 1forallzeR";

(B) there is a compact set containing the support of every x;

(C) % — x» almost everywhere;

(D) lim sup f I:Z (M>2]1/2 dz £ P(B).

n
row i=1 \ d0x;

It follows from (A), (B), and (C) that x" — xz in the £ topology, and
hence since h; and ks are bounded,

(1 = x4 xPhs — (1 = x5)hs + x5 b2
in the £; topology; hence by 2.3,
L{(1 — xz)h1 4+ x5 he, I}
< lim infoe L{(1 — x™)hy + xhs, E},
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which by 2.13 (ii),
(r) 2771/2
= lim mff [1 + Z {(1 x") g%l + x ah? — (b — hl)}:l da

7->00 axg

. ' - ahl 27)1/2
éllr:iinf[ﬁ[1+;(l —x") (3_{)] o
. 21 n (r)\ 27]1/2
+Lx(r)[;(g%>j| dx_l_flhz_hll[;(a{;;')] d:c]
n 2771/2
< lim inf [L(hl; E) + f " [Z (ah?>:| e

n ax(r) 2:'1/2 ]
+ K . [§<6w1> dx |,
and by (D)

< lim inf I:L(hl, m) + f g [Z (%ﬂw dz + KP(B)].

>0 =1 axi

But since x” — xz in the £, topology, we have

n 2771/2 n 2711/2
limf x" [Z <6h2):| dx = f Xz I:Z <g—%2>:| dx
r>0 YE =1 E =1 7,
_ n th Z771/2 B
ol [; (5;” de = I(hs, Bn E),

so that the proof is complete in this case.

(ii) hq is arbitrary, B is arbitrary, and F is open. Take ¢ >0 orN > 0
according as L{(1 — xz)h1 + xs he , B} is finite or infinite. Let & be a com-
pact subset of F such that

L{(1 — xs)hi + xs ho, Int (E1)} > L{(1 — xp)h1 + xphe, E} — ¢ or > N.

Put 2{” = I,(hs). Then

(E) each h{” is Lipschitz and | h{”(z) — he(z) | £ K + &, for all z e R",
where 6, — 0asr — o}

(F) there is a compact set containing the support of every h{” and the
k{™’s are uniformly bounded;

(G) h{” — hy almost everywhere.
By (E), (F), and (G)

(1 — xs)h” + xphe — (1 — x5)hy + x5 hs

in the £, topology, so that by 2.3,
L{(1 — xz)h1 + x5 he, Int (E1)}

< lim infre L{(1 — xz)h" + x5 hs, Int (E1)},
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which by (i)
< lim inf,.,, [L{A°, Int (Ey)} + Ithe, BalInt (E)}] + K-P(B)

= L(hi, Ey) + I(hs, BnE;) + K-P(B) by 2.14.
Thus

L{(1 — xp)h + xp ha , BB} = L(hy, E) + I(h2, Bn E) + K-P(B).

(iii) h1, ke, B, and E are arbitrary. Let {Uy}, {V} be decreasing se-
quences of open sets such that Bn K C U,, E ~ B & V, for all s, and

L(h,BnE) = limg,, L(h, Us),
L(hl 5 E ~ B) = lims—wo L(hl ) Vs)’
I(hy, Bn E) = limg, I(he, Us),

I(hy, E ~ B) = limg,o I(he, V).
Then

L{(1 — xe) + xz he , E}
< limg,o L{(1 — x5)h1t 4+ x5 he, Usu Vi,
which by (i)
=< lime,oo [L(hy, Usu V) + I(he, Bn (Usu V,))] + K-P(B)
< L(w,E) + I(hy, Bn E) + limesw I(hs, B V) 4+ K-P(B).

Since Bn V, & V, ~ (E ~ B), it follows that lim,,, I(he , Bn V) = 0, and
the proof is complete.

