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1. Introduction

Casper Goffman hs made an extensive study of the rea of a discontinuous
nonparametrie surface. He had defined this area by starting with a class of
surfaces for which an area is already known, choosing a suitable metric for the
class, showing that the area is lower semieontinuous on this class and satisfies
a requirement that he calls property A, and then extending the area to the
completion of the class by the Frehet process. By taking different classes
and different metrics he obtains various "areas", and he has shown that most
of these areas are the same.

In [3] he considers several of these areas, one of which is the following. Let
S be the space of polyhedral functions on the unit square [0, 1] [0, 1],
metrized by the metric

(P’ q) JJi P(X’ y) q(x, Y) dx dy

and with elementary area functional E. The completion T of S consists of
all equivalence classes of summable functions, and the Frchet process extends
E to a functional on T. Thus

(f) inf [lim infr E(pr)],

where the infimum is taken over all sequences Pr} of polyhedral functions
such that (f, p) -- 0 as r --+ . He carries out an exhaustive investigation
of the functional q) and shows that it forms a very satisfactory area.

In [3] Goffman also considers the following area. Let C be the class of
continuous functions on I with metric

d(f, g)

defined as the measure of the set where f g. He shows that the Lebesgue
area functional A is lower semicontinuous on C and has property A, and hence
it extends by the Frchet process to a functional ,I, on the completion of C,
which by Lusin’s theorem is the set of equivalence classes of measurable
functions.

It has been coniectured by Goffman that

1 (f) ,I, (f)

Received September 29, 1961; received in revised form February 20, 1962.
This research was supported by the National Science Foundation of the U. S. A.

while the author was at Brown University.

59



60 j.H. MICHAEL

for every summable f, and t is the purpose of this paper to prove this con-
iecture. In fact, we prove a little more than this. We take the subclass K
of C, consisting of all Lipschitz functions, let K1 be the completion of K with
respect to d, show that K1 contains all equivalence classes of summable func-
tions with finite area, extend A E to a functional A on K by the Frgchet

process, and then prove

(2) A(f) P(f)

for every f K. We prove the formulas (1) and (2) for functions on the
unit cube in n-dimensional space.
The proof of the above formulas makes important use of some of the results

of Fleming [2].
2. Preliminaries

We will denote by the class of all real-valued functions f on R such
that

(i) f vanishes outside a compact subset of Rn;
(ii) f is summable on R; and
(iii) for each i, the ih partial derivative of f, considered in the sense of the

Schwartz distribution theory, is a bounded measure .
) denotes the set of all infinitely differentiable functions on R with compact

support.
Let 3 be the set of all transformations (, k) of R into Rk such

thatie)fori= 1,..-,/. Define

Following Fleming [2] we let, for each Borel subset E of R, I(f, E) be the
total variation on E of the vector-valued measure (t, ); i.e.,

I(f, E) inf [sup =1 t()],

where the infimum is taken over all open sets U containing E, and the su-
premum is taken over all e 5 such that --< 1, spt b

___
U.

For a fixed f, I(f, E) is thus a completely additive, nonnegative bounded
Borel measure.
When E R, we write I (f) for I (f, R).
We also associate with f e , the vector-valued measure

where m denotes the Radon measure corresponding to ordinary n-dimensional
Lebesgue measure. For each Borel set E of R", we let L(f, E) be the total
variation of , on E; i.e.,

L(f, E) inf [sup Ira(C) -t- :=+ -()}],

where the infimum is taken over all open sets containing E, and the supremum
is taken over all b e such that =< 1 and spt U.
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For a fixed f, L(f, E) is a completely additive, nonnegative, Borel measure
that is finite on every bounded E.

21 denotes the set of all real-valued functions that are summable on R’*.
For each f 1 and each positive integer r, we shall use the symbol r(f) to

denote the well-known integral mean

f:ll/rfx2-t-1/r

f
xn-l/r

{gr(/)}(x) r f() d.
Xl X2 Xn

(, I, L, and 9 have the following properties:

2.1. 5 is a vector space over the real numbers.

I(f + g, B) <__ I(f, B) + I(g, B), and

I(of, B) a I(f, B),

where a is a real number, and B a Borel set.

2.3. If U is a fixed open set of R, then I(f, U) and L(f, U) are lower semi-
continuous on 6t with respect to the 1 topology.

