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Let V be an r-dimensional algebraic variety, (P(V), 0), (A(V), 90)
the Picard variety and the Albanese variety attached to V, ’0,9o being the
canonical homomorphisms of @-1, @a onto P(V), A (V) respectively, where
@-1, @0 denote the groups of divisors and of zero-cycles on V, respectively,
which are algebraically equivalent to 0. (P(V), 0) can be characterized
as follows" Let G be any group variety, and any "algebraic" group homo-
morphism of @- into G. Then there exists a (rational) homomorphism
’P(V) --. G such that 0. (We shall not dwell here upon the mean-
ing of the word "algebraic"; it has a certain algebraic-geometrical sense, which
will be fully explained on another occasion.) Likewise (A (V), 90) can be
characterized in a similiar way" One has only to replace @- by @0 in the
above characterization of (P(V), 0). Now it is known that (1) the kernel
of 0 is the group of divisors on V which are linearly equivalent to 0, (2)
the rational mapping F of a total maximal Chow variety W of positive di-
visors on V onto P(V) induced by 0 is a regular mapping, and (3) if W is a
complete total Chow variety, the inverse image of a point of P(V) by F is
a Chow variety associated with a complete linear system. We shall prove
in the present paper that (A (V), 90) has properties corresponding to these
properties of (P(V), 0). Namely we shall prove that (1) the kernel of
90 is the group of zero-cycles on V which are regularly equivalent to 0, (2) n
being sufficiently large, the rational mapping Fn of a Chow variety V(n)
of positive zero-cycles of degree n onto A (V) induced by 90 is a regular
mapping, and (3) n being again sufficiently large, the inverse image Xn)

of a point v of A (V) by Fn is a regular variety.
It was proved recently by Y. Taniyama [7] and A. Mattuck [6] that X)

is irreducible. Our result gives additional information on X). Throughout
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See a fo.rthcoming paper of the author.
Let f be a rational mapping of V into U, and/ a common field of definition for V,

U, and f. We shall say that f is a regular mapping if k(x) is a regular extension of l(f(x)),
where x is a generic point of V over k.

As to the definition of "regularly equivalent", see below, 4.
There is an example of V, such that the canonical mapping of V V(1) into A(V)

is purely inseparable, or separably algebraic, so that we must necessarily consider V(n)
for sufficiently large n to obtain an analogy of (2).

T. Matsusaka communicated to me an example of V, such that X(1) is irreducible,
but is not a regular variety, so that we must again consider V(n) for large n.

A variety V, such that there are no rational mappings from V into abelian varieties
other than constant mappings, is called a regular variety. (This terminology is of the
Italian school.)
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the present paper I shall avail myself freely of the definitions and the nota-
tions in Weil’s book [8].

1. We list here some propositions which we need in the sequel. The
proofs are omitted, because all results are essentially contained in Chow’s
papers [1, 2].
PROPOSITION 1. Let B1, B, and A be abelian varieties, andf i 1,.., m) homomorphisms of B onto A, respectively. The rational mapping F of

B1 X X B, into A, which is defined by F(y(1), y(’)) 1 f(y(i))
for any y(O e B is a homomorphism onto A. If the kernel X offi is an abelian
subvariety for i 1, m, the kernel X of F is also an abelian subvariety of
BI X X B,.

Let A, A be abelian varieties defined, respectively, over fields k(u), k,
where (u) is a regular extension of k. We assume that a homomorphism f
of A onto A is defined over k(u), and that f has an abelian subvariety of
A as its kernel. Denote by (ul), (u.), (un) independent generic
specializations of (u) with respect to /, and by (A, f) the uniquely de-
termined specialization of (A, f) over (u) --* (u) with respect to ]. If
we define the homomorphism F of A1 X X An onto A by F f,
the kernel Xn of Fn is an abelian subvariety which is defined over
K k(u, u). Let A0() be the factor group-variety of A X An
by Xn. Then we have the following lemma.

LEMMA. There is a positive integer No such that the abelian variety An) is
isomorphic to an abelian variety defined over k, by an isomorphism defined over
K, for any n >-- No.
As direct consequences of this lemma we obtain the following corollaries.

