ON THE HOMOTOPY-COMMUTATIVITY OF SUSPENSIONS

BY
I. BERSTEIN AND T. GANEA

1. Introduction

It is well known that the loop space of an H-space always is homotopy-commutative. Recently, M. Sugawara [5; Theorem 8.1] has proved the following partial converse of this fact: If the loop space of a CW-complex X such that $\pi_q(X) = 0$ for q < n and q > 3n - 2 is homotopy-commutative, then X is an H-space. In a sense, this result is the best possible since, with n = 2, the CW-complex obtained by killing off the homotopy groups in dimensions ≥ 6 of the complex projective plane fails to be an H-space even though its loop space is homotopy-commutative [1; §3.10].

It will be shown below that the suspension over a reasonable space of Lusternik-Schnirelmann category ≤ 2 always is homotopy-commutative, and our main result consists of a partial converse of this fact:

Theorem 1. Let X be an (n-1)-connected CW-complex of dimension less than or equal to 3n-2 $(n\geq 1)$. If the suspension ΣX is homotopy-commutative, then cat $X\leq 2$.

Theorem 1 is an immediate consequence of Lemma 3.2 below and of

Theorem 2. Let X be an (n-1)-connected CW-complex of dimension less than or equal to (k+1)n-2 $(n \ge 1)$. If conil $\Sigma X \le k-1$, then cat $X \le k$.

Theorem 2 is, in turn, an immediate consequence of Theorems 3 and 4 which will be stated and proved in the next sections.

As above, Theorem 1 yields the best possible result. For, let X denote the CW-complex obtained by attaching a (3n-1)-cell to the wedge $S^n \vee S^n$ by means of a map in the class of the triple Whitehead product $[i_1, [i_1, i_2]]$, where i_1 and i_2 are the homotopy classes of the left and right embeddings $S^n \to S^n \vee S^n$. Evidently, X is (n-1)-connected and dim X=3 n-1; according to [2; p. 450] one has cat X=3 but w cat X=2, so that, by Corollary 3.3 below, the suspension of X is homotopy-commutative. Finally, since an H-space is a space with multiplication, whereas a space has a comultiplication if and only if it has category ≤ 2 , Theorem 1 is the dual in the sense of Eckmann-Hilton [3] of the above result by Sugawara. However, our proofs are not dual to those given by Sugawara.

Received March 31, 1961.

¹ All the necessary definitions are given in the next two sections.

2. Category and weak category

All spaces, maps, and homotopies in this paper are assumed to possess or preserve a base-point, generally denoted by *; in a CW-complex, * will always be a 0-cell. We write $f \simeq g$ if f and g are homotopic maps, and denote by 0 the constant map. For any integer $k \geq 1$ and any space X we shall denote by X^k the k-fold Cartesian power of X, and by T = T(X, k) the subset of X^k consisting of all points (x_1, \dots, x_k) such that $x_q = *$ for some q with $1 \leq q \leq k$. We write $j: T \to X^k$ for the inclusion map, and $\Delta: X \to X^k$ for the diagonal map which is given by $\Delta(x) = (x, \dots, x)$. Finally, let $X^{(k)}$ and $\eta: X^k \to X^{(k)}$ denote the identification space and identification map resulting by pinching the subset T of X^k to a point, which will serve as basepoint in $X^{(k)}$.

The Lusternik-Schnirelmann category cat X of any space X is the least integer $k \ge 1$ such that X may be covered by k open subsets which are contractible in X; if no such integer exists, cat $X = \infty$. It has been pointed out by G. W. Whitehead [6] that, for a large class of spaces including all connected CW-complexes, this is equivalent to saying that cat $X \le k$ if and only if there is a map $\phi: X \to T(X, k)$ such that $j \circ \phi \simeq \Delta$. As in [2] we say that X has weak category $\le k$ and write w cat $X \le k$ if and only if $\eta \circ \Delta \simeq 0$. For any connected CW-complex X one has w cat $X \le cat X$, but, as mentioned in the Introduction, the converse inequality may fail to hold. Nevertheless, we prove

Theorem 3. Let X be an (n-1)-connected CW-complex of dimension less than or equal to (k+1)n-2 $(n \ge 1)$. If w cat $X \le k$, then also cat $X \le k$.