2.17 THEOREM. Iff e ® and is bounded and B s a Borel set with bounded
frontier and finite perimeter, then x5 f € B.

Proof. Let J be a closed interval such that f vanishes outside J and
Fr(B) € Int(J). Put B, = J n (~B). Then B; is bounded, and
P(B;) < . Puth = f, he = 0, whence by 2.16,

for every Borel set . Since (1 — x5,)-f = x»-f, then x5-f ¢ B.

3. The main approximation theorems

3.1 THEOREM. Iffe® and ¢ > 0, then there exists a Lipschitz function g on
R" with compact support and agreeing with f except on a set with measure less
than .

This theorem can be obtained from Goffman [3, Theorem 6], Saks [4,
Theorem (12.2), p. 300], and Federer [1, 5.2]. However, it can also be proved
directly, in the following way. The basic idea for the first part of this proof
has been obtained from Federer [1, 5.2].
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Proof of 3.1. It follows from 2.15 that we may assume Jf to be bounded.
Let 7 and [ satistfy conditions (1), (ii), and (iii) of Lemma 2 (appearing below)
with ¢ = 27" Let I > 0 be such that if

G = {z;l(x) = L},
then the set R™ ~ @ is bounded and has measure less than €. Then
(1) |f (@) —fy) | £ 20'°L ||z — y ||

for all z, y € (, because, if we let J, be the largest open cube with centre at
but not containing y, let J, be the largest open cube with centre at i but not
containing z, and let p be the edge-length of J,, J,, then J, n J, contains
an open cube with edge-length 4p; hence

(2) m(Jon J)/m(T.) = 1/2m
By Lemma 2 (iii), the set
Afw, Jo, U(@)} v Aly, Jy, ()}
has measure < 27"™m(J,); hence by (2), the sets
Jo~ Az, Jo, W)Y, Jy~ Aly, Iy, Uy))

have a common point 2. Thus

[f(x) = f() | = Ua) |le — 2] = L|lv — 2], and
[f(y) =) | = Ly — 2],
so that
[fx) —Jy) | £ Lile — 2l + ly — 2]}
s Lz —yl.

Since, by (1), f is Lipschitz on @, there exists a Lipschitz function ¢ on R"
with compact support and agreeing with f on G.

Lemma 1. Let f e ® and be bounded. There exists a subset W of R™ such
that

(1) R" ~ W has zero measure, and

(ii)  for every & e W, every I, > 0, and every open cube J with centre at £, the
set

A(g, T, L) = {y;yed and [f(y) —f(E) | > Ly — £}
has measure = (1/L)I(f, J).

Proof. (A) Suppose first of all that f is Lipschitz. In this case we can
prove the lemma with W = R".

In the integral
. n of 2-1/2
1.0 = [[S(Z)]
s Li=1 \0%;
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make the substitution
21 = & 4+ rcos by,
X9 = £2 + rsin0100802,

23 = & -+ rsin 6y sin 6, cos 03,

Tneg = §ng + rsinfy8in @y - - - sin 6,5 cos 0,1 ,
Tn = &, + rsin @y sin 6y - - - €in 0,_2 sin 6,4

whenn > 1,and 2; = & + r whenn = 1. Then

(1) 10, 7) = fo /o U:Zi::z [é (é?—iﬂ“ P d,]

'¢(61: ] on—l) del s dan—-l .
But since

of . _sof o
6—rdr—2—dx1,

i=1 0%

Y B TTE T

a‘—f < [ a_f 2]1/2
or = i=1 695@ ’
so that by (1)
] 7r /‘7" Y0y 0p_1) 1
I(f,. é[ [f "‘d]
2) (f; 1) ) A I ™ dr
'¢(61 PR On—l) d01 M dOn_l .