COROLLARY 1. If A is an abelian variety defined over a field k(u) which is a
regular extension of a field It, the k-image of A, over k(u) is, at the same time, the
k-’-image of A over l-e(u) for any positive integer e.

COROLLARY 2. Denote by V a projective variety defined over k, which is
nonsingular in codimension 1. Then the Albanese variety attached to V admits
a model defined over k. Moreover, if V contains a k-rational simple point,
the canonical mapping of V to A (V) may be also considered as defined over k.

That A (V) admits a model defined over ]-" for some positive integer e,
is a direct consequence of the Chow-Weil theory for fields of definition of
abstract varieties. We can descend from k-’ to k owing to the lemma.

2. Let V(n) denote the Chow variety of positive zero-cycles of degree n
on a projective variety V. We can naturally define the rational mapping

n

a of an n-ple product V V onto V(n), which is everywhere defined

Cf. Weil [9] and Chow [1].



360 SHOZ KOIZUMI

on V X X V. If A is the Albanese variety and f is the canonical mapping
of V into A, A is also the Albanese variety of V(n), and the canonical map-
ping Fn of V(n) into A is characterized by F (xl Xn) =lf(x),
wherex (1 _--< i_--< n) is any point on V.

PROPOSITION 2. If F is a regular mapping, then the mapping F+I of
V n - 1 into A is also regular.

Proof. We denote by a common field of definition for V, A, f, and con-
sequently for Fn and F+I. Let x, x+ be independent generic points
of V over ]; and put

y(n)__ 1f(xi), y(n+l)
Our assumption means that ](n(xl, Xn)) is a regular extension of
k(y(n)), and we have to prove that ]c(n+(x, xn, x+l)) is regular over
](yn+l)). We have only to show that ]((x, ..., x), xn+l) is regular
over k(y+l)). This is a direct consequence of the fact that
k(O’n(Xl,’’’, Xn), Xn-bl) iS regular over /(y(’), Xn+) /c(y(+), X+) and
that/(y(n+i), Xn+) is regular over

THEOnEM 1. Let A be the Albanese variety of a variety V. Then there
exists a positive integer No such that the canonical mapping Fn of the Chow
variety V(n) onto A is a regular mapping for any n >= No.

Proof. As the property to prove is birationally invariant, we can assume
that V is a projective variety nonsingular in codimension 1 and is defined
over a field/c. We choose a fixed generic point of V over k and denote by
C a nonsingular curve which is obtained as an intersection of V and a general
plane of a suitable dimension containing t. The curve C is defined over
K(u) where K means the field ](t) and K(u) is a purely transcendental
extension of K. Let (u(1)), (u()) be independent generic specializa-
tions of (u) over K, and C the uniquely determined specialization of C
over (u)-- (u()) with respect toKforl =< i_-< m. Cl(g) X X C(g)

m

may be considered as a subvariety of V(g) X X V(g), where g means
the genus of C .10 If f is the canonical mapping of V into A, the rational

m

mapping F’ of V(g) X X V(g) onto A is defined by

F’((r(xl ,... xl), (r(x ,... x,) ,f(xi).

The fundamental inequality in Igusa’s paper [3], dim A <- h,(V) is a direct con-
sequence of this theorem.

V(g) or C(g) means the Chow variety of positive zero-cycles of degree g on V or
C respectively.
0 It is obvious that g is at the same time the genus of any C (1 _<- -< m).
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We may assume that A, f, and F’ are defined over K, and C(g) is birationally
equivalent to the Jacobian variety J of C by a birational transformation
defined over K(u()), because C contains a rational simple point over K(u()).
Considering the above fact and the relationship between the Albanese variety
of V and the K-image of J over K(u()), we see that the restriction mapping
F of F’ on11 C(g) X X C,(g) is a regular mapping for a sufficiently
large m.12 If we prove that F is a regular mapping for n rag, the general
case will follow from Proposition 2.
Now we shall fix a positive integer m so that F is a regular mapping.