Proof. The result being trivial if n = 1, we shall assume that $n \ge 2$. Let Y^I denote the space of all paths in any space Y. Consider the diagram

$$T \xrightarrow{j} X^k \xrightarrow{\eta} X^{(k)}$$
 $\downarrow g \qquad r \cap \downarrow f \qquad \downarrow id$
 $F \xrightarrow{j} E \xrightarrow{p} X^{(k)}$

in which

$$E = \{((x_1, \dots, x_k), \lambda) \mid \lambda(0) = \eta(x_1, \dots, x_k)\} \subset X^k \times (X^{(k)})^I,$$

$$f(x) = (x, \lambda_x) \quad \text{with} \quad x = (x_1, \dots, x_k) \quad \text{and} \quad \lambda_x(t) = \eta(x),$$

$$r((x_1, \dots, x_k), \lambda) = (x_1, \dots, x_k), \quad p((x_1, \dots, x_k), \lambda) = \lambda(1),$$

$$F = p^{-1}(*), \quad \text{and} \quad i \text{ is the inclusion map.}$$

One has $p \circ f = \eta$, so that, since $\eta \circ j(T) = *, f$ defines a map g which may

be regarded as an inclusion map. It is well known that

- (1) f is a homotopy equivalence with $r \circ f = id$,
- (2) the lower row in the preceding diagram is a fibration.

In the commutative diagram

$$H_{q+1}(X^{k}) \to H_{q+1}(X^{k}, T) \to H_{q}(T) \to H_{q}(X^{k}) \to H_{q}(X^{k}, T) \xrightarrow{\eta'_{*}} H_{q}(X^{(k)}, *)$$

$$\downarrow f_{*} \qquad \downarrow f'_{*} \qquad \downarrow g_{*} \qquad \downarrow f_{*} \qquad \downarrow f'_{*} \qquad \downarrow \text{id}$$

$$H_{q+1}(E) \to H_{q+1}(E, F) \to H_{q}(F) \to H_{q}(E) \to H_{q}(E, F) \xrightarrow{p'_{*}} H_{q}(X^{(k)}, *)$$

 η'_* is isomorphic for all $q \ge 0$ (see for instance [4; Lemma 1.6]). Since X and hence X^k are (n-1)-connected, so is E by (1); also, by the relative Künneth and the Hurewicz theorems, $X^{(k)}$ is (kn-1)-connected. Therefore, by (2), F is (n-1)-connected, and, according to a well known result by Serre, p'_* and hence f'_* are isomorphic for $q \le (k+1)n-1$. The "five lemma" now implies that g_* is isomorphic for $q \le (k+1)n-2$, and standard arguments yield

(3)
$$\pi_q(F, T) = 0$$
 for $q \le (k+1)n - 2$.

Since w cat $X \leq k$, we have $\eta \circ \triangle \simeq 0$, and hence $p \circ f \circ \triangle \simeq 0$. It follows from (2) that there exists a map $\psi: X \to F$ such that $i \circ \psi \simeq f \circ \triangle$. By (3) and since dim $X \leq (k+1)n-2$, a standard deformation argument yields a map $\phi: X \to T$ such that $g \circ \phi \simeq \psi$. We have

$$j \circ \phi = r \circ f \circ j \circ \phi = r \circ i \circ g \circ \phi \simeq r \circ i \circ \psi \simeq r \circ f \circ \triangle = \triangle,$$

and Theorem 3 is proved.