Now let p(6;, - -+, 6.—;) denote the one-dimensional measure of the set
B(61, -+, On1)
={r—¢y=r=y¢ and |f(r,0, -, 0.) — f(§) | > L1},
and let (61, -+, 0._1), 8(61, -+, 0,—y1) denote the infimum and supremum
ofall7 e B(61, -+, 6a3). Then 8 — a = p and

2
(6—a)~L<f_¢\g]—;

we have

|

3

of
or

dr;

hence by (2)

T T "
I(f,J) = f f f L-pr"'¢drdd - do,_,
0 0 —y

= L-(measure of A(§, J, L)).
(B) When f is arbitrary, put

fm = 9r(f)~
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By 2.7, each f is Lipschitz. By 2.9, f” — f almost everywhere, and hence
f* — fin the £, topology. By 2.3 and 2.14
(3) limye I(F, J) = 1(f, J)

for all open cubes J, not in a countable collection g.
Let W be the set where f — f.  Let £ ¢ W and let J be an open cube with
centre at £ but not in §. Put

A, ={y,yed and [fO®y) —f7) | > Ly — £}

AnW C liminf,,, 4, H

Then

hence
m(A) = liminf,., m(4,)

< limpw (1/D)I(F7, J) by (A)
= (/L)I({, J) by (3).

When J € g, we can show that m(4) = (1/L)I(f, J), by approximating J
with an open cube J; & J and ¢ g.

Lemma 2. If f € ® and is bounded and ¢ > 0, then there exist a subset Z of
R" and a positive, finite-valued, measurable function 1 on Z such that
(1) I(z) = 1 outside a bounded set;
(ii) R" ~ Z has zero measure; and
(iii)  for every x € Z and every open cube J with centre at x, the set

Alz, J, l(=)}
has measure < e-m(J). (A is defined in Lemma 1.)

Proof. Since
w(B) = I(f, B)

is a bounded, nonnegative, completely additive, Borel measure, there exists a
subset Y of R" such that m(R" ~ Y) = Oand, forallz ¢ Y,

(4) limyaos I{f, J (2, n)}/miJ (2, n)}

exists, where J(z, 7) is the open cube with centre at « and edge-length 7.
Let W be a subset of R" with the properties (i) and (ii) of Lemma 1. Put

Z=YnW.
Then R* ~ Z has zero measure. Define
Uz) = 1+ (1/e) suppo I{f, J (2, m)}/m{J (z, n)}
= 1+ (1/¢) sup, I{f, J (=, m)}/m{J (z, n)},

where in the second case the supremum is taken over a countable dense subset
D of the positive reals, which does not intersect the countable set E consisting

(5)
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of all » > 0 for which there is an open cube J with edge-length 24 and
I{f, Fr (J)} > 0. Since there exists a sequence f of Lipschitz functions such

that

lim,.., {7, J(z, )} = I{f, J (2, 1)} for all 4 in D,

and since I{f”, J(x, 5)} is continuous with respect to x, it follows that
I{f, J(z, n)} is measurable with respect to z, and hence I(x) is measurable.

By Lemma 1, we have for all z ¢ Z,

m{d{z, J(z, 7), l(z)}] = (L/U(2)I{f, J (=, )}
(1/i(@)) efl(z) — Bm{J (z, n)}
e-m{J (z, 1)}.

3.2 TarorEM. Let f e B and be bounded and Borel measurable.
There exists a bounded Borel set B such that
(i) P(B) < =

IIA

I\

by (5)

Let ¢ > 0.

(ii) B is contained in the set F = {x; f(z) # 0} and m(F ~ B) < ¢;

(i) {1 — xz)-fl < e and
(iv)  for every Borel set G with P(G) < 1 + P(B), one has
I(xo-nf) < e

Proof. For each positive integer r, let

Fo = {a;[f(z) | > 1/r}.
Then
limy.o F, = F,

and hence there exists a positive integer r; such that
(1) m(F ~F,) < e

Let
B = {z;f(z) > 4,

By = {z; =f(z) > 2} = {z; f(z) < —4}.
By the co-area formula [2, 3.3]

1) = [ P a and 1= = [ PG a5

hence
[ (P + P(ED) de < .
0
We can therefore choose a 8 such that 0 < § < min (1/r, £/6),

b
fo (P(EY) 4+ P(ED)dz < ¢/12, and

(2) f_i P(EY) dz < ¢/3.
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There now exists a z; such that 0 < 2, £ 8§ and

S[P(EZ,) + P(EZ)] < &/12;
hence
(3) 8P(ET u E7,) < e/12.
Put
B=ELuE,.

