ON AMENABLE SEMIGROUPS WITH A FINITE-DIMENSIONAL SET
OF INVARIANT MEANS [

BY
E. GRANIRER

1. Introduction

A semigroup @ is left [right] amenable if there exists a positive linear func-
tional of norm one on the Banach space of bounded real functions on G with
the sup. norm which is invariant under the left [right] translation operator
(see Section 2).

It is proved by I. S. Luthar in [12] that a commutative semigroup & has a
unique invariant mean if and only if G contains a finite ideal. It is proved
by M. M. Day in [2] that infinite solvable groups or infinite amenable nontor-
sion groups or infinite locally finite groups (see [2, p. 535]) have more than
one left invariant mean. It is also proved in [2] that if a left amenable group
@ has a subgroup or a factor group with more than one left invariant mean,
then @ has more than one left invariant mean.

It is the purpose of this paper to prove the following theorems:

TarorEM A. If G s a left amenable countable semigroup, then the linear
manifold spanned by the set of left invariant means has dimension n < « if and
only if G contains exactly n finite disjoint groups A, .-+, A, which are left
ideals with left cancellation (abbreviated (l.il.c.);i.e.,ga = gb,a,beA;,ge@
implies a = b).?2

In the “if” part, countability of G may be dropped. From the “only if”
part it follows that all the left invariant means have to be finite means.

The author was not able till now to drop entirely the countability condition
imposed on @ (though one expects this theorem to be true without imposing
on G any countability condition) but only to replace it by some weaker one
(see Section 5).

TaeoreM B. If G is a left amenable group (not necessarily countable), then
the dimension of the linear manifold spanned by the left invariant means s either
one or not finite. It is one if and only if G is finite.”

Received June 22, 1961.

! This paper contains partial results from the Ph.D. thesis of the author under the
advisorship of Professor A. Dvoretzky and Dr. H. Kesten. I wish to express my thanks
to both and especially to Dr. H. Kesten for the real interest he took in my work and
for his helpful advice.

2 The finite groups A4; are even isomorphic to one another.

3 This author proved meanwhile: Let G be a semigroup with left cancellation.
Then the dimension of the linear manifold spanned by the left invariant means is n,
0< n< o, if and only if G is finite and is the union of = finite disjoint groups each of
which is a left ideal in G (and each isomorphic to the other). (See the next paper in
this journal.)
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TaEOREM C. If G is a left amenable semigroup, then G admits left invariant
countable means (i.e., means which belong to Q(LL(G))) if and only if G contains
finite groups which are (l.i.l.c.).

If for each such finite group and (l.i.l.c.) A we define the left invariant mean

ea(f) = (1/N(A)) 2gien f(9),

where N (A) is the number of elements in A, and f is a bounded real function
on G, then it follows that the set {¢4.} is a basis (topological) for the norm-
closed linear space of left invariant elements in Q(i;(@)).

TueoreM D. If G s a left amenable semigroup, then G admits only countable
left invariant means if and only if G contains a finite number of finite groups
which are (l.i.l.c.).

There are in this paper some lemmas and remarks which are interesting for
their own sake.

2. Definitions and notations

Let @ be a semigroup. (@) will be the space of all real-valued functions
o on Gsuch that || ¢ || = D e | e(g) | is finite.

m(@) will denote the space of real-valued bounded functions on G with
norm || f || = supgee|f(g) |. By [3, p. 29], L(®)* (the star means conjugate
space) is linearly isometric with m(@). We shall identify 4;(@)* with m(@Q).

Q : L(G) —m(G)* will be the natural embedding (Qe) (f) = X_sec ¢(9)f(g)
for fem(@).

Let 1, [r.] be the left [right] translation operator in m(G)

(Lf)(g) = flag)  [(raf)(9) = f(ga)],

and let L, = I}, R, = i, where (Ixo)f = o(lf) and (ryo)f = o(raf),
e em(@), f em(@).

An element ¢ € m(G)™is called a mean if || ¢ | = Land o(f) = Oforf e m(Q)
such that f(g) = O for every ge G. M(Q@) C m(@)* will denote the set of
means. ¢ em(G)™ is a left [right] invariant mean if it is a mean and
Lyo = ¢[Ry;¢ = o] for every g e @. MI(G) [Mr(G)] will denote the set of
left [right] invariant means. M (@), MI(@), Mr(G) are w*-compact convex
sets in m(@)™ (if nonvoid!). See M. M. Day [2].

A semigroup @ is left [right] amenable if MI(G) # 0 [Mr(G) # 0]. Gis
amenable if MI(G) % © and Mr(G) = 0 (and it is shown in [2] that this
implies MI(G) n Mr(G) # 0). ¢ eMI(G) n Mr(G) will be called an in-
variant mean.

An element ¢ eli(G) is called a finite mean if Q¢ is a mean and
{g;|¢(g) | > O} is finite. ¢ eli(G) is a countable mean if Q¢ is a mean
(or equivalently, if ¢(g) = 0for g ¢ G'and > seao(g) = 1). The set of finite
means when embedded in m(G)* is w*-dense in M (@) (see [2, p. 513]).

A net of means (for convergence of nets see [10]) o) converges w™ (strongly)
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to left, [right] invariance if L, ox — ox [Ry on — @] converges w™ (in norm) to
zero for each g e . 'When no ambiguity arises, we shall drop @ and say that
the net of finite means ¢\ converges w* (strongly) to left invariance if
L, ¢ — ¢\ converges w* (in norm) to zero for every g € G.

If A is a subset of @, then 1, will denote

14(g) =1 if ged,

=0 if ged.
If a € G, then 1, will be
l.(9) =1 if g=a,

=0 if ¢ #a.

