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1. Introduction

It is well known that the loop space of an H-space always is homotopy-
commutative. Recently, M. Sugawara [5; Theorem 8.1] has proved the fol-
lowing partial converse of this fact" If the loop space of a CW-complex X
such that rq(X) 0 for q < n and q > 3n- 2 is homotopy-commutative,
then X is an H-space. In a sense, this result is the best possible since, with
n 2, the CW-complex obtained by killing off the homotopy groups in dimen-
sions => 6 of the complex projective plane fails to be an H-space even though
its loop space is homotopy-commutative [1; 3.10].

It will be shown below that the suspension over a reasonable space of
Lusternik-Schnirelmann category =< 2 always is homotopy-commutative, and
our main result consists of a partial converse of this fact"

THEOREM 1. Let X be an (n 1)-connected CW-complex of dimension
less than or equal to 3n 2 (n >- 1). If the suspension ZX is homotopy-
commutative, then cat X =< 2.

Theorem 1 is an immediate consequence of Lemma 3.2 below and of

THEOREM 2. Let X be an (n 1)-connected CW-complex of dimension
less than or equal to (It - 1)n 2 (n >= 1). If conil 2X _<_ ] 1, then
catX -< /.

Theorem 2 is, in turn, an immediate consequence of Theorems 3 and 4 which
will be stated and proved in the next sections.
As above, Theorem 1 yields the best possible result. For, let X denote the

CW-complex obtained by attaching a (3n 1)-cell to the wedge S v S
by means of a map in the class of the triple Whitehead product [il, [il, i2]],
where i and i. are the homotopy classes of the left and right embeddings
S - S v S. Evidently, X is (n 1)-connected and dim X 3 n 1;
according to [2; p. 450] one has cat X 3 but w cat X 2, so that, by
Corollary 3.3 below, the suspension of X is homotopy-commutative. Finally,
since an H-space is a space with multiplication, whereas a space has a co-
multiplication if and only if it has category -< 2, Theorem 1 is the dual in
the sense of Eckmann-Hilton [3] of the above result by Sugawara. However,
our proofs are not dual to those given by Sugawara.
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All the necessary definitions are given in the next two sections.
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2. Category and weak category
All spaces, maps, and homotopies in this paper are assumed to possess or

preserve a base-point, generally denoted by .; in a CW-complex, will always
be a 0-cell. We write f g if f and g are homotopic maps, and denote by 0 the
constant map. For any integer ]c => 1 and any space X we shall denote
by X the It-fold Cartesian power of X, and by T T(X, k) the subset of
Xk consisting of all points (xl, x) such that xq for some q with
1 =< q -< k. We write j’T X for the inclusion map, and/’X -- X for
the diagonal map which is given by (x) (x, x). Finally, let X()

X X()and 7: -- denote the identification space and identification map re-
sulting by pinching the subset T of X to a point, which will serve as base-
point in X(k).
The Lusternik-Schnirelmann category cat X of any space X is the least

integer/ >- 1 such that X may be covered by/ open subsets which are con-
tractible in X; if no such integer exists, cat X . It has been pointed out
by G. W. Whitehead [6] that, for a large class of spaces including all connected
CW-complexes, this is equivalent to saying that cat X _-< ]c if and only if
there is a map :X -. T(X,/c) such that j o _/. As in [2] we say that X
has weak category -<_ / and write w cat X <- / if and only if v A 0. For
any connected CW-complex X one has w cat X =< cat X, but, as mentioned
in the Introduction, the converse inequality may fail to hold. Nevertheless,
we prove

THEOREM 3. Let X be an (n 1)-connected CW-complex of dimension less
thanorequalto ( 1)n 2 (n -> 1). Ifw catX __< k, thenalsocatX <- .

Proof. The result being trivial if n 1, we shall assume that n __> 2.
Let Y denote the space of all paths in any space Y. Consider the diagram

T
J

Xk )X

in which

F )X

E {((xl,’",x),h) h(0) (xl,"’,x)} cXX (X()) x,
f(x) (x,X,) with x (xi, "",x) and X,(t) 7(x),

r((xi, Xk), X) (Xl, Xk), p((xl X), h) (1),

F p-l(,), and i is the inclusion map.

One has p of 7, so that, since n oj(T) =., f defines a map g which may
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be regarded as an inclusion map. It is well known that

(I) f is a homotopy equivalence with r o f id,

(2) the lower row in the preceding diagram is a fibration.
In the commutative diagram

Hq+I(Xk) -Hq+I(X, T) -+ Hq( T) --- Hq(X) --Hq(Xk, T) v, Hq(X(), ,)

Hq+I(E) --> Hq+I(E,F) --> Hq(F) -+ Hq(E) -+ Hq(E, F) P* Hq(X(k), ,)

7, is isomorphic for all q -> 0 (see for instance [4; Lemma 1.6]). Since X and
hence Xk are (n 1)-connected, so is E by (1) also, by the relative Kiinneth
and the Hurewicz theorems, X(k) is (kn 1)-connected. Therefore, by (2),
F is (n 1)-connected, and, according to a well known result by Serre, p
and hence f are isomorphic for q _<_ (]c 1)n 1. The "five lemma" now
implies that g, is isomorphic for q

_
(/c - 1)n 2, and standard arguments

yield

(3) rq(F, T) 0 for q-< (/- 1)n-- 2.

