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Introduction
Let G be a group. By a G-space we shall mean a set S together with

mapping of S X G into S such that, if we write (x, y) [x]y, we have

()
(b)

[x]yl y [[x]yl]y. for all x, y, y in S G X G.
[x]e x for all x in S where e is the identity of G.

Now let S be a measure space as well as a G-space, and suppose that for each
y the mapping x ---> [x]y preserves measurability and null sets. Then the
a-Boolean algebra B of measurable sets modulo null sets is itself a G-space
in a natural way, and each b ---> [b]y is an automorphism of B. We shall call
B a Boolean G-space, and S a point realization of B. Given an abstract
Boolean G-space one can ask whether or not it has point realizations, and to
what extent these realizations can differ. These questions are of interest
because in dealing with measurable transformation groups it is usually more
elegant to take the Boolean-algebra point of view but often very convenient
to have points available. In this note we shall show that very satisfying
answers can be given when S is a standard Borel space in the sense defined in
[8], G is separable and locally compact, and satisfies a natural measurability
condition.
For the special case in which G is countable our results follow easily from

known ones in [4]. Moreover when G is the group of integers, a result for
highly nonseparable S has been given by Maharam in [10]. Von Neumann
in his classic paper [11] treats the case in which G is the additive group of the
real line and there is an invariant measure. Our main theorem in that case
is a refinement of his in that no exceptional null sets occur. Indeed that is
just the point of our contribution--getting rid of the exceptional null sets in
the continuous case. This has been done by Doob [3] when G is the real line,
but his space S is much too big to be a standard Borel space. A central con-
struction in Doob’s proof is analogous to a similar construction in ours, but we
get a smaller space by identifying functions which are equal almost every-
where, and we use quite different arguments to complete the proof.
Our main result is stated in Section 3. The associated uniqueness theorem

is stated and proved in Section 5. Sections 6 and 7 deal with some simple
applications.

Received March 3, 1961.
It has been called to our attention that ideas very close to, if not identical with,

those developed in the first few sections of [8] were found independently by Blackwell
and published in [2]. However the applications of these ideas given in [8] and [2] are
quite distinct.
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1. Borel G-spaces and their associated Boolean G-spaces

Let G be a separable locally compact group. We shall call the G-space S a
Borel G-space if S is equipped with a Borel structure (that is, a a-field of
subsets which separates points) such that the mapping taking x, y into [x]y
is a Borel function. Let be a finite measure defined on all the Borel sets in
the Borel G-space S. Suppose that is quasi-invariant in the sense that
#(N) 0 implies ([N]y) 0 for all y e G and all Borel subsets N of S.
For each Borel subset E of S let/ denote the set of all Borel sets which differ
fromE by a null set, and letB denote the a-Boolean algebra of all/. Setting
[/]y [[Ely] we convertB into a G-space. In general a G-space B which is
also a a-Boolean algebra will be said to be a Boolean G-space if the map
taking E into [E]y is a Boolean-algebra automorphism for each y e G, and if
([E]y) is a Borel function of y for each E e B and each finite measure on B.

LEMM/k 1. The Boolean algebra B, is a Boolean G-space under the action
described above.

Proof. It is obvious that/ --* [/]y is an automorphism of B,. Let be
any finite measure on B. For each Borel set E in S let I(E) (/). Then
1 is a finite measure on the Borel sets of S, and ([]y) l([E]y). Let
T(x, y) [x]y, y, and let T(x, y) [x]y-, y. Then T and T are Borel
maps of S X G onto S G, and each is the inverse of the other. Hence
each is a Borel automorphism of S X G. Let b denote the characteristic
function of the Borel set T(E X G). By one form of the Fubini theo-
rem f (x, y) d,(x) is a Borel function of y. But

T(E X G) n (S X y) [Ely X y.
Hence

f b(x, y) d,(x) ([E]y).

Hence ([/]y) l([E]y) is a Borel function of y, and the proof is complete.
We shall call B the Boolean G-space associated with S and the quasi-

invariant measure .
Let S and S. be Borel G-spaces, and let T be a Borel isomorphism of

S on S. (as Borel spaces). If T([x]y) [T(x)]y for all x, y e S X G,
we shall say that T is an equivalence of S on S, and that S and S are
equivalent as Borel G-spaces. Similarly if B1 and B are Boolean G-spaces
and T is a Boolean-algebra isomorphism of B onto B, we shall say that T
is an equivalence if T([E]y) [T(E)]y for all E, y e B X G, and that B
and B. are equivalent as Boolean G-spaces.