A set A C G is a left [right] ideal if GA € A [AG C A). A C Gisaleft
ideal with left cancellation (Li.l.c.) [right ideal with right cancellation (r.i.r.c.)]
if it is a left [right] ideal and ga = g¢b for ge@G, a, beA implies
a=>blag = bgforg e, a,beAimpliesa = b]. If A C G is a finite (1ilec.),
then ¢, will denote the left invariant mean whose value on f e m(G) is

oalf) = (1/N(A)) X aeaf(as).

Here N(A) denotes the number of elements in A, and this convention will be
used throughout this paper. (In other words, ¢4 = Q[(1/N(A)) -14].) ¢ais
obviously a mean, and since for finite ideals to be (l.LlLc.) is equivalent to the
condition gA = A for every g e G, ¢. is also left invariant.

(If A is a finite (r.i.r.c.), then ¢, will be a right invariant mean.)

If K< m(@®* (or K C Ii(G), or K C m(G)) is a nonvoid set, then the
meaning of dim K = n,n < «, will be throughout this paper that the linear
manifold (in the algebraic sense) spanned by K is finite-dimensional and its
dimension is n. dim K = o will mean that the linear manifold spanned by
K (in the algebraic sense) is not finite-dimensional.

3. Semigroups with n (0 < n < «) finite groups which are
left ideals with left cancellation

It is the purpose of this section to prove

TuavoreMm 3.1.  If G is a semigroup with exactly n finite groups (0 < n < o)
which are (l.i.l.c.), A1, -+, A, , then G is left amenable, and

(3.1) Mi(@) = {SOHO = Z?:l aipa;,a; =0, Z{L a; = 1},
We need first a lemma which is proved partly in [1] by Clifford.

Lemma 3.1. If G is a semigroup with exactly n finite groups Ay, -+, An
which are (1.i.l.c.), then A = U A; s a finite minimal right ideal.

Proof. Let g ¢ G be arbitrary. Clearly A;g¢ is a finite left ideal. It is
even a minimal left ideal. Tor let I C A;g be a left ideal, and let ag € I,
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aeA;. Then A;ag — I. But A;a = A, since A; is a group, and thus
Aig = A; ag C I.

Consequently the left ideal A;gag C A;g must equal A;¢g which shows
that ¢, d € A, g, ¢ # d implies

(3.2) cag # dag.

Moreover if 4 is any element of G, then hA; = A, since A; is a finite (1.i.l.c.).
In other words, hA ;g contains as many elements as 4, ¢, and thus if ¢ # d,
¢, d e A; g, one must have he # hd. Thus A;g¢ is a finite (l.il.c.). From
(3.2) it follows that A; ¢ is also a group (since it is a finite semigroup in which
right and left cancellation hold) and by the conditions of the lemma

A;g = AjCUZb:lAk

for some 7. So far we have that U7 A} is a finite right ideal. It is a minimal
right ideal. 'To see this, let I < U7 A be a right ideal, and let a; ¢ I.  With-
out loss of generality we may assume a; e A4;. Let a e 4;, and let e be the
unit element of the group A;. Then ajeeA,, and if (a;e)”" is its inverse
in 4;, then

a=-¢ca= (a1e)(are) 'a = afe(me)aleas @ € IG < I.

Hence A; < I for all ¢ which shows that U4, c I.
Remark 3.1. In fact it is proved above that if {44} is the set of all finite
groups in G which are (l.il.c.), then A = U, A, is a right minimal ideal.
Proof of Theorem 3.1. Ewvery ¢4, is a left invariant mean; thus @ is left
amenable. ¢4, e MI(G), and since MI(G) is convex, it follows that

{‘P;ﬁa = Z;L K Pa; 5y O = 07 Z;L o = 1} c MZ<G)

TLetnowe e MI(G)anda ed =Ui1 A;. Theno(f) = o(l.f) forf em(QG).
Let h(g) = (If)(g) = f(ag) and A = {g1, --- ,gx}. For the above fixed
aeAlet

Bi={geG;ag = g4, i=1,---,N.

Then B;n B; = 0,7 # j,andUY B, = G because 4 is a right ideal by Lemma
3.1. But h(g) = f(ag) = f(g:) for g e B;. It follows that

h(g) = 224 fg)1s,(g),

o(f) = o(h) = o(22V f(g)1s) = 24 f(g)e(Ls,).

Now 15,(g) = 1,,(ag), because if g ¢ B; , then ag = g, and 1,,(ag) = 1. And
if g ¢ B;, then ag % ¢; and 1,,(ag) = 0. Therefore

(3.3) §0(1Bi) = ¢(la 195) = ¢(10i> = ¢(lg; 14;).

Let ¢ be fixed, and let g; € Ax , and denote by e, the identity of A;. Then
1,,(gig) = 1,(g) for every geG. (If g = e, the sides are equal, and if

and thus
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g # ex, then the right side is zero while the left side is nonnegative). We get
(3.4) o(ly; 15,) 2 ¢(1g) = @(lg;—1 1o,

where gi' € Ay, gi'g: = en = gigi. However (ly,_11,,)(g) = lo(g7'9) =
14;(g) for every g e G (because if ¢ = g, the sides are equal, and if g # ¢,
the right side is zero while the left is nonnegative). Thus

(3.5) ¢(16k) = ¢(ly;—1 1%) = ¢(10i)7
and (3.3), (3.4), (3.5) imply

e(15,) = (1) = o(1s,) for every g; € Ay .
We can now write

o(f) = 22 f(g)e(Ls) = 2t o(La)[2pien £(g0)]
= 2k e(Le) N (A [(1/N(A0) Zgsear 1(g9)] = 2kt 0(La) N (Ar)ear(F)-
Since B; are N disjoint sets such that UY B; = G, we get that

L= 20 e(ln) = 2k Zpene(ls;) = 2iae(le)N(AL),

and o(1,,)N(A;) = 0. If we denote oy, = ¢(1,,)N(Ay), then we have proved
that every ¢ ¢ MI(Q) is of the form D1 ax ¢u, , and thus that

MUG) = {e;0 = 2l aipa;, a0 2 0, 21 a; = 1}.