2.4. I(f, B) <= L (f, B) for every f e and every Borel set B.

2.5. Iff e 1, then {at(f)} (x) is continuous with respect to x.

If f is continuous, then a(f) has continuous first-order partial deriva-

If f e 1 and is bounded, then r(f) is Lipschitz.

2.8. If f is Lipschitz, then

almost everywhere.

2.11.
formly on R.

Iff 21, then 9(f) approaches f almost everywhere.

If f is Lipschitz with compact support, then

I[f- 9(f)]-+ 0 as r ---+

If f is continuous with compact support, then g(f) approaches f uni-

If f, g gt and B is a Borel set, then

L(f + g, B) <= L(f, B) - I(g, B).
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(i)

(ii)

If f is Lipschitz with compact support and E is a Borel set, then

\ax/ A

L(f, E) 1 + =, k/ 2
dx.

Iff e , then G(f) , and for each compact set B of R
lim sup+ I{9r(f), B} I(f, B), and

lim sup L{&(f), B} L(f, B).

Uf e , N 0 and we define,

r(x) f(x) g -N f(x) N,
-N g f(x) < -,
N ff f(x) > N,

then fly 08, and

I(fv B) <= I(f, B), L(fiv B) <= L(f, B)

for each Borel set B of R’.

2.16 THEOREM. If hi, h2 08 and are bounded, h2 is Lipschitz, B is a
bounded Borel set with finite perimeter, h(x) h(x) <= K for all x R, and
xB is the characteristic function of B, then (1 xB)h + XB h 08, and

L{(1 x)h + xh,E} L(h,E) + I(h,BnE) + K.F(B)

for every Borel set E (where P B denotes the perimeter of B ).

Proof. (i) Suppose to begin with that h, is also Lipschitz and E is open.
Using integral means we can construct a sequence {x(r)} of functions such that

(A) each xe) has continuous first-order prtil derivatives and
(r) Rn0 x (x) lforllxe

(B) there is a compact set containing the support of every x(");
C x(r) x almost everywhere;

(D) lira sup f =/ a
dx P(B).

It follows from (A), (B), and (C) that x Cr) x in the 2, topology, and
hence since h, nd h are bounded,

(1 x(r))h + x(r)h2 (1 x)h, + XBh2
in the 2, topology;hence by 2.3,

L{ ( x)h + x. h,

liminLL{(1 x(r))h*+ x n=,E},
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which by 2.13 (ii),

{ Oh1 (r) Oh2 aXe)

lim inf 1 -F (1 X(r)) + X -t- (h2- h) dx

0h221/2 (ox(r)2I]2

and by (D)

=< limr+inf L(hl, E) + x(r) i=l \-/ j
dx + KP(B)

But since x (r)
--+ xB in the . topology, we have

---L{l [- ((h2211/2 dx I(h., B n E),

so that the proof is complete in this case.
(ii) h is arbitrary, B is arbitrary, and E is open. Take e > 0 or N > 0

according as L{ (1 x,)h. "F X,, h2, E} is finite or infinite. Let E be a com-
pact subset of E such that

L{(1--x.)hlq-x, h2,Int(E)} >L{(1--xu)hq-x,h,E} --e or >N.

Put h(r) It(hi). Then
(E) each hr) is Lipschitz and ]hr)(x) h(x) <= K q- ,. for all x e R",

where iir --+ 0 aS r --+ oo;
(F) there is a compact set containing the support of every hr) and the

hr)’s are uniformly bounded;
(G) hr) -- hi almost everywhere.

By (E), (F), and (G)

1 x,) hr) q_ x, h,. -+ 1 x,) h, q- x- h=

in the 1 topology, so that by 2.3,
L{(1 x,)h q- x- h, Int (E)}

_<= lim infr+(R) L{(1 x.)hr) q- X. h:. Int (E.)}.
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which by (i)

=< lim infr [Llhr), Int (El)} - IIh2, B n Int (E)}] - K.P(B)

-< L(h- E:) -t-- I(h2 B n E.) + K.P(B) by 2.14.
Thus

LI(1 xB)h. + X h, E} L(h, E) + I(h, B E) + K.P(B).