Let E be a Borel subset of the Borel G-space S such that [E]y E for all
y e G. Then E is itself a Borel G-space. We shall say that it is a sub-G-space
of S.
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2. Universal Borel G-spaces
For each separable locally compact group G let Fa denote the set of all

real-valued functions on G which are square summable on compact sets and
where functions which are almost everywhere equal have been identified.2

For each compact subset K of G let

f If(x) dx.

Then ]1 is a pseudo norm for Fa regarded as a vector space. The collec-
tion of all of these pseudo norms defines a topology in Fa under which it is a
complete separable metric space. In particular Fa is a standard Borel space.
Setting [f]y(x) f(yx) makes Fa into a G-space. That [f]y is a Borel func-
tion of both variables and hence that Fa is a Borel G-space follows from the
obvious continuity in f and an evident minor modification of the proof of
Lemma 9.2 of [7]. We shall call this G-space the universal G-space. This
terminology is justified by

]EMM_ 2. Any Borel G-space S, such that S as a Borel space is analytic,
is equivalent to a subspace of the universal G-space.

Proof. Without loss of generality we may suppose that S is an analytic
subset of the unit interval. Then for each fixed x in S the mapping y --, [x]y
will be a Borel functionf from G to the unit interval. Let ] denote the corre-
sponding member of Fa, that is, the equivalence class of locally square sum-
mable functions which contains f. We shall show that x --, ] sets up the
desired equivalence. It is obvious that the mapping is one-to-one and that
it commutes with the action of G. Thus we have only to show that it is a
Borel mapping and has a Borel inverse. Since S is analytic and Fa is stand-
ard, it will suffice ([8], Theorem 4.2) to show that the mapping is Borel. Let
0 be any member of Fa such that g has compact support. Then the mapping
taking ] into f f(y)g(y) dy is a continuous function on Fa, and there exists a
countable sequence of such functions which separates the points of Fa. On
the other hand, for each g, the composite mapping

x f f
is a Borel function of x by the Fubini theorem.

3. Statement of main theorem and first part of proof
It is well known that the following properties that a -Boolean algebra

might have are equivalent" (a) It is isomorphic to a complete Boolean alge-
bra of projections in a separable Hilbert space. (b) It is countably generated

The use of this space was suggested to us by Section 4 of Part A of [1].
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and admits a nowhere-zero finite measure. (c) It is the algebra of Borel
sets modulo null sets for a finite measure in a standard Borel space. A
-Boolean algebra with any and hence all of these properties will be said to be
standard.

THEOREM 1. Let G be a separable locally compact group, and let B be a
Boolean G-space which is standard as a -Boolean algebra. Then there exist a
Borel G-space S and a finite quasi-invariant measure t in S such that B is
equivalent to the Boolean G-space associated with S and .
The theorem is trivial for the atomic part, if any, of B, so we may assume

that B is atom-free. However, as is well known, any two atom-free complete
Boolean algebras of projections in a separable infinite-dimensional Hilbert
space are isomorphic. Thus we may assume without loss of generality that
B is the Boolean algebra of Borel sets rood Lebesgue null sets on the unit
interval I. Let 0 denote Lebesgue measure in I. In this section we shall
construct a map of I into the universal G-space Fa and use it to map 0 into
a measure on Fa. In Section 4 we shall complete the proof of Theorem 1
by showing that is quasi-invariant and that the Boolean G-space associated
with F and is equivalent to B.

For each y in G let a denote the mapping E -- [E]y. If a preserves 0,
then by a well known result of Halmos and yon Neumann [4] there exists a
one-to-one map/ of almost all of I onto almost all of I which is measurable
and measure-preserving in both directions and which induces the mapping a.
Actually, as is made quite explicit in the proof, one can choose the exceptional
null sets M and N so that they are Borel sets, and so that is a Borel iso-
morphism of I M with I- N. It is obviously possible to choose M and
N so that neither is finite or countable, and it then follows from a result of
Kuratowski (Remark i on page 358 of [5]) that M and N are Borel isomorphic.
Thus t may always be extended so as to be a Borel automorphism of I.
If a does not preserve 0, an easy argument (see Lemma 4 of [10]) shows that

’ (and hence t) still exists but of course only preserves the null sets of 0.
It follows at once from the almost-everywhere uniqueness of each (Lemma
5 of [10]) that for each y and z we have

(,) yz(X) z(y(x)) for almost all x in I.