Remark 3.2. A; as minimal left ideals (left ideals and groups!) are dis-

joint, and therefore ¢4,, ¢ = 1,---,n, are linearly independent. (If
S Biea; = 0,then 0 = (D1 Biva,)(1s,) = Bi.) Therefore we get that
¢4, ,t =1, ---,m,is the set of vertices of the convex set MI(G).

Remark 3.3. Theorem 3.1 obviously remains true if we replace “left” by
“right”” and (l.i.le.) by (rir.c.).

4. Amenable semigroups with countable left invariant means

TaroreMm 4.1.  Let G be a left amenable semigroup which admits countable left
invariant means. Then for each such mean oq there is in G a sequence {A
(not necessarily infinite but not empty) of finite groups which are (l.il.c.) and
such that' oo = Y o aiea, and a; = 0, 25 o; = 1.

Proof. Let ¢o € [1(G) be such that Qpo = ¢o. Then e(g) = 906(19) >0
and || ¢o || = deasoo(g) = || = 1. Thus

I = {g; ei(g) > 0}

is countable and nonvoid. If a e/ and b = go a € Ga, then

4+ If {A,} is the set of all finite groups and (l.i.l.c.) in @, such that e, is the unit of
A, then for g € Ao, ap(g) = geg is an isomorphism of A, onto A, such that ¢ is the
identity mapping and gy ©@es = @ay . This was communicated to the author by M.
Perles and can be directly proved.
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eo(D) = eo(1s) = o(lgy 1) = @0(lyy Lgga)-
Since for every g € G, Iy, 1,0a(9) = 14a(gog) = 1a(g), we get

eo(b) = eilley 1s) Z i(1a) = @u(a) > 0.
Thus for every b e Ga, a € I,
(4.1) eo(b) = eo(a) > 0,
and therefore Ga < I. We proved actually more. Since ¢o(g) = 0 and
D oseaeo(g) = 1, we have Ga < {g; 0o(g) = eo(a)}, which is a finite set if
a e I. Thus for every a € I, Ga is a finite left ideal.

Let now H C Ga be a minimal left ideal, H = (b, -+, b,) say. Hb, C H
is a left ideal, and since H is minimal, Hb; = H for each b; e H. Thus for
each b;, by e H there is a bj e H such that b;b, = b,. It follows that
eo(br) = @o(bi) because by, € Gb; , b; € I, and (4.1) holds. But interchanging
7 and k we get that ¢o(b;) = ¢o(bi) for every b;, by € H, in other words, that

oo is constant on H. However H is a left ideal with left cancellation. Were
this not so, then there would exist go € G, b;, b; € H such that

(4:2) do b, = do bj = by ) b; # bj .
But S"O(blc) = ﬂ"(,)(lbk) = ¢(;(lg0 1610)? and by (42)

(oo 1) (9) = 15,(g0g) = Ly,(g9) + 1o;(g) forevery g e G.
Thus eo(br) = eo(1s,) = eo(lyy 1) = eo(ls; + 1s;) = @o(bi) + eo(b;). It
follows that

eo(br) = @o(b:) 4 @o(b;) = 2¢0(br) > 0
because ¢, is constant on H and b, ¢ I. This is a contradiction, and conse-
quently H is a (lil.c.). But then for b ¢ H, bH = H, and from the above
also Hb = H. Thus H is a finite group which is a (Lil.c.).

We prove now that H = Ga. It is sufficient to prove that a ¢ H because

then Ga < H, but H was a minimal left ideal in Ga; thus H = Ga. Ifa¢ H,
then let by = g1a e H. Since H is a group,

(4.3) by = (91 b1) (g bl)—lbl = gi[b:(g1 bl)_lbl] = g1b;,

where b; = bi(g1 b)) by e H. Thusby = g1 b; = graanda¢H. Buteo(b;) =
@0(1s,) = eo(ly, 1,), and by (4.3), (ly; 1,)(9) = L, (g19) = La(g) + 1,(9)
for every ¢ e G, so that

eo(b) = o(ly, 1) = eo(la + 15,) = @o(@) + @o(b;) = eo(a) + eo(by),

and this contradicts the assumption that a € I (or ¢o(a) > 0).

We conclude that for each a € I, Ga C I is a finite group and (lil.c.) on
which ¢ is constant (Ga is also a minimal left ideal). Thus if a, b € I, then
either Ga = Gb, or Ga n Gb = P. Let

(4.4) I=U,Ga,
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be a decomposition of [ into disjoint finite groups which are (lil.e.). I is
countable and I = U, Gb; therefore there are {a,} C I which satisfy (4.4).
Let Ga, = A, . We proved above that ¢o(g) is constant on Ay and ay, € Ay, .
Thus

(4.5) eo(g9) = eolar) if gedy.
But

L= o]l = 2Zpareig) = 2ok 2peareolg) = 2 N(Ar)eo(ar).

Let o, = wo(ax)N(Ax); then o, = 0, D o, = 1. Since (4.5) can be written
o) = 2weda)la(g) (1a,(g) € L(Q) because Ay is finite, and since
the A.’s are disjoint for each ¢ ¢ G, only one element of this sum is not zero),
we get

¢o = D eola)la,
= 2 eo(a) N (A)[(1/N(A))1a] = 22 aal(1/N (A1) 14,
Thus ¢0 = Qoo = Q2 axl(1/N(A)) sl = 2° aw QUI/N(4A))14] =

> ar s, , because the convergence of > eo(ar)la, is in 4(Q) norm and
Q is isometric. And this finishes the proof of Theorem 4.1.

