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1. Introduction
The theory of quantifiers in a Boolean algebra has wide application in

mathematics. As introduced by Halmos [4], quantifiers were designed to
:give a precise algebraic version of some fundamental results in formal logic.
Using this concept in formulating the notion of a polyadic Boolean algebra,
Halmos was able to show that the semantic completeness theorem of GSdel
is the statement that a polyadic algebra is semisimple, a fact which is re-
markably easy to prove [5], [14]. Incompleteness theorems, on the other
hand, take the form that certain polyadic algebras are not simple [6].

Quantifiers can be used elsewhere. In ergodic theory, for example, the
Poincar recurrence theorem holds for a measurable transformation if and
only if the transformation generates a quantifier [16]. Starting from duality
theory, the notion of a quantifier can be linearized to apply to real functions.
This linearized form has an intimate connection with the Weierstrass-Stone
theorem. The logical concept of a constant for a quantifier linearizes into
the notion of a generalized mean, which is a kind of interpolating operator.
The linearized version and its Boolean prototype meet in the study of bounded
measurable functions, yielding some generalizations of the notion of con-
ditional expectation [17].

In this paper, we consider an application of these ideas to the convergence
of martingales in probability theory. A class of mappings of a Boolean alge-
bra even more general than quantifiers will be considered. We show that
the underlying nature of martingale convergence is as much order-theoretic
as it is measure-theoretic. The convergence of conditional expectations is,
in fact, a consequence of the convergence of certain existential and universal
quantifiers.

2. Mappings of partially ordered sets

Let S be any partially ordered set, and let f be a mapping of S into itself.
The mapping f is called extensive if p <= fp for each p in S, idempotent if
ffp fp for each p in S, and isotone if p =< q implies fp <- fq for any p, q in S.
An extensive, idempotent, and isotone mapping is called an extensional closure
on the set S.

These concepts originated with E. H. Moore [11], who considered such
mappings in the Boolean algebra of all subsets of a given set. For general
lattices, they have been considered by M. Ward [13]. Extensional closures
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are usually called, simply, closures. We prefer to use the latter term for a
more restricted class of mappings which are closer in nature to the properties
of a closure in the topological sense. In this usage we follow Tarski [7], [10]
and Halmos [4].
A subset B of a partially ordered set S is called relatively complete if, for

each element p of S, the set B(p) {q e B p <= q} has a smallest member.
This terminology is from Halmos [4], who considered the relatively complete
subalgebras of a Boolean algebra. The following extends theorems of E. H.
Moore, M. Ward, and Halmos; the obvious proof may be omitted.

THEOREM. Let f be an extensional closure of a partially ordered set S, and
let B {peS fp Pl be the range off. Then B is a relatively complete
subset of S. Conversely, if B is a relatively complete subset of a partially ordered
set S, then the mapping f which assigns to each p in S the smallest member of
B(p) is an extensional closure of S. This correspondence is one-one.

Let S be a partially ordered set containing a smallest element 0 (that is,
0 =< p for each p in S). A mapping f of S into itself will be called normal-
ized if f0 0. A subset B of S will be called normalized if 0 is a member of
B. It is clear that an extensional closure is normalized if and only if its
range is a normalized subset.
A semilattice is a partially ordered set S in which every pair p, q of elements

of S has a greatest lower bound, or infimum, denoted by p ^ q. A complete
semilattice is a partially ordered set in which every nonempty subset P has a
greatest lower bound, or infimum, which will be denoted either as /P or
as inf P. A subset B of a semilattice S is called a subsemilattice of S if B
is not empty and if p, q e B imply p ^ q e B. A subsemilattice B of a com-
plete semilattice S is called a complete subsemilattice of S if, for each non-
empty subset P of B, the element inf P, as computed in S, belongs to B.
Note that a complete semilattice always has a least element 0.

THEOREM. If S is a complete semilattice, a subset B of S is a relatively com-
plete subset of S if and only if B is a complete subsemilattice of S.