(iii) h, h, B, nd E re rbitmry. Let U}, V} be decreasing se-
quences of open sets such that B E U, E B V for all s, nd

L(h, B a E) limL(h, V),

L(h, E B) lim L(hl, V),

I(h B E) lim I(h U),

I(h, E B) lim I(h, V).
Then

L(1 x)h+ xh,E}

lim L{(1 x,)h + x, h, U o V},

which by (ii)

lim,. [L(h, U, V) + I(h, B (U o V,))] + K.P(B)

L(h, E) + I(h, B E) + lim I(h, B V,) + K.P(B).

Since B n V V (E B), it follows that lim I(h, B V) 0, and
the proof is complete.

2.17 TEOnEM. Iff e and is bounded and B is a Borel set with bounded
frontier and finite perimeter, then x, "f .

Proof. Let J be a closed interval such that f vanishes outside J and
Fr (B) Int (J). Put B J (B). Then B is bounded, and
P(B) < . Puth =fih 0, whence by 2.16,

L{(1 x,)’f, E} L(f, E) + K.P(B)

for every Borel set E. Since (1 x-) "f x,’L then x,’f e B.

3. The min pproximtion theorems

3.1 nOnEM. Iff and e O, then there exists a Lipschitz function g on
R with compact support and agreeing with f except on a set with measure less
than e.

This theorem can be obtained from Goffman [3, Theorem 6], Saks [4,
Theorem (12.2), p. 300], nd Federer [1, 5.2]. However, it cn also be proved
directly, in the following way. The basic idea for the first part of this proof
has been obtained from Federer [1, 5.2].
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Proof of 3.1_. It follows from 2.15 that we may assume f to be bounded.
Let Z and satisfy conditions (i), (ii), and (iii) of Lemma 2 (appearing below)
with e 2-(+2). Let L > 0 be such that if

G Ix; l(x) <= L},

then the set R G is bounded and has measure less than . Then

(1) f (x) f(y) 2n/L

for M1 x, y G, because, if we let J be the lrgest open cube with centre at x
but not containing y, let J be the largest open cube with centre at y but not
contMning x, and let p be the edge-length of Jx, J, then J ,1 contains
n open cube with edge-length p; hence

(2) m(J J,)/m(J) 1/2".

By Lemm 2 (iii), the set

A{x, J, /(x)} o Ay, J, /(y)}

has measure 2-(+)m(J) hence by (2), the sets

J A[x, J, /(x)}, J A[y, J, /(y)}

hve a common point z. Thus

If(x) --f(z) l(x) ]Ix-- z[ n[]x-- z[[, and

f(y) -f(z) Lily- z[],
so that

If(x) --f(y)[ n{]] x z + y z

Sino, by (1), i is Lipsohit on 0, thr xist
with compact support nd greeing with f on G.

LEMMA 1. Le f and be bounded. There exists a subse W of such
ha

(i) W has zero measure, and
(ii) for ry W, my D > O, an7y

has casure /L)I (i, J

Proof. (X) Supposo rst of M1 tkt i is LipscMt.
provo tholith W R.

Ill {ho intoTrl
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make the substitution

Xl 1 -3
L r cos 01,

x2 2 -4- r sin 01 cos 02,

x3 3 A- r sin 01 sin 02 cos 03,

Xn--1 n--1 -4- r sin 01 sin 02 sin 0,_2 cos 0n-1,

Xn n -4- r sin 01 sin 02 sin 0n-2 sin

whenn > 1, andxl l-t-rwhenn= 1. Then

I(f, J) fo fo [l(01’’’’’0n-1) I (0f2]1/2

rn-1 dr

b(01, "’’,0n_l) dO1 dOn_.
But since

we have

so that by (1)

I(f, j) >= f
(2) ,o

Of dr of dx
Or =1 - 21112

L Ef+<""""-’> eS rn-’ ]’ (01," ,(n-- 1)
dr

(01 ," ", On--l) dO1 don-1.

