A PROBLEM ABOUT PRIME NUMBERS AND THE
RANDOM WAILK I

BY
P. Erpnos

I am going to prove v = 1. Denote by u(a, b) the probability of the
random walk passing through ¢ if it starts at b. It is known and easy to
prove that

(1) w(a,b) ~e|b—al|™

(see K. Itd6 anp H. P. McKEAN, Jr., Potentials and the random walk, Illinois
J. Math., vol. 4 (1960), pp. 119-132; also a paper of Murdoch cited therein
where a sharper result is obtained). In the sequel, the letters p and ¢ de-
note primes and u(p, ¢) = u(a, b) in case a = (p,0,0) and b = (¢, 0, 0).

Consider the number e(n) of points (p, 0, 0) (p = n) that the path hits.
We have to prove that for almost all paths e(n) T © asn T «.

By (1) and Mertens’ estimate Zpén p ~lgan (lg, = lglg), we evidently
have

(2) Ele(n)] = 2 pgn (0, ) ~ 1 D pgnp ' ~c1lgam.
Next, we prove by a customary argument
(3) El(e(n) = c1lgan)’] = o(lgan)’,

which establishes the weak law of large numbers for e(n), i.e., it shows that
e(n) = c¢;lgan + o(lgz n) except for a set of small measure, and this is enough
for our purpose.

Clearly by (2)

(4) El(e — cilgan)’] = B(¢) — ci(lgan)” + o(lgzan)”.

Further we evidently have

E(€) = 2pznu(0, ) + Xocrzn (0, p)ulp, ¢) + u(0, )u(g, p))
=261 2 ucpsn [1/0(p — @) + 1/a(p — @] + o(lgn)’.

Mertens’ estimate cited above gives D ,<p<n 1/(qp) = 3(lgan)® + O(lgz n),
and so

D acnzn 1/4(0 — @) = 2acr<n 1/(a0) + Docwzn [L1/a(p — @) — 1/gp)]

322 1) + Lecosn 1/p(p — @) + O(lga ).
Thus we have only to estimate D ,<p<n 1/0(p — q).

(5)

(6)
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Put & = 0if k is not prime and ¢, = Y .4<p 1/(p — q¢). We have
(7)) 2acoen 1/p(p — @) = 2k &/l = 2 i s/k(k + 1) + O(1)

by partial summation (s, = >k ie). A well-known theorem of Schnirel-
mann states that the number of solutions of p — ¢ = a (p = k) is less than
e k(lg k)] Isa (1 + p™") where ¢, is an absolute constant. Thus

(8) s < k(g k)2 ko [Ioe (1 4+ p™) < csk/lgk

since by interchanging the order of summation we have the well-known

Zk=1 a—l Hp]a (1 + P—l) = EL& II ZaEO(mod d),agk
< s g lgk/d® < eslgk.
Thus from (7) and (8)
(9) 2 e<rsn 1/P(p — @) < s lgam.

From (9), (6), and (5), we finally obtain E(¢’) = ci(lgs n)* + o(lg: n)*
which proves (3), and thus the proof of our theorem is complete.

By using a sharper estimate than (1), it is easy to show that for almost all
paths

(10) lim,.. e(n)/cilgan = 1.

By the same method one can prove that if the integers ¢ = ¢ < g2 < -+ -
satisfy

(11) G — Gna > colgn (R=2), 2 1l/g= =,

then almost all paths pass through infinitely many points (g, 0, 0). The
primes probably do not satisfy (11) since probably there are an infinite num-
ber of prime twins, but one can prove by Brun’s method that one can select
a subsequence that does satisfy (11).

AUSTRALIAN NATIONAL UNIVERSITY
CANBERRA, AUSTRALIA






