ON THE HOMOTOPY-COMMUTATIVITY OF SUSPENSIONS

BY
I. BErsTEIN AND T. GANEA

1. Introduction

It is well known that the loop space of an H-space always is homotopy-
commutative. Recently, M. Sugawara [5; Theorem 8.1] has proved the fol-
lowing partial converse of this fact: If the loop space of a CW-complex X
such that 7,(X) = 0 for ¢ < n and ¢ > 3n — 2 is homotopy-commutative,
then X is an H-space. In a sense, this result is the best possible since, with
n = 2, the CW-complex obtained by killing off the homotopy groups in dimen-
sions = 6 of the complex projective plane fails to be an H-space even though
its loop space is homotopy-commutative [1; §3.10].

It will be shown below that the suspension over a reasonable space of
Lusternik-Schnirelmann category < 2 always is homotopy-commutative,' and
our main result consists of a partial converse of this fact:

TueoreMm 1. Let X be an (n — 1)-connected CW-complex of dimension
less than or equal to 3n — 2 (n = 1). If the suspension =X is homotopy-
commutative, then cat X = 2.

Theorem 1 is an immediate consequence of Lemma 3.2 below and of

TaeoreM 2. Let X be an (n — 1)-connected CW-complex of dimension
less than or equal to (k + 1)n — 2 (n = 1). If conil ZX = k — 1, then
cat X = k.

Theorem 2 is, in turn, an immediate consequence of Theorems 3 and 4 which
will be stated and proved in the next sections.

As above, Theorem 1 yields the best possible result. For, let X denote the
CW-complex obtained by attaching a (3n — 1)-cell to the wedge 8" v §"
by means of a map in the class of the triple Whitehead product [, , [%1 , %],
where ¢; and 4, are the homotopy classes of the left and right embeddings
8" —= 8" v §8". Evidently, X is (n — 1)-connected and dim X = 3 n — 1;
according to [2; p. 450] one has cat X = 3 but weat X = 2, so that, by
Corollary 3.3 below, the suspension of X is homotopy-commutative. Finally,
since an H-space is a space with multiplication, whereas a space has a co-
multiplication if and only if it has category =< 2, Theorem 1 is the dual in
the sense of Eckmann-Hilton [3] of the above result by Sugawara. However,
our proofs are not dual to those given by Sugawara.

Received March 31, 1961.
1 All the necessary definitions are given in the next two sections.
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2. Category and weak category

All spaces, maps, and homotopies in this paper are assumed to possess or
preserve a base-point, generally denoted by *; in a CW-complex, * will always
bea0-cell. Wewrite f ~ ¢ if f and g are homotopic maps, and denote by 0 the
constant map. For any integer £ = 1 and any space X we shall denote
by X" the k-fold Cartesian power of X, and by T = T(X, k) the subset of

X* consisting of all points (21, --- , 2x) such that x, = * for some ¢ with
1 <q=k Wewritej:T — X" for the inclusion map, and A:X — X* for
the diagonal map which is given by A(x) = (x, ---, ). Finally, let X

and 7:X* — X denote the identification space and identification map re-
sulting by pinching the subset T of X* to a point, which will serve as base-
point in X®.

The Lusternik-Schnirelmann category cat X of any space X is the least
integer k = 1 such that X may be covered by k open subsets which are con-
tractible in X; if no such integer exists, cat X = «. It has been pointed out
by G. W. Whitehead [6] that, for a large class of spaces including all connected
CW-complexes, this is equivalent to saying that cat X = k if and only if
there is a map ¢: X — T'(X, k) such that je¢p >~ A. Asin [2] wesay that X
has weak category = k and writew cat X =< kif andonlyif yo A ~ 0. For
any connected CW-complex X one has w cat X = cat X, but, as mentioned
in the Introduction, the converse inequality may fail to hold. Nevertheless,
we prove

TaroreM 3. Let X be an (n — 1)-connected CW-complex of dimension less
than orequalto (k+ 1)n —2 (n=1). IfwcatX =k, thenalsocat X < k.

Proof. The result being trivial if » = 1, we shall assume that n = 2.
Let Y' denote the space of all paths in any space Y. Consider the diagram

bl e

F—— E —"‘)X(k)

in which
E={((x, ), N | M0) =n(, -+, z)} € X* X (XP),
@) = () with z = (21, -, @) and M(d) = n(),
(@, @), N) = (@, 0w, p((@, e, @), N) = M1,

F = p (%), and ¢ is the inclusion map.

One has pof = 7, so that, since noj(T) = #*, f defines a map ¢ which may
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be regarded as an inclusion map. It is well known that
(1) f is a homotopy equivalence with r o f = id,
(2) the lower row in the preceding diagram s a fibration.

In the commutative diagram

’

Hy1(X*) = Hoa(X9, T) = Hy(T) — Hy(X*) = Hy(X¥, T) 255 H(X®, %)

HoalB) — Hon(B,F) — H(F) — H(E) — H(E, F) 2%, H(X®, )

7% is isomorphic forall ¢ = 0 (see for instance [4; Lemma 1.6]). Since X and
hence X* are (n — 1)-connected, so is E by (1) ; also, by the relative Kiinneth
and the Hurewicz theorems, X* is (kn — 1)-connected. Therefore, by (2),
F is (n — 1)-connected, and, according to a well known result by Serre, p%
and hence fy are isomorphic for ¢ < (k + 1)n — 1. The “five lemma’ now
implies that g is isomorphic for ¢ < (k + 1)n — 2, and standard arguments

yield
(3) m(F, T) =0  for g =< (k+ 1n—2

Since w cat X = k, we have no A ~0,and hence pofo A =~ 0. It follows
from (2) that there exists a map ¢:X — F such that io¢ >~ fo A. By (3)
and since dim X = (k 4+ 1)n — 2, a standard deformation argument yields
a map ¢:X — T such that go¢p =~ ¢. We have

jogp =rofojod = rofogoprojoy rofo A = A,
and Theorem 3 is proved.

