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1. Introduction

This paper is a sequel to [4], and we shall freely use the notation of [i].
Let G el, en} be a finite semigroup in which the relations e e. e-

hold for 1 =< i,j n. LetA e},i 1,...,n;thenA Gareevi-
dently finite groups containing identity element only. G possesses obviously
the following properties"

(1) G is a semigroup in which left cancellation holds.
(2) G is the union of n disjoint finite groups A1, A each isomorphic

to the other, and each of which is a left ideal in G. (Since left cancellation
holds in G, every A is a (1.i.l.c.) see [4, Section 2].)
Now if a semigroup possesses the properties (1) and (2), it does not follow

necessarily that its finite subgroups A1, An are all isomorphic to the
trivial group containing the identity element only. In fact for any finite
group A and integer n > 0 a semigroup possessing the properties (1) and (2)
is constructed in [6, p. 1081], such that A, An are all isomorphic to A.
Applying Theorem 3.1 of [4] we get that dim Ml(G) n for semigroups
which have properties (1) and (2) (dim Ml(G) n means "the linear
manifold spanned by the left invariant means is n-dimensional").

It is the main purpose of this paper to prove

THEOREM E. If G is a semigroup with left cancellation, then dim Ml(G) n,
0 < n < , if and only if G is finite and is the union of n finite disjoint groups
A A each isomorphic to the other, and each of which is a minimal left
ideal in G.

Taking n 1 one gets" If G is a semigroup with left cancellation, then
dim Ml(G) 1 (in other words, G has a unique left invariant mean) if
and only if G is a finite group.

It is interesting to note that left cancellation and dim Ml(G)= n,
0 < n < , which are not, seemingly, strict conditions imposed on G, de-
termine to such a great extent the algebraic structure of G and mostly, that
they imply that G has to be finite.
Theorem E is a generalization of Theorem A of the author (see [4, Section 1])
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to semigroups in which left cancellation holds. For groups, bearing in mind
that they do not contain nontrivial ideals, one gets that dim Ml(G) 1 or

(see Theorem B in [4, Section 1]).
The author was not able till now to drop entirely the countability condi-

tion imposed on G in Theorem A [4, Section 1].
In order to prove Theorem E we prove some theorems which are interesting

for their own sake"

THEOREM El. If G is a left amenable semigroup, then for every countable
subsemigroup Go c G there exists a countable subsemigroup Go, Go G’o G,
which is left amenable.

As is well known (see [1, p. 516]) not every subsemigroup of a left amenable
semigroup is left amenable.

THEOREM E2. If G is a left amenable semigroup with left cancellation and
Go G is a left amenable subsemigroup, then there exists a linear isometry from
the subspace of left invariant elements of m(Go)* into the subspace of left in-
variant elements of re(G)* which maps left invariant means into left invariant
means.

For groups this theorem is a result of Day [1, p. 533]. Since the decom-
position of a semigroup into left cosets with respect to a subsemigroup is
much more complicated than the same decomposition for a group with respect
to a subgroup, the above generalization is not trivial.

2. The main theorem

In order to prove the main theorem of this paper we need the following re-
sults"

THEOREM El. Let G be a left amenable semigroup, and Go G a countable
subsemigroup. Then there exists a countable left amenable subsemigroup G
such that Go G’o G.

Proof. By [1, p. 524] there is a net of finite means in re(G)*, {,}, such
that lim, Lg , , 0 for each g in G. Thus for c > 0 and for every
finite set {al, ak} G there is an s0, which depends on this finite set,
such that La .- < for 1 -< i -<_ /, if
{gl, g2, ga,’"}, and for a finite mean . era(G)* put

G, > 0}

(lg e m(G); see [4, Section 2]). Since the . are finite means, r(.) c G
are finite sets for each a. Let a be such that LI -1 -, < 1, and
let a2 be such that na Pa2 qa2 < 1/2 for a

The theorem remains true if "left" is replaced by "right" and also if "left amenable"
is replaced by amenable
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was chosen so that

La qk-1 ak_l < 1/(]c 1) for a e/gl, gk-1} tJ [[.J k-2i=lT(qai)],
then let ak be uch that

Laa < 1/ for a e {g, g} u [U-= r()].
We choose in this way a sequence of finite means

Let A G0 u [U v(.)], and let G be the subsemigroup of G generated
by A. Our sequence . satisfies lim L.- . 0 for each a
in A, since if a e A, then either a g for some , and then

or a e v(.) for some , and then

If is an arbitrary element of the sequence {..}, then v() c G, and
therefore QI, (where g are in G and (Ql)f f(g) for
f in m(G)). But

La(Qla)f (Qla)(la5) (laf)(gi) f(agi)

which implies
L = L(QI,) =(Qlaa).