Remark 4.1. 'The above theorem can be paraphrased in the following way :
If G is a left amenable semigroup, and MI(G@) n Q(L(G)) = 0, then G has
finite groups which are (lil.c.). The converse holds also because if G con-
tains at least one finite group and (lil.c.) A, then ¢4 ¢ MI(G) n Q(L(R)).

Thus we can state

Turorem 4.2. G is a semigroup such that MI(G) n Qi(G) #= B if and only
if G contains at least one finite group which is a (l.i.l.c.).

CoroLLARY 4.1. If G is an infinite left amenable group, then
MI(G) n QL(@F) = 0.

Otherwise G would have to contain finite left ideals. This corollary can
be proved much more easily directly.

It is proved in [7, p. 9], and formerly asserted in [13], that if G is an amenable
group and ¢ € m(Q@)™ is a left invariant element (L, ¢ = ¢ for every g € G),
then there exist ¢1, g2 e MI(G) and & = 0, 8 = 0 such that ¢ = ap; — B2 .
In fact apr = ¢ and Bps = ¢~ of Jordan’s decomposition theorem (see [5,
p. 98]) for bounded additive real set functions, and it is proved in [7] that
o', ¢ are also left invariant if ¢ is left invariant. In this direction we prove
the following:

Lemma 4.1. If G is a left amenable semigroup and ¢ ¢ QL(GF) is
a left invariant element (L,¢" = ¢ for every g e @), then there exist
o1, 00 € MI(G) n QUi(@)) and a = 0,8 = 0 such that ¢’ = api — Bes and
{g; €1 (1,) > 0} n {g; 5 (1,) > 0} = .
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Proof. Let ¢ € L(G), Qp = ¢, and
A = {g; e(g) > 0}, B = {g; o(g9) < 0}

Let e1(g) = o(9)1a(9), e2(9) = —¢(g)1s(g). Then o1, @5 ¢ L(G) and

e(9) = ei(g) — ¢2(g) and el = ZaeA e(9), ” P2 “ = _ZaeBﬁa(g)' It
f em(G) and go € G, then

(4.6) ¢ () = 2o @f(9) = &'l f) = 2scae(9)f(g09).

If f =14 ,thene’(14) = deasO(g)lA(g) = ZaeA e(g) = dem@(g)h(gog)-
Let now A1 = {g;g0g € A}; then 14(gog) = 14,(g). We get

Dveae(@)1a(gog) = 2o e(9)la(g) = 2 pes, 0(g)

= Deanao(g) + Lona, o(g)

because ¢(g) = Oforge¢ A u B. But ¢(g) < 0forg ¢ B, and ¢(g) > 0 for
g e A. Thus

deAﬂA1 go(g) + ZaeBnAl (9(9) = ZaeAﬂA1 €9(g) = deA‘P(g)
= 2geana, 0(9) + 2gesna, 0(g) = Dgeana; o(g).

We get that 2 sca0(g) = 2oseana, ¢(g) and 2 smns, o(g) = O which im-
plies

(47) A=AnA1 and BnA1=

(thus 4 < A4; = {g; gog € A} which implies go 4 C A4 and 4 is a left ideal).
Let now f e m(@G).

deo¢1(g)f(g) = ZaeGS"(g)lA(g)f(g) = deA?’(g)f(g)-

Y 0ea (@) La(@f(9) = 2o e(g)1a(g09)f (g0 g)
because of (4.6) when we look at 14(g)f(g) as belonging to m(G). And
2 0o 0(9)14(g09)f(gog) = 2gea, 2(9)f(gog)

= D geana, 0(9)f(gog) + 2oerna, e(9)f(g0g)

because 14(gog) = 14,(g9) and ¢(g) = 0,g¢ Au B, An B = §. But by
(4.7) we get that

Dsesna o(@f(gog) = 0 and  Dpeana, (9)f(g0g) = 2pea e(9)f(g0g).
Thus
D or(f(g) = 2geae(@)f(gog) = 2geae(9)14(9)f(gog)

= ZaeG e1(9)f(g09)-

We have proved that, for every g e G, ¢1(g) satisfies L,(Qe1) = Qo1 . Since
o2(g) = —e(g9)1s(g) and B = {g; —¢(g) > 0}, the same proof holds for

But
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the left invariance of ¢2(g). By their definition ¢,(¢) = 0 for every g ¢ G.
Let now

Yi(g) = eig)/lleill i @50,
=0 if ¢; =0, T =1,2.
Then ¢; = Q; (if not zero) are countable left invariant means, and
¢ = Qler — ¢ = [leller = [exlles.

Remark 4.2. Let I(Q) = {¢;0 em(Q)*, Ly = ¢ for every g e &§. Since
L, = I} , I(@) is a w*-closed subspace of m(G)* and a fortiori norm-closed.
If we denote I1(@) = I(G) n Q(l(@F)), then I;(GF) is a norm-closed (since
@ is isometric) linear space, and Lemma 4.1 implies that I;(G) is the linear
manifold spanned by MI(G@) n Q(L(GF)). If {A.} is the set of finite groups
which are (1i.l.c.), then each ¢ e MI(G) n Q(1i(G)) is of theform ¢ = Y, a; ¢4,
for some sequence {A;} C {A.}. Thus we get that the norm-closed linear
space spanned by the {¢..} equals I;(G). Moreover, the {¢,,} form a gen-
eralized basis for I;(G) because every ¢ e I[;(G) can be represented as ¢ =
3% as 4, for some sequence {A;] < {A,}, and the assumption

limN-mo lev Oop Pa, = 0
. £ . .
in m(G)” norm implies

0 = limy.e (levanﬂpxin)(lzik) = limy.e, [Zyanﬂodn(lm)] = o

(since ¢4,(14,) = 6a). And now it can be easily seen that the {¢4,} are the
vertices of the norm-closed convex set MI(G) n QiL(G), and MI(F) n QI(@)
is the norm closure of the convex set spanned by ¢.,. We have proved

Lemma 4.2, I,(G) s the norm-closed linear space spanned by {ea.}, and
the set {pa,} 7s a generalized basis in I;(Q).