Then B is a bounded Borel set with finite perimeter. Also B C F and
F,, € B;hence by (1), m(F ~ B) < e.

It remains to show that (iii) and (iv) are true. To verify (iv),let G be a
Borel set such that P(G) < 1 4+ P(B). Put

R, = {x§ Xa-s'f > z}
By 2.17, xe-5'f € B, and hence by the co-area formula

I(xg-n"f) = le P(R,) de.

—21

But
R, = {z;f(z) > 2} n (G~ B) or {z;f(z) > 2} v{~(G~ B)}
according as z = 0 or < 0, and hence
P(R.) £ P(EY) + P(B) + P(@)

< P(E}) + 2P(B) + 1,
so that

b
Ixowsd) < [ PUED) @2 + 9P(B) + 2

<e&e/3+¢/3+¢/3=c¢ by (2) and (3).
One obtains (iii) from (iv) by putting G = R".

3.3 TarorEM. Let f e ® and be bounded, and let g be a Lipschitz function on
R™ with compact support. Let ¢ > 0. There exists a bounded open set G such
that

(i) Fr (@) has zero measure;
(ii) the set G A {z; f(x) = g(x)} has measure less than & (where A de-
notes symmetric difference); and

(i) Lig + xe- (f — g), B} < L(f, E) + ¢ for every Borel set E.

Proof. Since f is equal almost everywhere to a Borel measurable function,
we can assume that f itself is Borel measurable. By 3.2, there exists a bounded
Borel set B such that

(A) P(B) < =;

(B) B is contained in the set ' = {x; f(z) — g(z) = 0} and

m(F ~ B) < ¢/2,;
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(C) KA —xs)(f—g)} <é&/4; and
(D) for every Borel set H with P(H) < 1 4+ P(B), one has
I(xg-s(f— g)) < €/8.

Since ¢ is Lipschitz, there exists a constant M > 0 and such that for every
Borel set E of R

(1) I(g, E) = M-m(E).
Let K > 0 be a constant such that
(2) | f(z) —gx)| = K

for all x e R".
By [2, 11.3], there exists a bounded open set G such that
(E) Fr (G) has zero measure;
(F) m(G A B) < min (¢/4M, ¢/2); and
(G) P(G A B) < min (¢/4K, 1).
It follows from 2.16 that for every Borel set F,

L{(1 = xeas) -f + xoan'9, B}
S L(f,E)+ 1I(g,(GAB)nE) 4+ K-P(G A B),
so that by (1), (F), and (G)
(3) L{(1 — xop)f + Xonn'9, B} = L(f, E) + &/2.
But
9+ xe(f — ) — [(1 = xoan) S + xansg)]
(4) = (=14 x¢ + xann) (f— g)
= (=14 xz + 2xe-8) - (f — ¢).

However since Bu G = Bu (G A B), it follows that

P(Bu(@) £ P(B) + P(G A B),
so that by (G), P(Bu @) < 1+ P(B);hence by (D)

(5) I{xo-s-(f — 9)} < &/8.
By (4), (5), and (C)
(6) Ilg 4+ xe- (f — 9) — {(1 = xean) " f + xean-g}] < &/2.

It now follows from (3), (6), and 2.12 that

Lig + xo(f — 9), B} < L(}, E) + «.