Let now ’ ifli Q’I,, where Q’ is the natural embedding of l(G’o)
into m(G’o)* (now 1 is in l(G’o)), and for a in V’0 let l: be the left translation
operator of m(G’0), by the element a. If L: (/:)*, then as above

und therefore we can write for a in G’0

L:
The third equality is true since a and g for i 1, n are in G. The

last norm is of m(G’o)*. We can thus write for each a in A

From now on the g’s stand for elements of G0 and not necessarily of G0.
For the above chosen e.{} Ql(G) we define now a ’e Ql(G). Thus to

each Qli(G) we define a Qll(G).
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and therefore
limn La . 0 for each a in A.

Let now 0 be a w*-cluster point of (in m(Go)*).
Then o is a mean, as a w*-cluster point of means, (see [1, p. 513, (C)]),

and moreover La’o 0 for each a in A. (See the inequalities of Remark
5.1 of [4].) The end of the same Remark 5.1 of [4] implies that Lao o
for each a in G, which finishes the proof of our theorem.

Remarlc. It is known (see [1, p. 516, (F)]) that if every finitely generated
subsemigroup of a semigroup G is left amenable, then so is G. The converse
is not true (otherwise left amenability of a semigroup would imply left ame-
nability of each subsemigroup, which is not true; see [1, p. 516, (D) and (F)]).
Nevertheless, Theorem E1 shows that every finitely generated subsemigroup
of a left amenable semigroup is included in a countable left amenable semi-
group.

In order to prove Theorem E2 we need the following remarks:
Remark 2.1. Let G be a semigroup, and Go c G a subsemigroup, and sup-

pose that

re(G) --m(Go) is such that (x)(g) x(g)

for g in Go and x in m(G),

la m(G) m(G) is such that (laX)(g) x(ag)

for g in G,

lOa m(Go) -- m(Go) is such that (la x)(g) x(ag)

Then
for g in Go and a in Go.

rla lOa r for each a in Go.

Let x be in m(G); then (’la)(X) (la x) is in m(Go), and (lOa V)X lOa(rX)
is in re(Go). Thus we have to prove that for each g of Go,

[TF(la X)](g) [lOa(TI’X)](g).

But for g in Go one has

[(laX)](g) (lax)(g) x(ag) and

[/a(rx)](g) (rx)(ag) x(ag) since a is in Go.

Remarlc 2.2. If 0 re(Go)* is a mean, then so is *0 since if x e re(G)
with x(g) >= 0 for each g in G, then x(g) (rx)(g) >=_ 0 for g in Go, and
(*o)X 0(x) >= 0 since 0 is a mean. By r(l) 1 we get that
(*o)(1o) 0(0) 1.
Remark 2.3. Let G be a left amenable semigroup, and Go G a left ame-

nable subsemigroup. Let o be a left invariant element of re(Go)* (i.e.,
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v0(la f) v0(f) for f in m(G0) and a in Go) and x e re(G). Then the function

y(a) vo(’Fla X)

is constant on left cosets of G with respect to Go. In other words, if a b
(see for instance the definition after Lemma 5.1 in [4]), then y(a) y(b).

If a b, then by definition there are gl, g. in Go such that agl bg2,
and then

lgl(T.la x) (lglTi.)(lax) (7lgl)(lax) ---7(lglla)(X ----T(laglX).

For the second equality, see Remark 2.1; the last is true since lc la lac.
In the same way lg2 (vlb x) (lbg2 x) which implies

lOgl T’la X) log2 T’lb X
However,

y(a) yo(l’lax) Io[lgl(7lax)] Po[lOg.(T’lbX)] FO(7lbX) y(b).

The second and fourth equalities hold since by our assumption vo is a left
invariant element in m(G0)*.

If now a b, then by definition there are al, ak in G such that

By the above, y(a) y(a) y(a,) y(b)
remark.
We are now ready to prove

which proves the

THEOREM E2. If G is a left amenable semigroup with left cancellation, and
Go c G is a left amenable subsemigroup, then there exists a linear isometry,
from the subspace of left invariant elements of re(Go)* into the subspace of left
invariant elements of m( G)*, which maps left invariant means into left invariant
means.