CoroLLARY 4.2. For any semigroup G, dim I;(G) = n,0 < n < «, ¢f
and only if G contains exactly n finite groups Ay, -+, A, which are (I.i.l.c.).

If dim I,(@) = n > 0, then Lemma 4.1 implies the existence of countable
left invariant means, and by Theorem 4.1 we get that G' contains finite groups
which are (lil.c.) (let all of them be {A4,}). By Lemma 4.2 the {¢4,} are
a basis for I;(@), so that @ has exactly n finite groups which are (lil.c.).
Conversely, let Ay, ---, A, be the finite groups and (Lil.c.) in G; then
ea; e 1(@),1 =1, --- , n, and by Lemma 4.2 the ¢4, are a basis for I1(G),
and therefore dim I;(G) = n. (This result will be needed in the following
section.)

Remark 4.3. If G contains an infinite number of finite groups {4 ,} which
are (Lil.e.), then ¢4, ¢ MI(G) n Q(IL(GF)), and so MI(G) n Q(L(G)) # 0.
Moreover MI(G) n Q(L(G)) < MI(G), and the sides are not equal (in other
words, G admits also left invariant means which are not in Q(li(G)). TFor
let {4,}7 be an infinite sequence of finite groups in G which are (lil.c.).
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For every f e m(@) let Tf e m(Z) (Z are the natural numbers with addition)
be defined as follows:

(4.8) (TF)(2) = (1/N(AD)) Dgjens £(g5)

It follows easily that (T1¢)(2) = 12(2), and if f e m(@) and f(g) = O for
every g ¢ G, then (Tf)(z) = 0 for every 7 ¢ Z. Moreover

T(Lf)(@) = (I/N(A0)) 2gjens L)(g) = (1/N(A0)) 2gjes; flags)
= (1/N(A9) 2gseni f(g5) = (TF) ()

since 4; is a (lil.e.). Thus T(f) = T(l.f) for every a ¢ G. Let now ¢
be a mean in m(Z)* which has the property that ¢(15) = 0 for every finite
set B C Z (for the existence of such means see [9, p. 80]). Let now ¢, be
defined for f e m(G):

eo(f) = o(TY).

It follows from above that ¢o(1e¢) = ¢(T1¢) = ¢(1z) = 1 since ¢ is a mean
in m(Z)*. Now if fem(@) is such that f(g) = 0 for every g e G, then
(Tf)(4) = 0 for every 7 e Z, and therefore ¢o(f) = ¢(Tf) = 0. This implies
also that oo e m(G)¥, as is easily seen. But T'(lL.f) = T(f) for a e G; thus

eo(laf) = e(Tlaf) = o(Tf) = e(f),
which implies that ¢o € MI(G). If go € G, then since

(T14,)(5) = (1/N(A2)) 2gjens Lag(gs),

we get that (T1,,)(¢) = 1/N(4,) £ 0if goe As,and (T1,,)(¢) = 0if goe A5 .

Anyway T1,, is either the function (1/N(A;))1: for some ¢ e Z or identically

zero. Since the choice of ¢ implies ¢(1;) = 0 for every 7 e Z, we get that

o(1y) = o(T1,,) = Oforevery go e G. Thus ¢ ¢ Q(I:(Q)), but o ¢ MI(F).
We can now state

CoroLLArYy 4.3. If G s a left amenable semigroup, then MI(G) =
MI(G) n Q(L(G)) if and only if G contains a finite number (at least one!) of
Jinite groups which are (l.i.l.c.).

The “if” part is Theorem 3.1. For the “only if”’ part, since G admits
left invariant countable means, then by Theorem 4.1, ¢ contains finite groups
which are (Lil.c.). If their number were infinite, then by Remark 4.3, G
would admit left invariant means which are not countable means, which
contradicts MI(G) = MI(G) n Q(L(G)).

5. Left amenable semigroups with a finite-dimensional set
of left invariant means

In this section we prove the main result of this paper, i.e.,

TaeoreEM 5.1. If G is a left amenable denumerable semigroup such that
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dim MI(G) = n < =, then MI(G) € Q(I(G)), and G contains exactly n
fintte groups which are (l.i.l.c.).

In fact some stronger result will be proved in which the denumerability
condition on G will be replaced by: G has a denumerable subsemigroup Gy C G
such that the set of left cosets of G with respect to Gy is denumerable.

From Theorem 5.1 we get, using a result of Day in [2], that for left amenable
infinite groups (not necessarily denumerable) dim MI(G) = . After the
proof of the main theorem, we give some corollaries which may be interesting
for their own sake.

For the proofs we need the following lemmas and remarks:

Lemma 5.1, Let G be a left amenable semigroup, and {¢.} a net of finite
means converging strongly to left invariance. If A C @ is a denumerable set,
then there exists a sequence {¢.,} C {p.} such that

limue || Lo @ay, — o, || = 0 for every a € A.
Proof. Let A = {ajT, and let D be the directed index set of the net
{¢o}. By assumption lim, || Ly ¢e — ¢o || = 0. There is then oy ¢ D such

that || La, ¢ay — ¢ay || < 1. There also exist a3, o3 in D such that

"La1¢a_¢a‘|<% if O(go(é

and

”L%goa——gaa” <31 if a=ar.

Let as € D be such that az = a3 and az = 5. Then || La; 0ay — ¢ay || < %,

2 =1,2. If v, -+, ax—1 have been chosen so that
“Lai¢0j — Po;j H < 1/.77 1= 1)2’ 7j) j= 172, ’k - 1’
then a; will be chosen in the following way: There exist ax, -+ - , ak such

that @ = o} implies || Lo, 0u — 0ol < 1/k. Let o = ajfor 1 < ¢ < k.
Then || Lo; ¢ap — ¢ai || < 1/k, 1 < 7 < k. The sequence {ou}, k = 1,2, - -+,
satisfies the requirements because if a ¢ 4, then a = a;, for some 4, and
hence

” L“io Pa; — Paj “ <1/j forj = 4,

so that lim,.., || Lo ¢a; — ¢a; || = 0, which proves the lemma.