If we knew that (,) held for all triples x, y, z and that (x) were a Borel
function on I G, the proof would now be complete. However we do not,
and this is iust the difficulty which necessitates the involved argument which
follows.

Let g’(x, y) (x). Our next main step will be to prove the existence of
a Borel function g on I G such that for almost all y, g(x, y) g’(x, y) for
almost all x. Since I is the unit interval, g and g’ are real-valued functions.
Let E be any Borel subset of I, and let denote its characteristic function.
Let be any Borel measure in I which is finite and absolutely continuous with
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respect to 0. Then since ,(a,(E)) (/(E)) and the former is a Borel
function of y, it follows that f epe(g’(x, y)) d,(x) is a Borel function of y.
Taking (E) to be 0(E n F) we see that fve(g’(x, y))dlo(x) is a Borel
function of y for all Borel subsets E and F of I. Hence by Lemma 3.1 of [6]
there exists for each Borel set E a Borel function fe on I X G such that for
almost all y in G we have (g’(x, y) re(x, y) for almost all x in I. Let
E1, E, be a sequence of Borel sets such that i (x) i (x’) for all
j implies x x’. Let T1 denote the Borel mapping of I into the space of all
sequences of O’s and l’s (with the product Borel structure) which takes x into
gl (x), (x), -, and let T denote the Borel mapping of I X G into this

sequence space which maps x, y into fel(xy), fe(xy), .... Then T is one-
to-one and hence has a Borel inverse. Moreover for almost all y,

T(g’(x, y) T(x, y)

for almost all x. Hence for almost all y, g’(x, y) T-IT(x, y) for almost all
x. Let T3 coincide with T- on the Borel subset on which T- is defined, and
let T3 be zero elsewhere. Then the function g such thatg(x, y) Ta T(x, y)
clearly has the required properties.
Now let f(y) g(x, y), so that f is a bounded real-valued function on G

for each x, and let ] denote the member of Fa which it defines. Then the
mapping which takes x into ] is a Borel mapping from I to Fa, as can be
seen by repeating the argument contained in the last few lines of the proof of
Theorem 1. We define to be the measure in Fa which assigns the measure
t0(-l(F)) to each Borel set F.

4. Completion of proof of main theorem

To show that is quasi-invariant we begin by writing equation (.) of the
preceding section in the form

g’(x, yz) g’((x), z).

Now for each y and almost all z we have g’(x, yz) g(x, yz) for almost all x,
and g’((x), z) g((x), z) for almost all x. Hence for each y and almost
all z we have g(x, yz) g((x), z) for almost all x. But for each y, each
side of this last equation is a Borel function on I G. Hence for each y
and almost all x we have the same equation for almost all z. Hence for each
y and almost all x, []]y ](). Let N be any Borel subset of Fa with
t(N) 0, and let N’ ’-(N) so that o(N’) 0. Given any y in G let
N" denote the set of all x with ] [N]y-1; that is, []]y e N. Because of the
above equation N" differs by a set of t0-measure zero from the set N" of all
x with ]() eN. But x eN" if and only if t(x) eN’; that is, x e/(N’).
Thus to(N") O. Hence to(N’) O. Hence ([N]y-) 0. Thus t
is quasi-invariant as was. to be proved.
Let/ denote the Boolean G-space associated with Fa and the quasi-in-

variant measure . We shall show that the mapping E --, -I(E) from Borel
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subsets of Fa to Borel subsets of I defines an isomorphism between the
a-Boolean algebras/ and B which sets up an equivalence between them as
G-spaces. It is routine to verify that if E and F are Borel subsets of Fa which
differ by a -null set, then r-I(E) and r-l(F) differ by a null set, so that r-induces a mapping r* from/ into B. It is equally easy to see that r* is
one-to-one and preserves the countable Boolean operations. To complete
the proof we must show that r* maps B onto all of B and that it commutes
with the action of G.