3.4 TuroreEm. If fe®, B is a compact set, and ¢ > 0, then there exists a
Lipschitz function g on R™ with compact support and such that
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(1) miz; f(z) # g(2)} <& and
(i) L(g, B) = L(f, B) + «.

Proof. (a) Assume to begin with that f is bounded. By 3.1, there exists
a Lipschitz function g; on R" with compact support and such that
miz; f(x) # gi(x)} < e/4.

By 3.3, there exists a bounded open set G such that

(A) Fr (@) has zero measure;

(B) theset @ A {z;f(x) # ¢gi(x)} has measure less than ¢/4; and

(C) Ligr + xe(f — @), B} = L(f, B) + &/2.
Then m(G) < % €. Choose a positive integer r, such that for all »r = r;, the
set, where 9.{x¢* (f — ¢1)} is nonzero has measure less than {e.

Now by 2.14

Ligy + xo(f — ¢1), B}

= lim Supr.w L[9,(g1) + 9e{xe (f — g1)}, Bl,
and by 2.12

v

lim suprow [Llgs 4 9e{xa: (f — g0)}, Bl — I{gn — 9.(g1)}],
which by 2.10

= lim sups« Llgi + 9:{xe- (f — g1)}, Bl

Hence we can choose a positive integer r. = r; and such that if we put

g =g+ Inixe (I — g1},
we have

L(g, B) = L{gi + xa* (f — g1), Bl + ¢/2,
so that by (C), L(g, B) = L(f, B) + ¢. Also
miz; f(x) # g(x)} < ¢,

and it follows from 2.7 that ¢ is Lipschitz.
(b) Suppose now that f is arbitrary. Choose a positive number N such
that if we define
Ia(x) = f(z) if [f(x)] =N,
N if f(®) >N,
= —-N if f(z) < —N,

we have

(1) miz; f(x) # fx(x)} < &/2.

By (a) there exists a Lipschitz function g on R" with compact support and
such that

(D) miz; frvlx) = g(a)} < €/2; and

(B) L(g,B) = L(Jv, B) + ¢
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By (E) and 2.15,
L(g, B) = L(f, B) + ¢,
and by (1) and (D),

miz; [(x) # g(x)} < e
4. The equality of the three areas

Let € denote the unit cube in R”. Associated with each summable function
Jon Q is the Goffman area ®(f), which we discussed in the introduction and
which is given by

(1) ®(f) = inf [lim inf,., £ ()],
where the infimum is taken over all sequences {f"} of polyhedral functions on

@ that converge to f in the £, topology, and where £ denotes elementary area.
Also, there is associated with each measurable f, the Goffman area

(2) V(f) = inf [lim inf,., A (g")],

where this time the infimum is taken over all sequences {¢g”} of continuous
functions on @, converging to f with respect to the metric

d(g(T),f) — m{x;x eQ and g(r)<$) 7 f(x>}

Now let K; denote the class of all equivalence classes of those functions
1 on @ such that for every ¢ > 0 there exists a Lipschitz function ¢ on @ with
d(g, /) < e. TFor each f e K; we can define an area

(3) A(f) = inf [lim inf,.., A(¢")] = inf [lim inf,.., B(g")],

where the infimum is taken over all sequences {¢} of Lipschitz functions such
that d(¢g"”, f) = 0asr — .
We are going to prove
(1) for every summable f on @

®(f) = ¥(/),
(i1) if fis summable and ®(f) < oo, then f e K;, and
(iii) for every summable f e K;
A(f) = ().
Because we are going to prove (i), (ii), and (iii), it is not necessary for us to
verify that A is an extension of the Lebesgue area functional.
Tvidently
4.1. ®(f) = A(f) for every [ e K, .
4.2 Tarorem. ®(f) < V(f) for cvery summable f.