If we put K(u(1),--., u(m)) K(), and y is s generic point of A over
K(fi), we see that1

1 F-1 (y) X is a variety defined over K(fi) (y), because F is regular,
and that

(2) F’-1 (y) q

__
X is a prime rational cycle over K(y), where

X, Xd denote the coniugate subvarieties over K(y) of V, and q is the
order of inseparability of X over K(y).
At least one of these subvarieties X, Xd contains the subvariety X,

and since X1,..’, X are conjugate over K(y) and consequently over
K() (y), each X must contain X.

m mg

We shall denote by s the natural mapping X X of V X X V
m

onto V(g) X X V(g), which is defined everywhere on V X X V,
and denote by sc the restriction of s on

g g g

C X X CIXC X X CX XCX X C.

Since s and sc are separably algebraic mappings, simple calculations of cycles
show us that

--i --I(1) sc oFc-(y) (Fcosc) (y) so(X) is a prime rational cycle
over K(fi) (y), each component of which carries the coefficient 1, and that

(2’) q

11 It seems true that C(g) is simple on V(g), but I have no proof for it. Anyway
any rational mapping of V(g) X X V(g) into an abelian variety is defined at any
point on C(g) X X C,(g).

= Cf. the lemma in the previous section.
If f is a rational mapping of a variety V into another one W, and y is a point on

W, f-(y) is a V-cycle which is defined by the formula

f-l(y) X y FI.(V X y)

when the intersection product in the right side of the formula is defined. (F means
the graph of f.)
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Furthermore, we see that

g g g

(F’ o s)-l(y).(C1 X X C X C2 X X C2 X X C,,, X X C,)

o

On the other hand since the carrier of each s-l(x) contains s-(X), we can
conclude that d q 1. This completes our proof.

3. Using the notations A, V, f, Fn, V(n), and an integer No with the
same meanings as in the previous section, we denote by k a common field of
definition for A, V, and f. From now on we shall always assume that V is
a projective variety, nonsingular in codimension 1. Theorem 1 implies that if
y is a generic point of A over k, F-l(y) is a subvariety of V(n). We shall now
consider the inverse image of an arbitrary (not necessarily generic) point of
A by F. Moreover we use the following notations"

q the dimension of A, r the dimension of V, N (q + 1)N0.

Suppose that n is an integer such that n No + m >= N (so m >= qNo).
s is the rational mapping of V(N0) X V(m) onto V(n) which is defined by
s o (ITN0 X ITm) ITn. Put G F o s. For any mapping H, 1 will mean
the graph of H. Thus we shall define X) for a positive integer and v e A
by X() X v I’v n (V(l) X v), and Y by

Y X 0 ro (V(No) x V(m) X O)

where 0 is the neutral element of A. For the rational mapping

0 F IT of V X X V onto A we shall define Z by

Z XO =r,n(VX... XVXO).

PROPOSITION 3. Under the above notations we have
(i) Y is a variety of dimension nr q defined over It, containing
X) X X-, where u is a generic point of A over k.

(ii) X(o’ is a variety of dimension nr q defined over k. Now a generic
point x of X(o’ over ]c is expressed by x a(x x,) where x is a point
o]V.

(iii) Any subset (x,... x,) of m points of (x,... x,) gives us a
set of independent generic points of V over lc.

(iv) Let (1’, 2’, n) be a permutation of (1, 2, n ), and put

IT(X1, XNO) X(1), IT( XNo-t-1, Xn X(2),
IT(Xl’ XNO’ X(10, IT(X(hr0+l) Xn’ X(2’),
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Then (x(I), x(), u) is a generic specialization of (x(1’), x(’), u’) over

Proof. Let Z* be a component of the bunch Z. Z* is a subvariety of
n

V X V defined over the algebraic closure / of /. A generic point
(.) of Z* over k is expressed by

where xi e V. At least one of the (q + 1) classes of points
(xjN0+l,’", x(j+l)N0), j 0,..-, q 1, (xq0+,--., x) consists of
independent generic points of V over ]. In fact, if it were not so, we should
have dimk (2) =< nr q 1 in contradiction to dim Z* >= nr q.
Now we shall prove the assertion (iii). We assume that (xl, x0) is

a set of independent generic points of V over/ and put, f(x) u, (x)) (x ,..., x0), (x)) (x0+. ,... ,x).