Since r is a Borel function from one standard Borel space to another, its
graph is a Borel set ([5], p. 291). Moreover r(I) is an analytic subset of
Fa and hence differs from a Borel subset of Fa by a Borel null set. Thus we
may apply the reformulation of the yon Neumann selection lemma given
as Theorem 6.3 of [8] and deduce the existence of a Borel set N in Fa and
a Borel subset A of r-(Fa N) I r-(N) such that r is one-to-one
on A, (N) 0, and r(A) r(I r-(N)). Given any Borel set
E I r-l(N) we see that r(E) r(E n A) and hence is a Borel set.
Thus r-(r(E)) is a Borel set, and so is E’ r-(r(E)) E. For each
x in E’ let O(x) be the unique member of E n A with r(x) r(O(x) ). The
case in which E’ is empty is of no interest to us because then E r-(r(E) ),
and the corresponding Boolean-algebra element is accordingly in the range
of r*. is obviously a Borel function. Let g(x, y) g(x, y) whenever
x is in E, and let g(x, y) g(O(x), y) whenever x is in E’. Then gO is a Borel
function on r-(r(E) Fa and for almost all x is equal to g(x, y) for almost
all y. Hence g and gO are almost everywhere equal. But for almost all
y, g(x, y) is almost everywhere equal to f(x) and hence is one-to-one outside
of a null set. Hence for almost all y, g(x, y) is one-to-one outside of a null
set. Choose y0 and a Borel null set E0 such that g(x, yo) is a one-to-one
function of x on (E u E’) E0. Then we have

O(E’ (Eo n E’)

_
Eo n E

since g((x), y0) g(x, y0) for all x in E’. Thus
--1((E E hE0)) Eu (E’ nE0).

Thus E E n E0 differs by a null set from r-l(r(E E n E0)). Thus E
differs by a null set from r-(r(E E n E0)). Thus the Boolean-algebra
element defined by E is in the range of r*. Thus r* is onto.
To show that r* defines an equivalence between/ and B as Boolean G-

spaces, let E be any Borel set in Fa. Then r-([E]y) is the set of all x with
[r(x) ]y- e E. But for each y in G we have [r(x) ]y- r(l(x) for almost
all x. Thus r-([E]y) differs by a null set from the set of all x with

ql.
-1/(x) e (E) and hence differs by a null set from the set of all x with

x e/(r-(E)). Thus r-([E]y) and (r-l(E)) define the same Boolean-
algebra element. But this shows that r* sets up the desired equivalence.
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5. Essential uniqueness of the Borel G-space associated
with a Boolean G-space

In this section we shall show that the system S of Theorem 1 is ’%s unique"
as one could hope.

THEOREM 2. Let $1 and S. be standard Borel G-spaces where G is separable
and locally compact. Let t and . be quasi-invariant finite Borel measures in
S and S and let B and B be the associated Boolean G-spaces. Let be an
isomorphism of B on B as Boolean algebras which sets up an equivalence be-
tween B and B. as Boolean G-spaces. Then there exist invariant Borel subsets
S and S of S and S. respectively and an equivalence 0 of S and S as Borel
G-spaces such that SI S’ and S S. have measure zero, and such that the
mapping of B on B: defined by 0 is equal to .

Proof. As in the proof of Theorem 1 we may restrict attention to the case
in which B and B are free of atoms. By the argument given at the begin-
ning of the proof of Theorem 1 there exists a Borel isomorphism
which defines the given Boolean-algebra isomorphism. Let b be a Borel
isomorphism of S with the unit interval, and let 1 . o 0 where denotes
composition of mappings. For each x e S let ] denote the member of
defined by the function which takes y into ([x]y). Then

([x]y) b.( t(Ix]y) ([t(x) ]y) for almost all x.

Hence ] ]() for almost all x e S. Moreover the mapping r which takes
x in S into ] sets up a G-space equivalence between S and a subspace of

--1Let R denote the intersection of the ranges of r and r, and let S r (R).
Then S is a sub-G-space of S. Moreover S contains the set of all x with

fe() and hence is the complement of a null set. Since r restricted to S’
and 2 restricted to S are equivalences of S’ and $2 with the same invariant
subspace of Fa, it is clear that restricted to S is an equivalence of S with
S. This completes the proof.