3. Weak category and co-nilpotency of suspensions

Let X be an arbitrary space with base-point *. The reduced suspension
ZX is the identification space obtained by pinching to a point the subset
0 X Xul X Xul X *of the Cartesian product I X X; the image in =X
of (s, ) eI X X will be denoted by (s, ). The co-multiplication and co-
inversion maps

6:ZX - ZX v ZX and 7:Z2X — =X

given by
o(s, x) = ((2s, x), *) for 0 =25 =1,
= (% (2s — 1,2)) for 1<25 <2,
s, z) = (1 — 8, 2) for 0= s=1,

convert X into an H’-space, the dual in the sense of Eckmann-Hilton [3]
of a homotopy-associative H-space with homotopy inversion. For any
H'-space Y and any & = 1 we have defined inductively in [1; Definition 1.4]
a co-commutator map ¢, of weight k; ¢, is the identity map of Y, i, is the
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composition
y Y,y vy e vid wy  y oy

in which 'Y = Y, and, in case Y = =X, ¢ is given by

s, x) = ({4s, x), *) for 0<4s =1,
= (%, (4s — 1, 2)) for 1 <4s =2
= (3 — 4s, ), *) for 2 <4s £33,
= (% (4 = 45,2)) for 3 <4s<4.

The co-nilpotency class conil =X is the least integer & = 0 such that Y411 ~ 0;
if no such integer exists, conil £X = o« [1; Definition 1.8].

DerintiTioN 3.1.  The suspensiton =X is homotopy-commutative if €00 = ay
where :ZX v X — ZX v ZX 4s given by

ey, %) = (% y) and e(x,y) = (¥, %) Jor yeZX,

LemMA 3.2. The suspension =X is homotopy-commutative if and only if
conil ZX =

Proof. The set #(ZX, Y) of based homotopy classes of maps of =X into
an arbitrary space ¥ may be converted into a (non-Abelian) group by setting

f} +ig ={Ve(fvged and —{ff ={fo1;
here, {h} is the homotopy class of the map A:ZX — Y and V:YV v Y > Y
is given by V(y, ¥) = V(%, y) = y. The zero of the group n(ZX, Y) is
the homotopy class of the constant map. With ¥ = 2X v =X it is easy
to check that ¢ = Vo (¢ v €ogo 1) og; therefore,

¥} = {o} —{eod},

so that {¢} = 0if and only if {¢} = {e 0 d}.

As an immediate consequence of Lemma 3.2 and of [1; Theorem 6.13] we
have the following corollary which, in fact, is valid for a more general class
of spaces.

CoroLLARY 3.3. Let X be a connected CW-complex. If weat X = 2
(or if cat X < 2), then =X 1is homotopy-commutative.

We now prove

TueoREM 4. Let X be an (n — 1)-connected CW-complex of dimension less
than or equal to 2kn — 2 (n 2 1). Ifconil ZX =k — 1,then weat X = k.

Proof. Let QY denote the loop space of any space Y with base-point. Since
conil ZX =< k — 1, the co-commutator map ¥, of weight & is nullhomotopic.
As ¥2X = 2(*X), this implies that the map

¢:X — 9=(*X),
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given by ¢(z) (s) = ¥uls, ), also is nullhomotopic. As shown by [1; Propo-
sition 2.17], in the diagram below there is a map v such that ¢ = vo A.

X -2, xt Y, o5(*X)

boof)
X(k) (4 QZ(X(k))

Also, by [1; Lemma 6.9], we have v | T(X, k) =~ 0, and there results a map
d: X% — @2(*X) suchthatdon~ . Asis easily seen, thereis a map p such
that poe = d, where ¢ is the natural embedding given by e(y) (s) = (s, y) for
y eX®. It follows from results by Milnor’® (the construction FK) that
there is a map 7 such that rop =~ id. Therefore,

(4) eopo /A ~ropoegonpo A ~royo /A =rogp=0.

Since X is (n — 1)-connected, ez:my(X*®) — 7,(22(X™)) is monomorphic
for ¢ = 2kn — 2 and epimorphic for ¢ < 2kn — 1. Since X is a CW-complex
of dimension = 2kn — 2, it follows now from (4) that no A ~ 0, i.e.,

weat X £ k
as asserted.

Remark. Asshown in [2; p. 450], the 5-dimensional polyhedron X obtained
by attaching to S* a 5-cell by means of a map in the class generating m4(.S%)
has vanishing 2-fold cup products but w cat X = 3. Therefore, by Theorem
4, conil =X = 2 so that \_-long X < conil ZX; the general inequality

w-long X =< conil £X

is proved in [1; Theorem 5.8]. However, we know of no example X such
that conil X < weat X — 1.
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2 The authors are grateful to the referee for suggesting use of Milnor’s results in order
to simplify the original proof, which was limited to the case k = 2.