If , are in m(G)*, then let Q e m(G)* be defined by

( ) b)x [b(x(hg) )] for x in m(G).

(6 is the functional k with respect to the variable g for fixed h in G.) This
multiplication renders re(G)* a Banach algebra (see [1, p. 527]).

Let e Ml(G) be fixed, and z, l, lOa aS in Remark 2.1.
We define as in Day [1, p. 533] for every left invariant element vo of re(Go)*

(i.e. for v0 m(Go)* such that (la)*0 V0 for each a in Go)"
,

Tvo g r vo.

Tvo is a left invariant element of m(G)* (see proof of Corollary 2 in [1,
p. 529]), and if vo is a mean, so is v0 (Remark 2.2), and therefore so is

* (If are means, so is 9 , as is easily proved.) Since
is distributive and r* is linear, T is linear. Moreover, by [1, p. 527, Lemma 1]
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and beating in mind that * is isometric [1, p. 512, (2)] we have for every
left invariant element 0 of m(G0)* that

In order to finish the proof of the theorem we have still to prove that

In what follows we construct (see Day [1, p. 533]) a function x of re(G)
which satisfies x __< 1 and I(T’0)x => 0 e.

Let x0e re(Go), xo =< 1 be such that

 o(xo) _-> II-
and let {Ha} be a decomposition of G into left cosets with respect to Go.
Then Go is included in exactly one left coset, for Go is by assumption left
amenable which implies that every two right ideals have nonvoid intersection
(this is easily proved; see end of proof of Corollary 5.5 in [4]), and therefore
for each a, b in Go, ago n bGo 0 which yields the existence of gl, g2 in Go
such that agl bg2. We get thus that a b, which implies that Go is
included in exactly one left coset of the H,’s (let it be Ho). We choose now
some go e Go H0, and some ha from each other Ha, such that {go} u U
form a set of representatives of the left cosets of G with respect to Go Now
for each a, ha Go Ha, since for g in Go, (ha g)g ha g2, and thus ha ha g.
We define the function x of re(G) as follows:

x(g) xo(g) for gin Go.

If g e ha Go, then g ha gl for exactly one g of Go (otherwise g ha gl

hg2 which contradicts the left cancellation which holds in G). (Please
note that this is the only place where left cancellation is used.)
We define for this g ha gl

x(g) x(h,g) xo(gl).

x(g) is defined in this way on Go o [(J ha Go] (the union is over [a; ha go} ).
For any other g in G we define x(g) O. Obviously x --< 1 and rx Xo.
Moreover,

(T,o)X (t Q r*o)X [(*o)x(zg)]-- [(r*o)(/x)] [o(/x)].

If we let y(z) 0(/ x), then by Remark 2.3, y(a) is constant on each
Ha and on H0. In order to know the value of y(z) on Ha or H0 it is sufficient
to know y(h,) or y(go). Now

y(go) o[(V/o)(x)l  o(xo).

For the second equality, see Remark 2.1. And if g e Go, then

[(/. x)l(g) (l. x)g x(h, g) xo(g);

thus v(l. x) Xo. We get
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y(h,) ,o(rl, x) 0(x0) and y(go) 0[r(/0 x)] 0(x0).

Thus for each g in H, or in Ho, y(g) 0(x0); in other words, y(g)
0(x0)" la(g). But

(T,o)X [0(r/x)] (y) (0(x0)’la) 0(x0) _->  01l- ,
which implies that

T01] supilll__<ll(T0)xl >= ,oll for eachs > 0.

We have proved that T0 => 0 I], and since T0 =< 0 II, we get
that for each left invariant element of re(G0)*, T0 0 I1, which finishes
the proof of Theorem E2.
Remarl 2.4. That this theorem is not true for general left amenable semi-

groups is proved by the following example" Let No be the multiplicative
semigroup of nonnegative integers No {0, 1, 2, ...}, and let N1 {1, 2, 3,

be the multiplicative subsemigroup of natural numbers. Then No and
N1 are obviously a left amenable semigroup and left amenable subsemigroup.
(Every commutative semigroup is amenable; see [1, p. 516].) {0} c No
is obviously a finite group and left ideal in No. It is obviously a (1.i.l.c.)
since m{0} {0} for m in No. But {0} is the only finite left ideal in No,
and therefore dim Ml(No) 1 (see Theorem 3.1 in [4]). But N1 has no
finite ideals, and Corollary 5.2 of [4] yields that dim Ml(N) .
Thus there cannot exist a linear isometry from the space of left invariant