Now let p(0, On--) denote the one-dimensional measure of the set

B( 01, On-l)
{r;-- r and If(r, o,..., On--l) --/() > L.r},

and let a(O, 0._), #(0, On--l) denote the infimum and supremum
ofullreB(O,-.., 0_). Then- a pand

( ). < dr;

hence by (2)

I(f, J) L. pr-@ dr dO dO_

L. (measure of A (, J, L) ).

(B) When f is arbitrary, put

f<r ,(f).
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By 2.7, each f(r) is Lipschitz. By 2.9, f(r) --+ f almost everywhere, and hence
f(r) -+ f in the oCl topology. By 2.3 and 2.14

(3) limr I(f(r), j) I(f, J)

for all open cubes J, not in a countable collection
Let W be the set where f(r) --+ f. Let W and let J be an open cube with

centre at but not in g. Put

A {y, y e J and
Then

hence
A n W

_
lim infr_ A

m(A) __< lim infr- m(At)

_-< limr_. (1/L)I(f(r), J) by (A)

(1/L)I(f, J) by (3).

When J e , we can show that m(A) _-< (1/L)I(f, J), by approximating J
with an open cube J1

___
J and e .

LEMMA 2. If f 6t and is bounded and e > O, then there exist a subset Z of
R and a positive, finite-valued, measurable function on Z such that

x <- 1 outside a bounded set;
(ii) R Z has zero measure; and
(iii) for every x Z and every open cube J with centre at x, the set

has measure <= e.m( J).

Proof. Since

A{x,J,l(x)}

A is defined in Lemma 1.)

u(B) I(f, B)

is a bounded, nonnegative, completely additive, Borel measure, there exists a
subset Y of R" such that m(R" Y) 0 and, for all x e Y,

(4) lim,_.0+ I{f, J(x, v)}/m{J(x,

exists, where J(x,
Let W be a subset of R" with the properties (i) and (ii) of Lemma 1. Put

Z=YnW.

Then R Z has zero measure. Define

l(x) 1 + (l/e)sup,>oI{f, J(x, v)}/m{J(x, 7)}
(5)

1 + (l/e) sup, I{f, J(x, 7)}/m{ J(x, v)},

where in the second case the supremum is taken over a countable dense subset
D of the positive reals, which does not intersect the countable set E consisting
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of all 7 > 0 for which there is an open cube J with edge-length 27 and
I{f, Fr (J)} > 0. Since there exists a sequence f(r) of Lipschitz functions such
that

limr_. Ilf(), J(x, 7)} I{f, J(x, 7)} for all in D,

and since Ilf(, J(x, 7)} is continuous with respect to x, it follows that
Ilf, J(x, 7)} is measurable with respect to x, and hence l(x) is measurable.
By Lemma 1, we have for all x Z,

m[Alx, J(x, 7),/(x)}] <- (1/l(x))Ilf, J(x, 7)}

<= (1/l(x))e{l(x) 1}m{J(x, 7)}

<= e.m{J(x, 7)}.

3.2 THEOREM. Let f (B and be bounded and Borel measurable.
There exists a bounded Borel set B such that

()
(ii)
(iii)
(iv)

by (5)

Let > O.

P(B) <
B is contained in the set F {x; f(x) # 0} and m(F B) < e;
I{(1 xB)’f} < e; and
for every Borel set G with P(G) < 1 + P(B), one has

I(xo-.’f) < e.

For each positive integer r, let

Fr {x; If(x) > 1/r}.
Then

lim F F,

and hence there exists a positive integer r such that

(1) m(F. Fr) < ,.
Let

E+ {x;f(x) > z},
E7 {x;--f(x) > z} {x;f(x) < -z}.

By the co-area formula [2, 3.3]

I(f) P(E+) dz, and I(-f) P(ET) &;
hence

fo [P(E+) + P(E7)] dz

We can therefore choose a i such that 0 < < rain (1/r, e/6),

f [P(E+) + P(E7)]dz < /12, and

(2) J_ P(E-) dz < el3.
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There now exists a zl such that 0 < zl -< 8 and

i[P(E+) + P(EI) < e/12;
hence

Put
P(E+ u E-I) < e/12.

B

Then B is a bounded Borel set with finite perimeter. Also B F and
Frl B;henceby (1),m(FB) < e.

It remains to show that (iii) and (iv) are true. To verify (iv), let G be a
Borel set such that P(G) < 1 + P(B). Put

R {x; xo---’f > z}.