Proof. If S is a complete semilattice, and if B is a relatively complete
subset of S, let P be any nonempty subset of B, and let a inf P. Let f
be the extensional closure defined by B. Since a -<_ p for each p in P, then
fa <=fp p for each p in P. Thenfa <= a, and since a <-_fa, we have
a fa. Therefore a is in B. The converse is trivial.

In any complete semilattice S, the intersection of an arbitrary collection
of complete subsemilattices forms a complete subsemilattice. Hence any
subset of S is contained in a least complete subsemilattice of S, which we
shall call the complete subsemilattice generated by the set.

Manifestly, the notion of a semilattice has a dual, in which the greatest
lower bound (infimum) is replaced by the least upper bound (supremum),
and where the least element 0 is replaced by the greatest element 1. We
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shall refer to such an object as a dual semilattice. Suprema will be denoted
by p v q, and by /P or sup P. A lattice is a partially ordered set which is
both a semilattice and a dual semilattice. We need waste no time in ex-
plaining terminology for lattices.
One word of caution for the expert in lattice theory" if S is a complete

semilattice, and if f is an extensional closure on S, then the range B of f is not
only a complete subsemilattice of S, but is also a complete lattice in a natural
manner. In lattice theory, it is customary to consider B as a lattice; in
this note we explicitly avoid doing this. The reason is that if S is a com-
plete lattice, and if B is a complete subsemilattice, B need not even be a sub-
lattice of S, although it is a complete lattice in its own right.
The set of all mappings of a partially ordered set S into itself may be re-

garded as a partially ordered set. We define f __< g to mean fp <- gp for each
p in S. If S is a semilattice, dual semilattice, or lattice, then the set of all
mappings of S into itself is likewise a semilattice, dual semilattice, or lattice,
under the usual pointwise rules. If S is complete, then the set of all map-
pings is also complete.
A mapping f of a dual semilattice S into itself is called additive if

f(p v q) =fp v fq
for each p, q in S.

THEOREM. Let L be a lattice, f an extensional closure in L, and B the range
of f. Then f is additive if and only if B is a sublattice of L.

Proof. Suppose B is a sublattice of L. For any two elements p, q in L,
we have fp and fq in B, so that fp v fq is in B. Since p <= fp, q <- fq, then
p v q <_fp vfq, sothatfp vfqeB(p v q). Thusf(p v q) <_fp vfq.
On the other hand p-< p v q implies that fp <= f(p v q), and q =< p v q
implies thatfq <=f(p v q). Hencefp v fq <=f(p v q). Thenfp v fq
f(p v q), and f is additive. Conversely, if f is additive and if p, q e B, then
p v q=fp vfq=f(p v q)eB.
A dual semilattice can be characterized as a commutative semigroup in

which every element is idempotent. The greatest element of a dual semi-
lattice, if one exists, is a "zero" for the semigroup; the least element, if one
exists, is an identity element for the semigroup. An additive mapping of a
dual semilattice is an endomorphism of the semigroup. If the dual semi-
lattice has a least element 0, the requirement that a mapping be normalized is
merely the requirement that the identity element of the semigroup be mapped
onto itself. The notion of a normalized additive mapping [7] of a dual semi-
lattice is consequently a natural one in the semigroup setting; we shall call
such a mapping a hemimorphism. This word was coined by Halmos [4]
to describe mappings of a Boolean algebra which are roughly "half of a
homomorphism."
A mapping h of a partially ordered set S into itself is called antitone if

p -< q implies hq <- hp.
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THEOREM. Let h be an antitone mapping of a partially ordered set S, and
let f be an extensional closure in S, with range B. Then the following are equiva-
lent statements" (a) fhf <= h; (b) fhf hf; (c) q e Bq implies hq e B.