3. Weak category and co-nilpotency of suspensions

Let X be an arbitrary space with base-point *. The reduced suspension ΣX is the identification space obtained by pinching to a point the subset $0 \times X \cup 1 \times X \cup I \times *$ of the Cartesian product $I \times X$; the image in ΣX of $(s, x) \in I \times X$ will be denoted by $\langle s, x \rangle$. The co-multiplication and co-inversion maps

$$\sigma: \Sigma X \to \Sigma X \vee \Sigma X$$
 and $\tau: \Sigma X \to \Sigma X$

given by

$$\sigma\langle s, x \rangle = (\langle 2s, x \rangle, *) \qquad \text{for } 0 \le 2s \le 1,$$

$$= (*, \langle 2s - 1, x \rangle) \qquad \text{for } 1 \le 2s \le 2,$$

$$\tau\langle s, x \rangle = \langle 1 - s, x \rangle \qquad \text{for } 0 \le s \le 1,$$

convert ΣX into an H'-space, the dual in the sense of Eckmann-Hilton [3] of a homotopy-associative H-space with homotopy inversion. For any H'-space Y and any $k \geq 1$ we have defined inductively in [1; Definition 1.4] a co-commutator map ψ_k of weight k; ψ_1 is the identity map of Y, ψ_{k+1} is the

composition

$$Y \xrightarrow{\psi} Y \lor Y \xrightarrow{\psi_k \lor id} {}^k Y \lor Y = {}^{k+1}Y$$

in which ${}^{1}Y = Y$, and, in case $Y = \Sigma X$, ψ is given by

$$\psi\langle s, x \rangle = (\langle 4s, x \rangle, *) \qquad \text{for } 0 \le 4s \le 1,$$

$$= (*, \langle 4s - 1, x \rangle) \qquad \text{for } 1 \le 4s \le 2,$$

$$= (\langle 3 - 4s, x \rangle, *) \qquad \text{for } 2 \le 4s \le 3,$$

$$= (*, \langle 4 - 4s, x \rangle) \qquad \text{for } 3 \le 4s \le 4.$$

The co-nilpotency class conil ΣX is the least integer $k \geq 0$ such that $\psi_{k+1} \simeq 0$; if no such integer exists, conil $\Sigma X = \infty$ [1; Definition 1.8].

Definition 3.1. The suspension ΣX is homotopy-commutative if $\varepsilon \circ \sigma \simeq \sigma$, where $\varepsilon \colon \Sigma X \vee \Sigma X \to \Sigma X \vee \Sigma X$ is given by

$$\varepsilon(y, *) = (*, y)$$
 and $\varepsilon(*, y) = (y, *)$ for $y \in \Sigma X$.

Lemma 3.2. The suspension ΣX is homotopy-commutative if and only if conil $\Sigma X = 1$.

Proof. The set $\pi(\Sigma X, Y)$ of based homotopy classes of maps of ΣX into an arbitrary space Y may be converted into a (non-Abelian) group by setting

$$\{f\} + \{g\} = \{ \nabla \circ (f \vee g) \circ \sigma \} \text{ and } -\{f\} = \{f \circ \tau \};$$

here, $\{h\}$ is the homotopy class of the map $h: \Sigma X \to Y$ and $\nabla: Y \vee Y \to Y$ is given by $\nabla(y, *) = \nabla(*, y) = y$. The zero of the group $\pi(\Sigma X, Y)$ is the homotopy class of the constant map. With $Y = \Sigma X \vee \Sigma X$, it is easy to check that $\psi = \nabla \circ (\sigma \vee \varepsilon \circ \sigma \circ \tau) \circ \sigma$; therefore,

$$\{\psi\} = \{\sigma\} - \{\varepsilon \circ \sigma\},\$$

so that $\{\psi\} = 0$ if and only if $\{\sigma\} = \{\varepsilon \circ \sigma\}$.

As an immediate consequence of Lemma 3.2 and of [1; Theorem 6.13] we have the following corollary which, in fact, is valid for a more general class of spaces.

Corollary 3.3. Let X be a connected CW-complex. If we at $X \leq 2$ (or if cat $X \leq 2$), then ΣX is homotopy-commutative.