DEerFINITION (see [4, p. 215]). Let @ be a semigroup, and Gy C G a sub-
semigroup; then for a, b ¢ G we write @ & b if there exist ¢, ¢” € G, such that
ag’ = bg”. Tor ¢, d e G we write ¢ ~ d if there exist a finite set a1, --- , &
of elements in G such thatc &~ oy & as & -+ & a, =~ d. The relation ~
is an equivalence relation, and the decomposition of G into the disjoint equiv-
alence classes with respect to this relation are the left cosets of G with respect
to Go .

Lemma 5.2. Let G be a semigroup, and Gy C G a subsemigroup. Let
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eem(Q)* satisfy Lyo = 0if geGo. Iffor somea e @, Lag = o, then Lyo = ¢
for every g in the left coset containing a.

Proof. Let b = c; then by, = cge for some g1, g2 € Go. Since Ly, ¢ = o,
1=1,2,and L, L; = L, if s, ¢ G, we get
Lyo = Lb(Lg1 ¢) = ngl¢ = ch2§0 = Lc(ng 99) = L. p.
In other words, b & ¢ implies Ly ¢ = L.p. Let now b be in the left coset
containing a. Then there exist a;, - -+, ar € G such that
IR M R D,
and by assumption L.,¢ = ¢. Consequently
¢=Lio=Layyo= -+ = Lyo = Lye.

CoOROLLARY 5.1.  If Gy C G is as in Lemma 5.2, and if {g.} 7s a set of repre-
sentatives of the left cosets of G with respect to Gy , then left invariance of ¢ e m(G)*
by the elements of the set Gy U {g.} tmplies left invariance by every g € G. (In
other words, L, ¢ = ¢ for g € Go U {g.} implies L, o = ¢ for every g € G.)

We shall further use the following known facts:

(5.1)* If ¢ is a w*-cluster point of the sequence {¢.} of Lemma 5.1
(¢ €eNrei{@an s Panir» -}, and the bar means w*-closure), then Loy = ¢
for each @ ¢ A. (This is a trivial generalization of [2, p. 520, (B)].) Let
Pap, = Pn, f € m(G), then

| (Lo — @) | £ | Lale — @)f | + | (Lagn — @a)f | + | (¢n — @)f|

S [ Laen =@l IF 1l + 1 (e = e)laf| + | (6 — @a)f].
But there is an n; such that || Laen — ¢n || || fI| < &/3 whenever n = n,,

and an ny = n; such that ¢., € {¥; | (¥ — )l f| < &/3;| (¥ — o)f | <_e/3}.
Thus L,¢ = ¢ for each a e A. Since L, Ly, = L, one even has L.¢ = ¢
for every c¢ which is in the semigroup generated by A.

(5.2)* The set of finite means is w*-dense in the w*-compact convex set
of means on m(G) (see M. M. Day [2, p. 513, (C)]).

(5.3)* It is well known that if ¢, is a sequence of means on m(G) with
exactly one w*-cluster point ¢o , then lim,,.., ¢.(f) = ¢o(f) for every f e m(@).
Otherwise there would exist fo e m(G) and a sequence n; such that
| (pn; — @0)fo| = € for some ¢ > 0. But by (5.2)*, ¢n; has a w*-cluster
point ¢, which has to belong to the w*-closed set {¢; | (¥ — eo)fo| = &}.
Thus 5 3 ¢o. Since ¢q is also a w*-cluster point of ¢, , we get a contradic-
tion to the uniqueness of ¢y .

(5.4)* If Y is a linear topological space (Lt.s.) and X C Y is a finite-
dimensional linear manifold, then X is closed (see [3, p. 14, Corollary 4 (a)].
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(5.5)% If Y is a finite-dimensional (1.t.s.) with two topologies 71, 72
(both make Y a (Lt.s.)), then 7, and 7, are equivalent (see [3, p. 14, Corollary
4 (a)]).

(5.6)* If Yisa (lt.s.) and X C Y is a linear manifold, then the induced
topology from Y in X makes X a (l.t.s.) (and if Y is convex, so is X).

(5.7)* If X is a separable Banach space with a Schauder basis z;, then
there exist §; > 0 such that each sequence y; ¢ X for which || z; — y; || < &
is also a Schauder basis for X. (See [11]. We use only the case where X
has a finite Schauder basis which is entirely trivial.)

(5.8)* If G is a left amenable semigroup and ¢ ¢ MI(Q), and if {¢.} is a
net of finite means converging w* to ¢y, then {¢.} is converging w* to left
invariance (see [2, p. 520, (A)]). But by [2, p. 524, Theorem 1], there is a
net of finite averages far out in ¢, (for definition see [2, p. 523, Definition
5])—Tlet it be yg—which converges in norm to left invariance, and by [2, p.
523, Lemma 3], the net {¥s} also converges w* to ¢o.

(5.9)* 1L(@) is w*-sequentially complete (see [5, p. 374]).
We are now ready to prove Theorem 5.1.°

TaEOREM 5.1.  Let G be a left amenable semigroup with Go C G a denumerable
subsemigroup such that the set of left cosets (of G with respect to Gy) is denumer-
able.

If dim MI(@) = n < o, then MI(G) < Q(L(GF)), and G has exactly n
Jinite disjoint groups which are (l.i.1.c.).

(Remark. If ¢ has a denumerable left ideal, then the condition of the
theorem holds.)