Proof. We can assume V(f) to be finite. Take a sequence {f ™ of con-
tinuous functions such that

(H) AT =2 ()
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as r — « and the set
{a; f7(x) # f2)}

has measure less than 27".  Tor each r we can now choose a polyhedral func-
tion ¢ on Q such that

(2) Supsee | /7 (2) — ¢ (x) | < 1/r, and
(3) | A7) = B(g™) | < 1r.
IFor each positive integer s define
9.7 (@) = g7(x) i [g7() | S s
=3 if ¢"@@) >,

= —s if ¢") < -
and similarly define f°, f,. Now f” — f, almost everywhere as r — =, be-
cause for each r; the set
Q ~ {z; f(x) = fux) forall r=ry)

has measure less than 2,27 = 277" By bounded convergence
¢ _ f, in the £, topology. Also f, — f in the £, topology. Hence there
exists a sequence of positive integers {rj — < and such that /" — fin the
£; topology. Then

g(?‘s) — f
in the £ topology. But ¢ is polyhedral, and

B(gi) < E(g");
hence
lim inf,,., £(g{)

lim inf,.. H(g"")
v(f) by (1) and (3).

4.3 TuroreMm. If f 1s summable and ®(f) is finite, then the function f de-
fined by

®(f)

A 1A

IIA

Sulx) = flx) o weQ,
=0 if weQ,
belongs to the class ®.

Proof. (i) Suppose first of all that fis Lipschitz on Q. Take a ¢ € 3" such
that || ¢ || = 1. By Fubini’s theorem,

_ .Zf (@) 2% qe
i=1 YR

6:Di

n 1
= - Zl fQ, [/0 f(x) 3¢z:dxi:| dxy -+ driq dxgyy -+ - dx,

ax;
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(where @’ denotes the unit cube in R”™") and, integrating by parts,

-3 [ Aweo |

‘af
0

I

; dx; }dxl e dri oy deiy - da,

(1) < ; fQ [(—1)“+‘|f<x> |]”=1 day - daiy iy - - do,

BT

n(t) = f(xly e ’xi—lyt; Tig1ly * " ,.TL'").
Then there exists a point u € [0, 1] such that

[ 2w de = (),

Put

and since
! 7 it ’
| (1) — n(u) | =’f 7 (1) dt‘ _S_j |7 () | dt,
and similarly

L nu) — n(0) | < /0 L) | dt,
it follows that

ln(l)l+ln(0)l§2f0 ln(t)ldt+f0 Lo (0) | de.

Therefore by (1) and Ifubini’s theorem,

-2 [ ntw a
=2 [ i@ jae+ 3 [ | X

o [[EET
Hence

@ a1+ l)/[ ()] e

s0 that f; € G.
(ii) fis arbitrary. Let { 791 be a sequence of polyhedral functions con-
verging £; to f and such that

(r)\ 2771/2
lijnL[] + Z("f )] de = (1),

J(@) = fP@) if 2eq,
= 0 if aeQ.

Le t
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Then f{” — f, in the £, topology, and hence by 2.3,
I(f1) £ lim inf,.. I(f7)

A

on fQ /(@) | dz + (n + Da() by (2).

Thus I(fi) < «, so that fi e ®.
4.4 TuvoreM. If fis summable and ®(f) < =, then f ¢ K, and

A(f) = o(f).
Proof. Define
filz) = f(z) if zeQ,
=0 if 2¢Q.

By 4.3, fi¢®.
Let {f™} be a sequence of polyhedral functions on Q that converge £, to f
and are such that

(1) o(f) = lime. B(f7).

Define
f(x) = f7x) if weQ,

=0 if 2¢@Q.

It follows from 2.9 and 2.14 that we can choose for each positive integer r a
positive integer s, such that

(2) [ 16,068 = 11 @ < 1r, ana
Lig,,(fi”), Int (Q)} < L(fi”, Q) + 1/r;

hence

(3) Lig.,(fi"), Int (Q)} < E(f") + 1/r.