We now prove

THEOREM 4. Let X be an (n-1)-connected CW-complex of dimension less than or equal to 2kn-2 $(n \ge 1)$. If conil $\Sigma X \le k-1$, then w cat $X \le k$.

Proof. Let ΩY denote the loop space of any space Y with base-point. Since conil $\Sigma X \leq k-1$, the co-commutator map ψ_k of weight k is nullhomotopic. As $^k\Sigma X = \Sigma(^kX)$, this implies that the map

$$\phi: X \to \Omega \Sigma({}^k X),$$

given by $\phi(x)(s) = \psi_k(s, x)$, also is nullhomotopic. As shown by [1; Proposition 2.17], in the diagram below there is a map γ such that $\phi = \gamma \circ \Delta$.

$$X \xrightarrow{\triangle} X^{k} \xrightarrow{\gamma} \Omega \Sigma({}^{k}X)$$

$$\downarrow \eta \qquad \qquad \rho \cap \downarrow r$$

$$X^{(k)} \xrightarrow{e} \Omega \Sigma(X^{(k)})$$

Also, by [1; Lemma 6.9], we have $\gamma \mid T(X, k) \simeq 0$, and there results a map $d: X^{(k)} \to \Omega \Sigma({}^k X)$ such that $d \circ \eta \simeq \gamma$. As is easily seen, there is a map ρ such that $\rho \circ e = d$, where e is the natural embedding given by $e(y)(s) = \langle s, y \rangle$ for $y \in X^{(k)}$. It follows from results by Milnor² (the construction FK) that there is a map r such that $r \circ \rho \simeq \text{id}$. Therefore,

$$(4) \qquad e \circ \eta \circ \triangle \simeq r \circ \rho \circ e \circ \eta \circ \triangle \simeq r \circ \gamma \circ \triangle = r \circ \phi \simeq 0.$$

Since X is (n-1)-connected, $e_q: \pi_q(X^{(k)}) \to \pi_q(\Omega\Sigma(X^{(k)}))$ is monomorphic for $q \leq 2kn - 2$ and epimorphic for $q \leq 2kn - 1$. Since X is a CW-complex of dimension $\leq 2kn - 2$, it follows now from (4) that $\eta \circ \Delta \simeq 0$, i.e.,

$$w \operatorname{cat} X \leq k$$

as asserted.

Remark. As shown in [2; p. 450], the 5-dimensional polyhedron X obtained by attaching to S^2 a 5-cell by means of a map in the class generating $\pi_4(S^2)$ has vanishing 2-fold cup products but w cat X = 3. Therefore, by Theorem 4, conil $\Sigma X = 2$ so that \bigcirc -long $X < \text{conil } \Sigma X$; the general inequality

$$\bigcirc$$
-long $X \leq \text{conil } \Sigma X$

is proved in [1; Theorem 5.8]. However, we know of no example X such that conil $\Sigma X < \text{w cat } X - 1$.

REFERENCES

- I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math., vol. 5 (1961), pp. 99-130.
- I. Berstein and P. J. Hilton, Category and generalized Hopf invariants, Illinois J. Math., vol. 4 (1960), pp. 437-451.
- B. Eckmann et P. J. Hilton, Groupes d'homotopie et dualité, C.R. Acad. Sci. Paris, vol. 246 (1958), pp. 2444-2447, 2555-2558, 2991-2993.
- E. H. SPANIER, Function spaces and duality, Ann. of Math. (2), vol. 70 (1959), pp. 338-378.
- 5. M. Sugawara, On the homotopy-commutativity of groups and loop spaces, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math., vol. 33 (1960), pp. 257-269.
- 6. G. W. WHITEHEAD, *The homology suspension*, Colloque de Topologie algébrique, Louvain, 1956, pp. 89-95.

Institute of Mathematics

R. P. R. ACADEMY

BUCAREST, ROUMANIA

² The authors are grateful to the referee for suggesting use of Milnor's results in order to simplify the original proof, which was limited to the case k = 2.