elements of re(N1)* into the space of left invariant elements of re(No)*.
Remarl 2.5. T maps the linear manifold spanned by the left invariant

means in re(Go)* isometrically into the linear manifold spanned by the left
invariant means in re(G)*. Thus if dim Ml(G)= n < , then

dim M1(Go) <= dim M1 G) n

(where Go, G, and T are defined in Theorem E2).
In fact for left amenable semigroups in which left cancellation holds, every

left invariant element of re(G)* can be decomposed into a+ -,
where are left invariant means and a, >= 0. (See [2, p. 281] for
semigroups in which two-sided cancellation holds.) Therefore dim MI(G),
if finite, equals the dimension of the space of all left invariant elements of
m(G)*, if left cancellation holds.

The left cancellation is not needed in order that this should be true, as cn be easily
seen. In fct, if is a left invriant element of m(G)*, then it can be represented as q, where , m(G)* re nonnegtive (for instance by Jordan’s decomposition
theorem). Leta ][,and /llq ]]ifq 0, andp 0if-- 0 (i 1, 2).
Then if MI(G), we have by Day [1, p. 530], (R) a (D k a. (D and (D

is either 0, if is 0, or belongs to Ml(G) if i is a mean (see [1, p. 529]) which proves: For
any left amenable semigroup G, { m(G)*; L , g G} coincides with the linear
manifold spanned by Ml(G).
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Remark 2.6. In the proof of Theorem E. we assumed only that hgl hg.,
for h in G and gl, g2 in Go implies gl g2, which is a weaker condition than
left cancellation in G.
We are now ready to prove

THEOREM E. if G is a left amenable semigroup with left cancellation, then
dim Ml(G) n < if and only if G is finite and the union of n disjoint finite
groups, each isomorphic to the other, and each of which is a left ideal in G.

Proof. If G is the union of n finite groups A1, As each of which is a
left ideal, then G has exactly n finite groups and (1.i.l.c.) (since left cancella-
tion holds in G), nd therefore by Theorem 3.1 of [4], dim Ml(G) n.

Let now dim Ml(G) n, 0 < n < . We claim that G has to be finite.
Otherwise we could choose an infinite sequence {g} of different elements of G.
If Go is the countable subsemigroup generated by {gn}, then by Theorem E1
there is a left amenable countable subsemigroup G such that Go G G.
But by Theorem E. and Remark 2.5, dim Ml(G) m =< n < oo. Since
G is countable, it contains, by Corollary 5.2 of [4], exactly m finite groups
A1, Am which are (1.i.l.c.). By Lemma 3.1 in [4], A U i= Ai is a right
ideal in G. Moreover, G A. Otherwise let go be n element of G which
is not in A. If e. is the identity element of A ., then el go is in A and therefore
in A for some 1 _-< i _-< m. Thus el go el go e, and by the left cancellation
go go e. But go e is in A thus go is in A, which contradicts the assump-
tion that G # A. Thus G’0 A and G’0 is finite. However G’0 {g}, which
implies that G has to be a finite semigroup. Since G is finite, ll.(G) is finite-
dimensional, and

n dim Ml(G) dim [Ml(G) Ql(G)] dim II(G).

(ll(G) is reflexive in this case; see Remark 4.2 in [4].) We apply now Corol-
lary 4.2 of [4] and get that G contains exactly n finite groups A1, A
which are (1.i.l.c.). As groups and left ideals, the A’s are minimal left ideals
and therefore disjoint. But as above, G U =1 A, since otherwise there
would exist a go in G and not in A U = A. If e. is the identity element
of A-, then e go is in Ai for some 1 _-< i <_- n, and therefore e go ei elg0.

By the left cancellation go e go, which proves that go is in A, and thus that
G U Ai=1 i.

Let Z {e,..., e,,l be the semigroup in which the relations eiei e. for
1 _--< i, j _--< n, hold. Then Theorem E can be paraphrased as follows"

If G is semigroup with left cancellation, then dim Ml(G) n, 0 n , if and
only if G A X Z,, whereA is a finite group. (A X Zisthe direct product of A
and Zn .)

The main part of the theorem is that G has to be finite. For compact semigroups
(which applies to our case, since we know already from above that G hus to be finite)
it is proved by Rosen in [6, pp. 1079-1080] that they have to contain finite groups iso-
morphic to one another which are also left ideals. We prove more in what follows, i.e.,
we connect their number with dim Ml(G).
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We define now ,ii Ai ---> Ai g,i(g) gei for each g in A.
i(ab) abei= a(ei(bej) aeibei ,i(a),1(b).