Since w cat X -< ], we have o/k 0, and hence p of o/k 0. It follows
from (2) that there exists a map b:X -- F such that i o b f o/k. By (3)
and since dim X -< (/ - 1)n 2, a standard deformation argument yields
a map :X - T such that g o b. We have

joe rofojo roiogoroiobrofo/ /,

and Theorem 3 is proved.

3. Weak category and co-nilpotency of suspensions
Let X be an arbitrary space with base-point ,. The reduced suspension

ZX is the identification space obtained by pinching to a point the subset
0 X X u 1 X X u I of the Cartesian product I X; the image in 2X
of (s, x) e I X X will be denoted by (s, x). The co-multiplication and co-
inversion maps

a: 2:X -- 2X v 2X and r: 2X -+ 2X
given by

a(s,x> ((2s, x>,,) for 0

_
2s-< 1,

(,,(2s- 1, x)) for 1 _-< 2s =< 2,

x> <1 for 0< s< 1

convert 2:X into an H’-space, the dual in the sense of Eckmann-Hilton [3]
of a homotopy-associative H-space with homotopy inversion. For any
H’-space Y and any 1 we have defined inductively in [1; Definition 1.4]
a co-commutator map b of weight k; hl is the identity map of Y, hk+ is the
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composition

Y #: Y v y L..hk V id)ky v Y=+IY
in which 1y y, and, in case Y X, b is given by

(s,x) ((4s, x),,) for 0 =< 4s-< 1,

(,,(4s- 1, x)) for 1 -< 4s-< 2,

((3- 4s, x),,) for 2-< 4s-< 3,

(,,(4--4s, x)) for 3-< 4s-<_ 4.

The co-nilpotency class conil 2X is the least integer/c _-> 0 such that k+l 0;
if no such integer exists, conil 2X oo [1; Definition 1.8].

DEFINIITION 3.1. The suspension ZX is homotopy-commutative if
where "X v ZX -- ZX v ZX is given by

e(y, ,) (,, y) and e(,, y) (y, ,) for y eX.
LEMM 3.2. The suspension ZX is homotopy-commutative if and only if

conil 2X 1.

Proof. The set v(2X, Y) of based homotopy classes of maps of 2X into
an arbitrary space Y may be converted into a (non-Abelian) group by setting

{f}--{g} {Vo(f v g) o} and -{f} {for};

here, {h} is the homotopy class of the map h" 2:X --* Y and V’Y v Y -- Yis given by (y,,) (,,y) y. The zero of the group(2X, Y) is
the homotopy class of the constant map. With Y 2:X v 2X, it is easy
to check that b V o ( v o o r) o ; therefore,

o

so that {k} 0 if and only if
As an immediate consequence of Lemma 3.2 and of [1; Theorem 6.13] we

have the following corollary which, in fact, is valid for a more general class
of spaces.

Coao.v 3.3. Let X be a connected CW-complex. If w cat X -< 2
(or if cat X _-< 2), then ZX is homotopy-commutative.

We now prove

THEOIE 4. Let X be an (n 1)-connected CW-complex of dimension less
than or equal to 2kn 2 (n >__ 1). If conil 2X <__

Proof. Let 2Y denote the loop space of any space Y with base-point. Since
conil 2X -< k 1, the co-commutator map k, of weight/c is nullhomotopic.
As 2X 2(kX), this implies that the map

’X --, :(X),
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given by (x)(s) G(s, x}, also is nullhomotopic. As shown by [1; Propo-
sition 2.17], in the diagram below there is a map v such that , o A.

x v

X() e X()

Also, by [1; Lemma 6.9], we have v T(X, ) O, and there results map
d"X() -- 22;(X) such that d o v. As is easily seen, there is a map p such
that p o e d, where e is the natural embedding given by e(y) (s) (s, y) for
y e X(). It follows from results by Milnor (the construction FK) that
there is a map r such that r p -- id. Therefore,

(4) eoo/ ropoeoo ro.yo/ ro"O.
Since X is (n 1)-connected, eq’q(X()) q(22;(X())) is monomorphic
for q =< 2Ion 2 and epimorphic for q <= 2kn 1. Since X is a CW-complex
of dimension =< 2]n 2, it follows now from (4) that o/ 0, i.e.,

wcatX _<

as usserted.
Remarlc. As shown in [2; p. 450], the 5-dimensional polyhedron X obtained

by ttaching to S a 5-cell by means of a map in the class generating m(S)
has vanishing 2-fold cup products but w ct X 3. Therefore, by Theorem
4, conil 2X 2 so that -long X < conil 2X; the general inequality

j-long X -< conil 2X

is proved in [1; Theorem 5.8]. However, we know of no example X such
that conil 2X < w cat X 1.
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