6. Ergodicity and irreducibility

It is natural to define a Boolean G-space to be irreducible if [E]y E for all
y in G implies that E 0 or E 1. Suppose that our Boolean G-space B is
that associated with a quasi-invariant measure in a Borel G-space S. Accord-
ing to a common definition of ergodicity (metric transitivity) S is ergodic if
and only if every measurable subset of S which is invariant under the action of
G is either a null set or the complement of a null set. Since it is not clear that
an invariant Boolean-algebra element can be defined by an invariant measur-
able set, one has the unpleasant possibility that ergodicity for S in this
sense could differ from irreducibility of B. Our next theorem shows that
when S is standard, this unpleasantness does not occur.
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THEOREM 3. Let S be a standard Borel G-space where G is separable and
locally compact. Let be a finite quasi-invariant measure defined on the Borel
subsets of S. Let E be a Borel set in S such that the corresponding Boolean-
algebra element is invariant under G. Then E differs by a null set from a Borel
set which is invariant under G.

Proof. Let B denote the Boolean G-space defined by S and . Let B1 and
B2 denote the Boolean subspaces defined by E and S E. By Theorem 1
there exist standard Borel spaces $1 and $2 and quasi-invariant measures in
them and 2 such that B is equivalent as a Boolean G-space to the Boolean
G-space associated with S and . We may suppose that S and $2 are dis-
joint as sets and convert their point-set sum into a G-space in the obvious way.
Clearly the Boolean G-space associated with $1 u $2 and the measure which
coincides in S with is equivalent to B. By Theorem 2 there exist invariant
Borel null sets N and N’ in S and $1 u S. respectively, so that S N is
equivalent as a G-space to ($1 u S.) N’. Let E’ be the Borel set in S N
corresponding to S (S n N’). Then E’ will be invariant under G and
differs by a null set from E.

7. An application to systems of imprimitivity
Let x -- U denote a strongly continuous unitary representation of the

separable locally compact group G acting in the Hilbert space H(U). Let S
be a Borel G-space. A system of imprimitivity for U based on S is ([9], p.
278) a projection-valued measure E -- P defined on the Borel sets in S such
that

UP U-1 PEI- for all E and y.

Let Re denote the range of P, that is, the set of all P for E ranging over the
Borel subsets of S. Clearly Re is a complete Boolean algebra of projections
which is invariant under U in the sense that Q e Re implies Uu QU Re for
all y in G.

THEOREM 4. Let G and U be as above, and let B be any complete Boolean
algebra of projections which is invariant under U. Then B is the range of a
system of imprimitivity P for U based on a standard Borel G-space.

Proof. Make B into a G-space by setting [Q]y U-IQUu. It is well
known that given any finite measure in B we may find a vector in H(U)
such that u(Q) (Q(), ) for all Q in B. Thus

u([Q]y) (QU(), U()) (U(), Q(o))(o, U())

where 01,02, is a complete orthonormal system for H(U). Thus #([Q]y)
is a Borel function of y, and B is a Boolean G-space. By Theorem 1 there
exist a standard Borel G-space S and a quasi-invariant measure v in S such
that B is equivalent as a Boolean G-space to that associated with S and .
For each Borel subset E of S let P be the member of B associated with the
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Boolean-algebra element defined by E by the given equivalence. Clearly
the mapping E -- PE is the desired system of imprimitivity.

THEOREM 5. Let G and U be as in Theorem 4, and let p1 and p2 be systems of
imprimitivity for U based on standard Borel G-spaces $1 and S2 Suppose that
p1 and P have the same range B. Then there exist invariant Borel subsets
S and S of SI and S. respectively and an euivalence 0 of S and S such that
P maps S S’ into the zero projection and P Po(E) for all E.

Proof. Let be a measure in B which is zero only at the zero element.
Let . be the measure in S. taking E into (P). Then 1 and . are quasi-
invariant measures in S and S. respectively, and E - P sets up an equiva-
lence between the Boolean G-space associated with S. and t on the one hand,
and the Boolean G-space B on the other. These two equivalences define an
equivalence between the Boolean G-spuce associated with S and and that
associated with S and 2. The 0, S, and S supplied by Theorem 2 clearly
have the required properties.

It follows from Theorems 4 and 5 that the notion of system of imprimitivity
for group representations is essentially equivalent to the notion of an invariant
complete Boolean algebra of projections.
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