(be is in Ai, and e- is its two-sided identity element.) is thus a homo-
morphism of Ai into A.. Let now a A with i(a) e.. Thus

e (a) ae

which yields ae e e. ei. But a e A, e. e e A, and A is group with
e s identity element. Therefore a ei nd . is one-to-one, from A into
A. But in the sme wy A. - A is lso one-to-one, nd since the
A’s re finite we get that are isomorphisms from A onto A.. (The
isomorphisms . stisfy obviously .i , nd is the identity mp-
ping from A into A. Thus ()-.) We remark that the bove
lines yield proof of the footnote to Theorem 4.1 of [4].
Remark 2.7. For commutative semigroups in which cancellation holds we

get that dim Ml(G) 1 or (see Corollary 5.4 in [4]). In this connection
see Luther’s nice work in [5] where he obtains, among other results, that a
commututive semigroup (not necessarily countable !) hs unique inwrint
mean if nd only if it contains finite ideal in it.

If we tke n 1 in Theorem E, we get

COOLLAnV 2.1. A left amenable semigroup with left cancellation has a unique
left invariant mean (i.e. dim Ml G) 1 if and only if it is a finite group.

Remar 2.8. Applications. Let us tke G Z, the dditive semigroup of
ntuml numbers. Then Ml(Z) re 11 the Banch limits, i.e., 11 the means
of m(Z)* which stisfy for every 1 > 0 (for/c 1 is sufScient)

la, a, a, ({a, a, a, })

wherelkisdefinedbylk{al, a., a, {ak+l,a+., a+k, }.
If L l*, then Ml(Z1) are all the means of re(Z1)* which satisfy LI
for every lc > 0. Since Z1 has no finite ideals, dim Ml(Z1) .

Let now Z2 be the multiplicative semigroup of natural numbers. Then
Ml(Z.) are all the means of m(Z)* which satisfy for each positive integer/

{al a, a q{a a. an }.

Since Z does not contain finite ideals and has cancellation, we get that
dim Ml Z.
Another example is the multiplicative semigroup G [a, {x;x >= a},

where a -> 0 is a real number.
We have to handle two cases:
(1) a 0. Then G has exactly one finite group which is also (1.i.l.c.)

which is {0}. By Theorem 3.1 in [4], dim Ml(G) 1, and if 0 is the unique
invariant mean of G, then 0(f) f(0) for each f in m(G).
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(2) a ->_ 1. In this case G is an infinite amenable semigroup in which
cancellation holds, and therefore dim Ml(G) .
Added September 12, 1962. We give now an example of an infinite semi-

group with dim Ml(G) n, 0 n , which will show that the left can-
cellation of the semigroup G in Theorem E cannot be entirely dropped.

Let Z e, e/ with the relations ee e for 1 <= i, j _-< n, and
let A be some finite group. Then the direct product of A by Z is defined,
as is well known, by A Z (a, e) a e A, e e Z} with the multiplication
(a, e)(b, e) (ab, ei e) (ab, e). As is easily seen, the set

A ((a, ei); a A}
is a finite group isomorphic to A (which is included in A X Zn). (See [6].)
Let now Go be an infinite group. We define in the set G Go u A Zn a
multiplication o, which as is easily seen renders it a semigroup, as follows"
If gr, g, are both in Go (or both in A X Zn), then g’ g" means multiplica-
tion in G0(orinA Z). ForginG0andhinA X Z,wedefinegoh
h g h. We claim that A1, A are the only finite groups and (1.i.l.c.)
in G. First of all, A is a (1.i.l.c.) since for g in Go, g(a, ei) (a, ei), which
implies that gA A. And if g (b, ej) A X Z, then (b, e)A
(bA, e) A. Let now B be a finite group and (1.i.l.c.) in G. And let us
assume the existence of a go in B n Go. Then Go Go go B, which cannot
be since B is assumed to be finite. This proves that B A X Z. There-
fore BaAjisnonvoidfor some 1 j <- n. Since both of B andAare
minimal left ideals, one gets that B A.. Theorem 3.1 and Remark 3.2
of [4] yield that dim Ml(G) n which is the required result.
Another theorem which one gets easily from Theorem E, and whose proof

is identical with that on the last page of [4] is the following"

THEOREM. The radical of the second conjugate algebra re(G)* for any in-
finite, left amenable, left cancellation semigroup is infinite-dimensional.
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