By 2.17, xe-,’f , and hence by the co-area formul

I(xo_,’f) P(R) dz.
Zl

But

R, {x;f(x) > z} B)

according as z => 0 or < 0, and hence

so that

or {x; f(x) > z} u {,(G B)}

P(Rz) <= P(E+) + P(B) + P(G)

< P(E+) -+- 2P(B) + 1,

P(E+) dz + 48P(B) -4- 28I{xa-.’f} < f
< e/3 +e/3 +e/3

One obtains (iii) from (iv) by putting G R".

by (2) and (3).

Proof. Since f is equal almost everywhere to a Borel measurable function,
we can assume thatf itself is Borel measurable. By 3.2, there exists a bounded
Borel set B such that

(A) P(B) < ;
(B) B is contained in the set F {z;f(z) g(z) # Ol and

m(F B) <

3.3 THEOREM. Let f e (P, and be bounded, and let g be a Lipschitz function on
R with compact support. Let e > O. There exists a bounded open set G such
that

(i) Fr G) has zero measure;
(ii) the set G {x; f x # g(x)} has measure less than e (where de-

notes symmetric difference); and
(iii) L{g + xo" (f g), E} < L(f, E) + e for every Borel set E.
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(C) It(1--XB)’(f--g)} < e/4; and
(D) for every Borel set H with P(H) < 1 q- P(B), one has

I(XH.,’(f- g)) < /8.
Since g is Lipschitz, there exists a constant M > 0 and such that for every

Borel set E of R

(1) I(g, E) <= M.m(E).

Let K > 0 be a constant such that

(2) If(x) g(x)[ =< K
for all x e R.
By [2, 11.3], there exists a bounded open set G such that
(E) Fr (G) has zero measure;
(F) m(G/ B) < min (e/4M, e/2); and
(G) P(G/ B) < min (e/4K, 1).
It follows from 2.16 that for every Borel set E,

L{ (1 x)"f q- x(.’g, E}

<= i(f, E) q- I(g, (G /x B) n E) q- K.P(G /X B),

so that by (1), (F), and (G)

L{ (1 xa,)’f q- xa,’g, E} -<_ L(f, E) q- e/2.

gq- xa(f- g) [(1

(4) (-1 q- xa q- xa,)’(f- g)

(-1 q- x- q- 2xa~,)" (f- g).

However since B u G B u (G B), it follows that

P(B u G) <- P(B) q- P(G /X B),

so that by (G), P(B u G) < 1 q- P(B); hence by (D)

(5) I{xa~," (f g)} < e/8.

By (4), (5), and (C)

(6) I[g q- xa’(f g) -{(1

It now follows from (3), (6), and 2.12 that

L{g q- x

3.4 TunoInU. If f 53, B is a compact set, and > O, then there exists a
Lipschitz function g on R with compact support and such that

(3)

But
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(i) mlx;f(x) g(x)} < ’; and
(ii) L(g, B) <= L(f, B) zr- .
Proof. (a) Assume to begin with that f is bounded. By 3.1, there exists
Lipschitz function gl on R with compact support and such that

m{x;f(x) gl(x)} < t:/4.

By 3.3, there exists a bounded open set G such that
(A) Fr (G) has zero measure;
(B) the set G/ {x; f(x) gl(x) has measure less than e/4; and
(C) L{gl -+- xo(f g), B} <__ L(f, B) + el2.

Then re(G) < 1/2 v. Choose a positive integer r, such that for all r _>- ri the
set where r{Xa" (f g)l is nonzero has measure less than v.
Now by 2.14

L{g zr- xo(f g), B}

and by 2.12

which by 2.1.0

>= lim supr+ L[r(gl) + 9r{xo. (f g)}, B],

>__ lim SUpr- [L[gl t_ 9r{Xo’(f- gl)}, B]- /{gl- gr(g)}],

_>_ lim sup L[g + 9.{xo’(f- g)}, B].

Itence we can choose a positive integer r >= rl and such that if we put;

g gl - g.{xo’(f- gl)},
we have

L(g, B) <- L{g, -t-- x’(f g), BI -t- ’/2,

so that by (C),L(g,B) <= L(f,B) zr- :. Also

m{x;f(x) g(x)} < ,
and it follows from 2.7 that g is Lipschitz.

(b) Suppose now that f is arbitrary. Choose a positive number N such
that if we define

we have

:](x) f(x) if If(x) -<_ N,
N if f(x) > N,

=-N if f(x) <-N,

mlx; f(x) f(z)l < ,/2.