Proof. Suppose (a) is true; let q belong to B. Then fq q, so that
hfq hq, and hence fhfq fhq. By (a) we thus have fhq <- hq. But
hq <= fhq, because f is extensive, so that fhq hq; this means that hq belongs
to B. Therefore (a) implies (c). If (c) is true, let p be any element of S;
then fp is in B, so that hfp is also in B, and hence fhfp hfp. Therefore
(c) implies (b). That (b) implies (a) is trivial.
Let L be a lattice with least element 0. By a closure in L is meant an ex-

tensive, idempotent hemimorphism f of L. A closure therefore satisfies
the following" fO O, p <= fp, ffp fp, f(p v q) fp v fq. It follows
easily that p _<_ q implies fp <= fq, so that every closure is an extensional
closure; the converse is not true in general.
The most important lattices are the Boolean algebras. If A is a Boolean

algebra, we denote the complement of an element p of A by p’. The map-
ping of an element onto its complement is an antitone mapping of a Boolean
algebra.
By an existential quantifier f in a Boolean algebra A is meant a closure in

A which satisfies the condition f((fp)’) <= p’ for each p in A. This defini-
tion [15] of an existential quantifier is equivalent to the original one given by
Halmos [4]. We have at once the following facts about closures and quanti-
tiers.

THEOREM. Let f be an extensional closure, with range B, in a lattice L.
Then f is a closure if and only if B is a normalized sublattice of L.
THEOEM. Let f be an extensional closure with.range B in a Boolean algebra A.

Then f is an existential quantifier if and only if B is a Boolean subalgebra of A.

3. Martingales
By a directed set we shall mean a set T with a transitive and reflexive rela-

tion => such that, for any s and in T, there is an element r in T with r __> s
and r __> t. By a net in a set S we shall mean a pair consisting of a directed
set T and a mapping -- p of T into S; we denote such a net by {p e T}.
A net {p e T} in a partially ordered set S is said to be increasing if s _->
implies p => p, and decreasing if s _-> implies p -< p.
A net {f, "t e T} of mappings of any set S into itself will be called a mar-

tingale if s => implies f,f p f p for each p in S.

THEOREM. Let {f T} be a net of mappings of a partially ordered set S.
(a) If {f T} is a martingale, each f is idempotent. (b) If {f T}
is a martingale of isotone and extensive mappings, then {f e T} is a decreas-
ing net. (c) If {f’t T} is a decreasing net of idempotent and extensive
mappings, then {f T} is a martingale. (d) If lf T} is a net of
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extensional closures, then the net is a martingale if and only if it is a decreasing
net.

Proof. (a) Since => t, we have ftftp =ftp. (b) Since p <-ftp,
and since f8 is isotone, we have f8 p -<_ f ft p. If s _>- t, then f8 ft p ft p,
so that f, p =< ft p. (c) Since f8 is extensive, we obtain ft p <- f ft p. If
s => t, we havef, q -<_ fs q for any q in S; set q ft p, and getf, ft p <- ft fs p
ft p. Hence s -> implies f ft p ft p. (d) This follows at once from the
previous parts of the theorem.

COROLLARY. Let {ft’t e T} be a net of extensional closures in a partially
ordered set S, and let B be the range of ft. Then {ft" e T} is a martingale
if and only if the net {Bt "t e T} of subsets of S is increasing.

4. Order convergence
If {Pt" e T} is a net in a complete lattice L, the limits superior and in-

ferior are defined by

lim sups p inf, sups>__8 pt and lim infs sup inf_>_ p.

The inequalities

inft ps _-< lim inft ps =< lim supt ps =< supt pt

always hold. The net {pt T} is said to converge if

lim infs p lim sup p

we refer to convergence in this sense as order-convergence. If a net converges,
the common value of its lim sup and lim inf is denoted by lims
A conditionally complete lattice is a lattice in which any bounded set has an

infimum and a supremum. If {pt e T} is a bounded net in a conditionally
complete lattice, the considerations of the preceding paragraph may be ap-
plied to the net.