Proof. Let E be the linear manifold spanned by MI(G). Let
e1, -, on € MI(Q) be a basis for E. If 6,, -+, 8, are chosen as in (5.7)%
then § = mini,<, §; satisfies: Eachsety; e B, i =1, ,n, || ¥ — ;|| <3,
is also a basis for £. We shall prove that there are such ¢,’s which are in
Q(L(@)). It will then follow that MI(G) < Q(L(Q®)), i.e., E is the linear
manifold spanned by MI(G) n Q(I1(R)); in other words, F is exactly I:(G)
of Remark 4.2. Hence by the assumption of the theorem, dim I;(G) = n,
and Corollary 4.2 implies then the existence of exactly n finite groups which
are (lil.e.).

Let now ¢ be one of (g1, -+, ¢n), and S(zo, &) = {z; |2 — x| < &}.
E is finite-dimensional and by (5.4)* is closed in both the w* and norm
topology of m(G)*. By (5.6)* both topologies induce in E topologies which
make E a linear topological space, and by (5.5)* they are equivalent. There-
fore there exists a w*-neighborhood N, of ¢, such that

[0 GNonE C S(gﬂo,a) nE,

5 This author is very grateful to Professor Day for kindly pointing out an error in
the original proof of this theorem.
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and we can assume that N, is w*closed and convex. (If N, =
N(eo,fr, oy fase) = Ho;| (0 —@ofi] <& 1 =¢=n,fi em(G)} satisfies
goe Nyn E C S(go,8) nE, then No = {o; | (¢ — ¢0)fs| = ¢/2,1 £ 1 = n}
is a w*-closed and convex neighborhood of ¢, and satisfies

v eNon E C S(p,8) u E.)

By (5.2)* we can choose for each w*-neighborhood W of ¢, a finite mean
ow € Non W. {ow} is a net of finite means defined on the directed set of
w*-neighborhoods of ¢, (directed by inclusion) which converges w* to oo .
By (5.8)* there is a net {y;} of finite averages far out in {ow} which con-
verges in norm to left invariance, and {y;} converges w* 10 ¢o. But ow e No
and N, is convex; thus ¢s as a finite average of the finite means ¢ is also a
finite mean, and ¥ ¢ No. By the assumption of the theorem there exists
a countable set {g.} of representatives of the left cosets of G with respect to
@, and also Gy is countable.
By Lemma 5.1 there exists a sequence {ys,}] C {¢s} such that

iMoo || Las, — ¥5, ] = 0 for every a ¢ Gou {g.}.

But by (5.2)* the sequence y;, has some w*-cluster point o ¢ No (because
¥s, € No and N is w*-closed). By (5.1)%, v, satisfies L, o = ¢ for every
a € Gy U {g,}; hence by Corollary 5.1, L, ¥y = ¢, for every g e . But ypas a
w*-cluster point of finite means is by (5.2)* a mean. Thus we have con-
structed a ¥, which is a left invariant mean, and ¢ e Non £ C S(¢o, 6) n E.
We shall show that ¥, € Q(11i(G)) and thus finish the proof of the theorem.
We shall construct a sequence ¥y of finite means such that limy,. ¥r(f) =
Yo(f) for f e m(G), and it will follow by (5.9)* that ¢o ¢ Q(L(G)).

There are w*-neighborhoods V,, of Yo such that Yo e V. n E C S(¢o, 1/n) n E,
and we can assume that V, are w*-closed (as we did for No). Let W, =
Via---nV,. W,isaw"closed neighborhood of ¥ , such that ¢s e W,n E <
Ve EcC SWo,1/n)nEand W, D Wyta,n = 1,2, ---. From now on,
let ¥g, = ¥n . Since ¥ is a w*-cluster point of ¥ , we can choose a sequence
n < My < --+ < mp < --- such that ¢,, € Wi. {¢,,} as a subsequence of
¥, satisfies also limy e || Lo ¥n, — ¥n, || = O for every a € Go u {g.}. But
¥, s a sequence of finite means has by (5.2)* some w*-cluster point o (which
by (5.2)* is a mean). By (5.1)% Yo also satisfies Lo g = o for every
a € Go u {g.}, and by Corollary 5.1, L, o = s for every g € G, i.e., o is a
left invariant mean and g ¢ B. But Yn, € Wi, © Wy, for b = ko, and Wy,
is w*-closed; therefore yo e Wy, for each ko, and therefore Yo € Wi n E for
k=1,2,---. We can now write Yo e Won E < S, 1/k) n E; in other
words, || Yo — %o || < 1/k for every k, and thus o = ¢. We have proved
that ¥, has exactly one w*-cluster point which is ¢o. It follows by (5.3)*
that limye ¥, (f) = ¢o(f) for every f e m(G). But the ¥y, are finite means.
Let ¥ € l,(@) be such that Qi = ., . Then ¢ is a weak Cauchy sequence
in Li(@®), because if f ¢ m(G), By f(2) = liMjme ¥, (f) = wo(f), and
therefore f(;) is a Cauchy sequence of reals. But by (5.9)%, Li(G) is weakly
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sequentially complete, and therefore there exists a ¢q e L(G) such that
lime oo f(¥) = f(¥0) for f e m(@). However yo(f) = LMoo ¥u,(f) =
lime,., f(¥4) = (o), so that Q¢ = ¥o. Thus ¢ ¢ Q(i(G)), which com-
pletes the proof.

CoroLLARY 5.2. If G is a denumerable semigroup with dim MI(G) = n,
0 <n < «,then MI(G) € Q(L(G)), and G contains exactly n finite groups
which are (l.i.l.c.).

Remark 5.1. We remark here that dim MI(G@) = 1 is equivalent to G
having unique left invariant mean, as is easily seen.

CoroLLARY 5.3. If G s an infinite left amenable group (not necessarily
denumerable), then dim MI(G) = .

Proof. If Gyis a denumerable left amenable group, and if dim MI(G,) < =,
then Corollary 5.2 implies the existence of finite left ideals in Gy, which can-
not be.