By (a) there exists a Lipsehitz function g on R with compact support and
such that

(D) m{x;f(x) g(x)} < e/2; and
(E) L(g, B) <= L(fv B) + ’.
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By (E) and 2.15,

and by (1) and (D),
L(g, B L(f B + ,
<x;j’(z) e(x)I < .

4. The equality of the three areas

Let Q denote the unit cube in R. Associated with each summable function

f on Q is the Goffman area (f), which we discussed in the introduction and
which is given by

(l) (f) inf [lim infr E(ff))],
where the infimum is taken over all sequences If(r)} of polyhedral functions on
Q that converge to f in the topology, and where E denotes elementary area.

Also, there is associated with each measurable f, the Goffman area

(2) ,I, (f) inf [lim infr A (g(r))],
where this time the infimum is taken over all sequences {g(r)} of continuous
functions on Q, converging to f with respect to the metric

d(g(r), f) m{x; x Q and g(r) (x) f(x)}.

Now let K1 denote the class of all equivMence classes of those functions

f on Q such that for every e > 0 there exists a Lipschitz function g on Q with
d(g, f) < . For each f K1 we can define an area

(3) A(f) inf [liminfr_A(g(r))] inf [liminfr_E(g(r))],

where the infimum is taken over all sequences {g(,r)} of Lipschitz functions such
that d(g(r), f) 0 as r ---> .
We are going to prove
(i) for every summable f on Q

,(f) (f),

(ii) if f is summable and (f) < ,thenfeK, and
(iii) for every summable f K1

A(J’) (I,(f).

Because we are going to prove (i), (ii), and (iii), it is not necessary for us to
verify that A is an extension of the Lebesgue area functionM.

Evidently

4.1. (y) 5- A(f) j’or every y K1.
4.2 TH,:OmM. P(f) T(y) for every summable f.
Proof. We can assume ,I(f) to be finite. Take a sequence {f(r)} of con-

tinuous functions such that

(1) A (f(’)) -- e (f)
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as r - and the set

has measure less than 2-.
tion g() on Q such that

(2) SUpxQ If(r)(x) g(r)(X) < I/r,

(3) A(f()) E(g(r)) < 1/r.
For each positive integer s define

(r)(X) .q (X)

8

--8

{x; f(r)(x) f(x)}

For each r we can now choose a polyhedral func-

and

if g(r)(x) __--< s,

if g() (x) > s,

if g(r)(x) < --S,

and similarly define r()
J8 f8

cause for each rl the set
NOW fr) ----> fs almost everywhere as r -- , be-

Q Ix; fr)(X) fs(X) for all r

has measure less than Er_rl 2 2-r1+1. By bounded convergence-- f8 in the 1 topology. Also f -- f in the 1 topology. Hence there
exists a sequence of positive integers {r} --+ and such that f(r) -- f in the

topology. Then

in the 1 topology.

hence

But g.r,) is polyhedral, and
(r,) (r)(g. <E(g );

(f) <= lim inf E(g))
_<_ lim inf. E(g())
__< I, (f) by (1) and (3).

4.3 TH:EOREM.
fined by

If f is summable and q(f) is finite, then the function f de-

j’t(x) f(x) ij’ x eQ,

0 if xeQ,
belongs to the class

Proof. (i) Suppose first of all that f is Lipschitz on Q Take a such
that --< 1. By Fubini’s theorem,

J(x) Orh dx
i=1

fQ i Oi dxi dxl dxi_l dxi+l dxn. f(x)
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(where Q’ denotes the unit cube in Rn--) and, integrating by parts,

(1)

Put
v(t) f(xl "’, Xi--i t, xi+l,

Then there exists a point u [0, 1] such that

or(t)
dt v(u),

and since

Xn).

l,(u) (o) =< fo
and similarly

,,1

<= j v’(t) tit,

it follows that

w(a) / w(o) _-< 2 In(t) ldt-t-

Therefore by (1) and Fubini’s theorem,

Hence

(2) I(f) <= 2n If(x)[ dx q- (n q- l)
t.i=l k,b-f/_l dx,

dx.

so that f
(ii) f is arbitrary.

verging 2. to f and such that

,im

Let
f(r) (,) f(r) (x) if

0 if

xeQ,

dx

Let {j’(")} be a sequence of polyhedral functions con-
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Then fr) -- fi in the topology, and hence by 2.3,
/-[ (r)I(fl) < lira infr-,

<- 2n f, f(x) dx + (n + 1)(f) by (2).