THEOREM. If lPt" e T} is a bounded decreasing net in a conditionally
complete lattice L, then limt pt infs ps if lPt e T} is a bounded increas-
ing net in a conditionally complete lattice L, then limt pt sups ps.

Proof. If the net is decreasing, then for _-> s, pt =< p,, so that
supt>_ pt p,, and therefore inf8 supt>= ps--inL p. That is,

lim supt pt inL p8 =< lim inf, ps,

and hence lims ps infs pt. The other half of the theorem is similar.
If {ft :t e T/ is a decreasing net of mappings of a complete lattice L into

itself, then for each element p of L, the net {ft p T} is a decreasing net
in L, and consequently limt ft p inft fs p. In other words, a decreasing
net of mappings of a complete lattice converges pointwise. The convergence
theorems for martingales, proved below, identify the limit mappings so de-
fined, for certain special martingales.
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THEOREM 1. If {ft’t e T} is a martingale of extensional closures in a
complete lattice L, and if limt ft p fp for each p in L, then f is an extensional
closure. Moreover, if Bt is the range of ft, then f is the extensional closure
associated with the complete subsemilattice generated by all the Bt, T.

Proof. We know that fp limt ft p inft ft p. Since p <_- ft p for each
t, then p <- fp. If p =< q, thenft p <= ft q, so thatfp -< fq. Finally, fp =< ft p
for any t, so that ffp <= ftft p--ft p. Hence ffp <__ fp; since fp <= ffp,
we have ffp fp. Therefore f is an extensional closure. Let B be the com-
plete subsemilattice generated by all the Bt, and let C be the range of f. If
p belongs to Bt, then ft p p, so that fp p, and hence p belongs to C.
Therefore B c C; since this holds for each t, then B c C. On the other
hand, if p belongs to C, then p fp inft ft p; since ft p belongs to Bt,

the infimum belongs to the least complete subsemilattice B generated by all
the Bt. Therefore B C.
A complete lattice L will be called a continuous lattice if it satisfies the two

conditions" (i) for any increasing net lpt "t T} in L and any element
q in L, q ^ limt Pt lima (q ^ pt); (ii) for any decreasing net Ipt’t T}
in L and any element q in L, q v limt pt limt (q v pt). (This terminol-
ogy is that used by yon Neumann [12]; it is a concise way of saying that L
is a topological lattice in its order topology [1, page 63].) There exist com-
plete lattices which are not continuous.

THEOREM 2. Let {ft’t T} be a martingale of closures in a continuous
lattice L. If fp lim ft p for each p in L, then f is a closure.

Proof. Thatf0 0 is obvious. We need to show that f(p v q) fp v fq
for each p and q in L. We havefp <-_ftp <-ftp v ftq-ft(p v q), so
that fp <= f(p v q) inft ft(p v q). Interchanging p and q yields

fq <_ f(p v q),

so that fp v fq <-f(p v q). Since L is a continuous lattice, we have
fp v fq fp v inL fq- inf fp v fi. q Also,

fp v fi. q (liminffp) vfiq

(sup inf>=f p) v f q _> (inf>__ f p) v fr q

inft>__(f p v f q) inf>__(f p v ftfr P)

----inf>=ft(p v fi.q) >= inf>__f(p v q)

-->_ inff(p v q) f(p v q).

Thus fp v fi.q >= f(p v q)for any r in T, and therefore fp v fq >= f(p v q).
The proof is complete.
Any complete Boolean algebra is a continuous lattice (yon Neumann [12];

see also [1, page 165]). Consequently the limit of a martingale of closures
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in a complete Boolean algebra is a closure. We turn next to the question of
convergence of quantifiers, and we shall use the traditional notation 21 to
denote an existential quantifier.

THEOREM 3. Let -t e T} be a martingale of existential quantifiers in a
complete Boolean algebra A. If fp limt .t p for each p in A, then f is an
existential quantifier.