If G is the group of our theorem, since 0 < n, @ is left amenable. If G, C G
is a subgroup, then G, is left amenable (see [2, p. 513]. There exists by [2,
p. 534] an isometric linear operator® from the space {¢; ¢ e m(Go)*, Ly o = ¢
for g € Go) into {Y; ¢ em(*, Lyy = ¢ forg e G).

But {¢; ¥ e m(@)*, L,y = ¢ for g ¢ G} is by [13, pp. 280-281] (see also
[7, p. 9]) the linear manifold spanned by MI(G@). Thus if dim MI(G) =
n < o, then dim MI(G,) = n for each subgroup Go € G. Now since G is
infinite, we can find a sequence {g;} of different elements in G. Let G, be
the countable group generated by {g:}; then dim MI(G) = n, which is a
contradiction (since G, is infinite and denumerable, and therefore
dim MI(Gy) = ).

Remark 5.2. If G is a finite group, then it is known that it has a unique
left [right] invariant mean. We can now rephrase Corollary 5.3 as follows:
G is a left amenable group with unique left invariant mean if and only if
@ is finite (see Remark 5.1). We have proved thus

TuaeoreMm 5.2. If G is a left amenable group, then dim MI(G) is either one
or not finite. It is one if and only of G is finite.

CoroLLARY 5.4. If G is a commutative countable semigroup, then
dim MI(G) =1 or dim MI(G) = .

A commutative semigroup has at most one minimal ideal. We get thus
a partial result of a more general result of I. S. Luthar in [12].

COROLLARY 5.5. Let G be a countable semigroup which s left amenable and
right amenable. If dim MI(G) = n < o, then n = 1 and MI(G) = Mr(G).

6Ly = (lo)* and (laf)(g) = flag) for fem(Go) and a, geGs .
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(In other words, G has a unique right tnvariant mean which coincides with the
left snvariant one.)’

Proof. By Corollary 5.2, G has n finite groups Ay, ---, A, which are
(1il.e.), and by Lemma 3.1, A = U A; is a right minimal ideal. But if
n > 1, then A;, A, are different left minimal ideals and therefore disjoint.
Let now ¢oe Mr(@) (Mr(G) £ @ by assumption). For any goeG,
(799 Lagy) (9) = lago(g90) = la(g), and thus 1 = ¢o(le) = ¢o(ley,). Let
now g; e A;, 7 = 1,2. Then A; = Gy, and thus

(%) 2 = ¢o(14,) + eo(1ls,) = @o(ls; + 14,).
But A4, , A, are disjoint, and thus

14,(g9) + 14,(9) = 1la(g),

so that ¢o(l4, + 14,) = ¢o(le) = 1, which contradicts (*), and therefore
n = 1. In other words A = A;, and A is a finite group and (lil.c.) and
also a right minimal ideal. But 4 isalso a (r.i.r.c.) becauseforg e G, Ag C A
is a left ideal. But A is a minimal left ideal so that A = Ag for g € G, which
implies that A is also a (r.i.r.c.). Moreover, A is the only group which is
(rir.c.), for if B were another one, then A, B would be different right min-
imal ideals and therefore disjoint. If @ ¢ A, b ¢ B, then

1 = e1(le) = e1(lee) = e1(15) where ¢, e MI(G).
and

1 = ¢1(le) = e1(lag) = ¢1(14).
As before however 14(g) + 1z(g) = 14(g), so that

1= 401(10) = ¢1(1A) + ‘PI(IB) = 2y

which is again a contradiction. Therefore G has exactly one finite group
and (lil.c.) which coincides with the only finite group which is (r.i.r.c.).
Remark 3.3 implies now that G' has a unique right invariant mean and a
unique left invariant mean both of which coincide with ¢, .°

Remark 5.3. The above corollaries are true also for left amenable semi-
groups G which have a countable subsemigroup Go C @ such that the set of
left cosets of G with respect to Gy is countable (for instance, if G has some
countable left ideal).

Remark 5.4. All the results in this paper are true if left is replaced by
right and (Lil.c.) by (rir.c.).

7 And @ contains a unique finite group and (1.i.J.c.) which coincides with the unique
finite group and (r.i.r.c.) of G.

8 Please note also the following result which in this author’s opinion is of considerable
interest: If @ is a countable semigroup with right cancellation, then dim MI(G) = n,
0< m< o, implies that G is a finite group and that » = 1. (If A, is some finite group
and (l.i.l.c.) of G (see Corollary 5.2) with identity e; and ¢ € G, then gei = ger. But
the right cancellation implies that ge; = ¢, and since A; is a left ideal, we
get that @ = A, .)
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Added September 12, 1962. In a recent paper, The second conjugate space
of a Banach algebra as an algebra (Pacific J. Math., vol. 11 (1961), pp. 847—
870), P. Civin and B. Yood conjecture (p. 853) that for any infinite com-
mutative group G, the radical of the second conjugate algebra m(G)* is in-
finite-dimensional. This is proved there (p. 853) only for the additive
group of integers.

In our paper here we prove much more than this conjecture, namely:
The radical of the second conjugate algebra m(G)*, for any infinite amenable
group G, is infinite-dimensional.

In order to see this we have only to remark the following: By the paper
cited above (pp. 849-850),

Ji = {oem(@*;0(lg) = 0and L, o = ¢ for each g ¢ G}

satisfies J1 = {0} and hence is included in the radical of m(@)*. We choose
now a fixed ¢y € MI(GF). For each ¢ ¢ MI(G) we have ¢ = (¢ — o) + @0
and ¢ — ¢o € J1, which implies that MI(G) < J; + ¢o. The assumption
that dim J; < o would imply that dim MI(G) < o which contradicts
Corollary 5.3 of our paper. (In this connection see also the last page of
the next paper in this journal.)
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