Thus I(fi) < , so that fl 6.

4.4 THEOREM. If f is summable and (f) < then f KI and

Proof. Define
A(f) =< ,:I:,(f).

f(x) f(x) if x eQ,

=0 if xQ.
By 4.3, f e 6.

Let {f(r)} be a sequence of polyhedral functions on Q that converge 2 to f
and are such that

(1) ,I,(f) limr_, E(f(r)).
Define

fr)(x) =f()(x) if xeQ,

=0 if xcQ.

It follows from 2.9 and 2.14 that we can choose for each positive integer r a
positive integer sr such that

(2) L, 8r(f) f) dx < l/r, nd

L{ asr(f)), Int (Q)} < L(f*), Q) + l/r;
hence

(3) L{asr(f)), Int (Q)} < E(f(r)) + 1/r.

By (2), as (fr)) - fl in the 2 topology, so that by 2.3,

L{fl, Int (Q)} =< lim inL L{as(fr)), Int (q)}
<- lim inL E(ff)) by (3)

hence by (1)
L{fl, Int (Q)} <= (f).

The theorem now follows immediately from 4.5.

4.5 LEMMA. Let f 6 and e > O. There exists a Lipschitz function g on Q
such that the set x x e Q and f x # g x has measure less than e and
E(g) < L{f, Int (Q)} + e.

Rn"Proof. (i) Suppose first that f(x) -< K for all x e Let

a (1/2, 1/2,...,1/2),
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and for each. [0, 1/2], put

Qt {2t(z a) + a; z Q}.

Let D be the set of all [0, 1/2] for which L{f, Fr (Qt)} 0. The complement
of D in [0, 1/2] will be countable. Let to D be such that to > 0 and

(1) m,(Q Qt0) < 1/2e, and

4-o +- --o + a .
Let tl D be such that to < tl < 1/2-and 1/2 tl > tl- to.
By 3.4, there exists for each r a Lipschitz function g(r) on R with compact

support and such that

mlz;f(z) g(r)(x)} < l/r, and

(3) L(g(r), Qtl) < L(f, Qtl) ’+- 1,/r.

We can assume that g(r)(x)l <= K for all x and the g(r)’s have uniformly
bounded supports. Then g(") -+ f in the 1 topology, so that by 2.3,

lim infr_+ L(g(r), Qto) >- L(f, Qto), and

liin infr_+ L(g(r), Qtl >-- L(f Qt ).
But by (3)

so that
lim SUpr-o+ L(g(r) Qt < L(f Qt

lira sup L(g (r), Qt, (to) L(f, Qt qtO)

Itence one cn choose a large r, put h g(r), and obtain

(4) m;f(z) h(z)} < ,
(5) L(h, Qt) < L(f, Qt,) + }e, nd

For each x Q Qo define 0(x) by

x Fr Q0(:)}.
Then

0(z) 0(x’) x x’
for allx, x’eQQto. Forx+QQto,define

to(+ t) t,- to (x a) + a.(x) 0( : ,) + t;
Then p maps Q Qto onto Qt Qto Also_

[ to(t1- +) - to
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1 hen

(7) p(x) p(x’) <__ --o- q- 1 x

for all x, x’ Q Q to and

(8) -"() p-(’)11 -< -0 + a ’for all y, y’ Q tl Q to Define

g(x) h(x) if x Qto

h{p(x)} if’ x eQQ0.

Then g is Lipschitz on Q, and by (1) and (4), the set

{x;xeQ and f(x) g(x)}

has measure less than e. For almost all x Q Q to one has

Oh

Oh

so that by (7),

to i=1

--< (++ )S o[
nd by 8 ),

(
(= +

which by (6), <

dx

ah a(p)
dx,) ( + :) so_,o E’ + -{()__,<I]l

+; a 1.

tl--Q,o j=l t’/ A
dy

Then

E(g) < L(h, Qto) + t:/2 <- L(h, Qtl) -t- ,?/2,

and by (5), E(g) < L{f, Int (Q)} -t- e.

(ii) When f is unbounded, the lemma follows from (i) nd 2.15.
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