Proof. For this we need the terminology and results of [15] concerning
duality in Boolean algebras and spaces. Since each 3t is a quantifier, its
adjoint t* is an equivalence relation, and therefore f3t :It* is an equivalence
relation. To show that f is a quantifier, it suffices to show that f* Q It*.
Since fp <= .t p for each and p, then f* c :it* for each [15, Theorem 4];
thus f*c f3t 3t*. Applying [15, Theorems 1, 6], we have

f--f** _-< (Qt t*)*.
Since [3t 3* *, then (lt 3t*)* -< 3"* . Then (t 3t*) =< f,
and hence (Qt 3t*)* f. In particular, Q ’t* is a Boolean relation [15,
Theorem 2], so that Q 3t* (Qt t*)** f*. This proves the theorem.

Associated with every existential quantifier is its dual universal quanti-
tier , defined by p ((p’))’. If {t :t e T} is a martingale of
existential quantifiers, then the net {t:t T} is also a martingale. For
any p in A, the net ft p:t T} is an increasing net. We may now state
the full convergence theorem for martingales of quantifiers.

THEOREM 4. Let A be a complete Boolean algebra, let {Ct: e T} be an
increasing net of complete subalgebras of A, and let C be the complete subalgebra
of A, generated by all the Ct. Let t and V be the existential and universal
quantifiers associated with Ct, and .let and f be the quantifiers associated
with C. Then, for any element p of A,

3p limt 3tp inft .tp and Vp limt Vtp supt Vtp.
These convergence theorems have a variety of applications. If, for in-

stance, a set X has defined on it certain operations making it an abstract
algebra, then an extensional closure can be defined in the Boolean algebra
2x of all subsets of X. The closure of any subset of X is the smallest sub-
algebra of X containing that set. Theorem 1 is therefore connected with
the notion of "species of algebraic structures" [3]. A closure in 2x arises
whenever X is a topological space; Theorem 2 is concerned with the con-
vergence of topologies which tend toward the discrete. In the remainder of
this paper, we shall be interested in situations involving Theorems 3 and 4.
We will see below that, in probability theory, Theorem 4 is nearly equiva-
lent to the martingale convergence theorem of probability theory.

5. Convergence of extremal and intermediate values
The concept of a quantifier for a Boolean algebra has an analogue in the

theory of continuous real-valued functions [17]. In this section, we extend
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Theorem 4 above to this analogue. Let X be a compact, extremally dis-
connected, Hausdorff space, let R(X) denote the algebra of all continuous
real-valued functions on X, and let A denote the Boolean algebra of all idem-
potents in R(X). Then A is a complete Boolean algebra. For any com-
plete Boolean subalgebra B of A, let [B] denote the smallest uniformly closed
subalgebra of R(X) which contains B. Then, for any in R(X), there exist
functions M and m in [B] such that m __< =< M, and such that, if
bl, h belong to [B] and satisfy 1 =< -<_ 2, then <- m und M <__ 2.
The mappings M and m of jR(X) into [B] are extensions of the quantifiers

and W which map A into B. We shall call M und m the extremal operators
associated with B, or with [B]. Note that if X is a compact, extremally dis-
connected, Hausdorff space, then R(X) is a conditionally complete lattice.

THEOREM 5. Let X be an extremally disconnected, compact, Hausdorff space,
let R(X) be the algebra of all continuous, real-valued functions on X, and let A
be the complete Boolean algebra of idempotents in R X) Let B e T}
be an increasing net of complete Boolean subalgebras of A, and let B be the com-
plete subalgebra of A generated by all the Bs. Let Ms, ms be the extremal map-
pings associated with B and let M, m be the extremal mappings associated with
B. Then, for any element of R(X),
M- limsMs infsMs, and m- limsm supm,

where the limit is understood to be in the sense of order-convergence in R(X).