By (2), 9,,(fi”) — f1in the £; topology, so that by 2.3,
Lifi, Int (Q)} < lim inf L{4,,(f”), Int (Q)}
< lim inf,.., E(f*) by (3);
hence by (1)
Lify, Int (@)} = &(f).

The theorem now follows immediately from 4.5.

4.5 LEMMA. Letfe® and € > 0. There exists a Lipschitz function g on Q
such that the set {x; x e Q and f(x) # g(x)} has measure less than ¢ and
E(g) < L{f, Int (@)} + &

Proof. (i) Suppose first that | f(z) | < K forallz e R*. Let

a = (%)%y”"%))
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and for each ¢ € [0, 3], put

Q.= {2t(x — a) + a; v Q).

Let D be the set of all ¢ € [0, 3] for which L{f, T'r (Q;)} = 0. The complement
of D in [0, 1] will be countable. Let t, € D be such that ¢, > 0 and

(1) m(Q ~ Q,) < %&, and
(2)  L{f, Tt (Q) ~ Qu} <n (%+1) (g;owrg) ‘.

Tet e Dbesuch thatty < &y < 3and % — 6 > 6 — & .
By 3.4, there exists for each r a Lipschitz function ¢ on R™ with compact
support and such that

miz; f(z) # ¢ ()} < 1/r, and
(3) ]J(g(r), Qh) < L(fa Qh) + ]/T

We can assume that | ¢” (2) | < K for all z and the ¢’s have uniformly
bounded supports. Then ¢ — fin the £, topology, so that by 2.3,

lim inf,., L(¢", Qi) = L(f, Q:,), and
lim inf,.., L(g", Qi) = L(f, Q).
But by (3)

lim sup,.. L(g”, Q) £ L(f, Qu),
so that

lim sup L(g”, Q,, ~ Qi) = L(f, Qy, ~ Qu,)-

Hence one can choose a large r, put & = ¢, and obtain

(4) miz; f() = h(z)} < 3
(5) L(h, Q) < L(J, Q) + 3e, and
(6) Ly Qo ~ Qu) < - (ﬁ‘ 1> (gt” + s) .

Tror each z € Q@ ~ @, define 6(x) by
x el'r {Qg(w)}.
Then
|0(x) —0(") | = [|e —a'|
forallz, 2’ e@Q ~ Q, . Forxe@Q ~ Q , define
[ e —w) h—h] B
v = [ S T e e
Then p maps Q@ ~ Q;, onto @, ~ Q¢ . Also

—1 bt — %) P —t _
p(w—B@w—m+m—dw a) + a.
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Then

1) Iot) = o) | = (Y4 1) e = 2]
forall z, 2’ e Q@ ~ @, , and

(8) o' () —p W) = (ﬁ” + 5) ly — |

for all y, ¥’ € @, ~ @, . Define
g(x) = h(x) if zeQy,
Mpx)} if z2eQ~ Q.
Then ¢ is Lipschitz on @, and by (1) and (4), the set
fe;zeQ and fz) # g(2)}

has measure less than ¢.  For almost all z ¢ Q@ ~ @Q,, , one has

ﬁ: <6ch> i [Zn: <ayj)y—p<z) ?321]
S E )]

" < 1tO ) Jj=1 éyj y=p(x)
S0 tllat) b.y (] ))

n ag 2771/2
‘/Q~Qto [1 + ; (a—x’;> ] dx
)L, L2 @) ] e
" < 4:t0 '/(;~Q¢0 + JZ=1 6.7/1 y=p(x) d

and by (8),

IIA

A

II/\

_ }ﬁ} (_\_/f ) ‘: n < >z:|1/z
(4150 + 1> 2t + 3 j;h,w)zo b i=1 \9Y; dy

which by (6), < ¢/2. Then
E(g) < L(h, Q) + ¢/2 £ L(h, Q) + ¢/2,

and by (5), E(g) < L{f, Int (Q)} + ¢
(il) When f is unbounded, the lemma follows from (i) and 2.15.
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