Proof. For any real a -> 0 and any in R(X), we have M(a) aM()
and m(a) am(). It therefore suffices to consider the case II --< 1;
in this case we also have M I[ =< 1 and m -< 1, by [17, Theorem 4.4].
Recalling that =< 1 if and only if -1 =< =< 1, we see that it is suffi-
cient to consider the complete lattice L { e R(X):-I _-< _-< 1}, und
the mappings Ms and ms of L into itself. It is well-known, and easily seen,
that L is a continuous lattice. By [17, Theorem 4.3], the mapping M is a
closure in the lattice L. The range of M is clearly L n [B]. By Theorem 2,
the mapping f of L into itself defined by f lim Ms is again a closure on
L, whose range is L n [B]. Since the range of M is the same thing, we have
f M for each in L. The other half of the theorem follows from the
identity M =-m(--) for extremal operators.

If B is a complete Boolean subalgebra of A, by an intermediate evaluation
for R(X) with respect to B we shall mean any mapping h of R(X) into [B]
satisfying m <= h _-< M for each in R(X). We do not require h to
be linear; if it is linear, it is a generalized mean in the sense of [17].

THEOREM 6. Let X be an extremally disconnected, compact, Hausdorff space,
and let ls: e T} be a martingale of existential quantifiers in the Boolean
algebra A of idempotents in R(X). Let h be an intermediate evaluation for
R(X) with respect to the range Bs of . Then {h T} is a martingale of
mappings of R(X). If lim p .p, if B is the range of , and if h is
an intermediate evaluation of R(X) with respect to B, such that hh h
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for each in T and each in R(X), then limt h h, in the sense of order-
convergence in R(X)

Proof. Since s => implies B, Bt, then s _-> implies [B,] [Bt].
This clearly implies that the nets Mt e T} and lint e T} are martin-
gales. Moreover Mt ht ht and mt ht ht or any and . Then,
if s -> t, we have ms ht ms mt ht mt ht ht ; similarly

Ms ht ht.

Hence, for s ->_ t, we have ht ms ht < hs ht <= M ht ht , so
that hs ht hr. This says that ht’t e T} is a martingale.
Now suppose that the intermediate evaluation h described in the hypothe-

sis exists. For any in R(X), set h. Then belongs to [B], he
h, and ht b ht h ht . It suffices, then, to show that limt ht
But we have mt b <= ht <= Mt b, and since k belongs to [B], Theorem 5
implies supt mt k inft Mt b. Hence limt ht , k, and the proof is
complete.

In the special case of Theorem 6 in which limt t p p for each p in A,
we have B A, and hence [B] R(X). The only intermediate evaluation
for R(X) in this case is the identity mapping of R(X). This fulfils the con-
dition imposed on h in the theorem, so that limt ht for each in R(X).

6. Probability theory
Let (ft, a, P) be a probability space. For any subfield (B of a, let E( 6)

denote the conditional expectation of the integrable function with respect
to the subfield (R). A directed family [t’t . T} of integrable functions
is called a (closed) martingale if there are an increasing net [6,’t e T}
of subfields of ( and an integrable function k such that t E(blgtt) for
each in T; cf. [2].

Let A be the measure algebra of the probability space, and let X be the
Boolean representation space of A. Then the algebra L(a) of all essen-
tially bounded real functions which are measurable (a) is isomorphic and
isometric with R(X). If 6t is any subfield of a, then 6t defines a complete
subalgebra of A, and vice versa. The conditional expectation with respect to
6t clearly defines an intermediate evaluation in the sense of this note. For
an increasing net {6tt" e T} of subfields of a, generating the subfield
we have the identity E(E([() [(R)t) E(l(t). We can therefore
apply Theorem 6 at once, and assert that limt E(l(t E(I(), in the
sense of order-convergence.
The extremM mappings of R(X) defined by a complete subalgebra of A

can be carried over to L(a) via the isomorphism. If is a subfield of
the extremal mappings are denoted by max( 6t and min( 6t), and are
called the conditional maximum and minimum of with respect to 6t [17,
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Definition 8.2]. Applying Theorem 5, we may assert that

limtmax([t) max(l) and limmin(l(

in the sense of order convergence.
In probability theory, however, we are concerned primarily with conver-

gence in mean and convergence pointwise almost everywhere. Convergence
in mean follows at once from order-convergence, by virtue of the generalized
monotone convergence theorem. In fact, the mapping which assigns to the
real, integrable function q on 2 the real number fa dP is an isotone, positive
valuation, in the sense of [1, page 74]. This makes the space L of integrable
functions a complete metric lattice, and the generalized Lebesgue monotone
convergence theorem [1, page 82, ex. 4(a) and Theorem 16] asserts that
order-convergence of increasing (or decreasing) nets in L is equivalent to
metric convergence. This leads at once to the following.

THEOREM 7. Let 5t e T} be an increasing net of subfields of the field
in the probability space (, (, P), and let qt be the subfield generated by all the
6tt. For any in L’( (),

fa max(q t) max( (g) dP O,limt

limt fa min( (gt) min( (g) dP O,

limt fa E( t) E( (g) dP 0.

Proof. The order convergence given by Theorem 5 and the monotone
convergence theorem cited above yield the first two assertions. To prove
convergence of conditional expectations, we observe that it suffices to con-
sider the case where belongs to L(a), as in the proof of Theorem 6, and
to show that E(qlt "- in mean. Since

min( (gt) <_- , _<_ max( (gt)
and

min( (Bt) --< E(q[(Bt) <- max(q (Bt),

the mean convergence of the conditional maxima and minima implies the
mean convergence of the conditional expectations.
For convergence in mean of order p > 1, it suffices to note that the space

L is an example of the UMB-lattices of G. Birkhoff, and that order-conver-
gence implies metric convergence [1, pages 248-249]. We omit the details.

Pointwise convergence a.e. presents more difficulties, and involves the
nature of the directed set T. For considerations of this kind, see Doob [2,
page 51 et seq.] and Krickeberg [8]. If T is the set of natural numbers in the
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usual ordering, then we are dealing with the convergence of ordinary se-
quences. For this case, the order-convergence of Theorem 5 at once implies
the almost sure pointwise convergence of the conditional maxima and minima,
and the order-convergence of intermediate evaluations given by Theorem 6
implies the pointwise convergence of conditional expectations. (Conver-
gence in mean, in this case, is a consequence of convergence a.e. and the usual
Lebesgue monotone convergence and bounded convergence theorems.) We
therefore have the following result.

THEOREM 8. If (n} is an increasing sequence of subfields of the field ( of
the probability space (, (, P), generating the subfield 6t, then, for any in
L(a),

max( l  ) a.e.,

and
min(,l(gn ---> min(,l(g a.e.,

E(p (n) ----> E(, ( a.e.

The convergence of conditional expectations, as given in Theorems 7 and 8,
represents a typical case of the martingale convergence theorems of Lvy
[9], Doob [2], nd Krickeberg [8]. If we consider the special cse of chmc-
teristic function m x of set F in a, we obtain the original theorem of
Lvy. In this cse, we cn be more explicit bout the nture of mx(x )
nd min(x ). It is esily seen that both of these re characteristic func-
tions of sets F, nd F* in ; F, nd F* represent the existentially nd univer-
slly quantified versions of F, using the quntifiers determined in the mesure
Mgebr by the subfield . If P(F)= E(x]) is the conditional
probability of F with respect to , then

F* {wea:P(F[)() > 0}
and

F, { e e P(F )() 1}.

This means that the convergence of max(x ) and min(x ), as given
in Theorem 8, can be deduced from the convergence of P(F ), as given by
L6vy’s theorem. Thus Theorem 8 and L@y’s theorem are equivalent for
characteristic functions. (Theorem 8, restricted to characteristic functions,
is the measure-theoretic specialization of the sequential version of Theorem
4.) I am indebted to Professor Doob for these observations.
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