We know then that u is a generic point of A over ], and (x()), (x()) are
respectively points on X(), X(_m which are varieties by Theorem 1. The
inequality

mr q >__ dimk(u) (x()) >= dimk((1)) (x0+l,"’,

implies that

dim (x0+

This proves that (xo+,
V over k.

>-- dimZ*- Nor >- (nr- q) Nor mr- q

x) dim (x())
dim (u) -t- dim() (x()) mr.

.., x) is a set of independent generic points of

In the same way, we see that if any one of the above-mentioned (q -t- 1)
classes of points, say C, is a set of independent generic points of V over
then the set of all other points, which remain after removal of C
from (x, Xn), is also a set of independent generic points of V over
It is also to be noted that the order in which x, x are arranged is ir-
relevant in the above reasoning.
To complete the proof of (iii), we have to prove that (xil, x) is a

set of independent generic points of V over k. We shall denote (x, x)
by Co nd abbreviate this to "Co is independent". Let C be the comple-
mentary set of Co with respect to (x, ..., x). C consists of No points.
If C is independent, then Co is independent by what we have just proved.
If C is not independent, then Co contains some "independent part" (con-
sisting of No or n qNo points), say C’. By what we have proved, the com-
plement of C must be independent. But this complement contains C1,
which is a contradiction.
As to the assertions (i) and (iv), the component Y* of Y corresponding to
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Z* by aN0 X , contains the subvariety X() X X(- which is the locus of
(x(1), x(2)) over /(u). Furthermore (x(1), x()) has Y* as the locus over
and any component of Y can be regarded as the locus of (x(), x()) over
This leads easily to the assertions (i) and (iv), and the assertion (ii) is
direct consequence of (i).
THEOnEM 2. Under the same notations and assumptions as in Proposition 3,

there exists a positive integer N such that X) is a regular variety defined over

for any integer n N and any point v on A (we can choose as N the integer
N (q 1)No in Proposition 3), and dim X) nr q.

Proof. Obviously we have only to prove the theorem for the case v 0.
It was already proved in Proposition 3 that X) is a variety of dimension

(nr q). Now we must prove that the variety X) is regular. As the
regularity of a variety does not depend upon the choice of reference fields,
we may assume that k is algebraically closed.

Let B and g be, respectively, the Albanese variety of X) and a canonical
mapping of X) into B, both of which are defined over k. It is sufficient to
prove that g is a constant mapping. Under the same notations as in Proposi-
tion 3 we shall denote by the restriction mapping of g s on a variety
X() X X Then can be expressed by

((’, x()) g(x()) + g(x()),
where g (or g) is a rational mapping of X) (or X) into B, which is
defined over separably ulgebraic extension K of (u). If u complete set
of conjugates of g over (u) is given by (g), g), g)) respectively
for i 1, 2, we have

(x(), x()) g(x()) + g(x(:)) for 1,2, ,1
and

G(x(1)) + G2(x()),
where G’ or G is, respectively, a rational mapping of X() to B or of X:
to B, both of which are defined over k(u). Then there exists a rational
mapping G (or G) of V(N0) (or V(m) to B, the restriction mapping on
X() (or X) of which is equal to G’ (or G) From the definition of the
Albanese variety we know that G and G induce constant mappings, respec-
tively, on X() and X This means that lO and also 0 are constant on
X0) X X and its value O(x() x()) g s(x() x()) is rational over
k(u). Since k(u) is a subfield of k(x, x0), there is a rational mapping

N0

h of V X X V to B, which is defined over and satisfies

g o s(x(, x() h(x, Xo).

That K is separably algebraic over k(u) is not essential for our proof.
G and G are defined over k.
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On account of the symmetry of g, we have

where h is a mapping of V to B, and

g s(x(1), x()) g o s(x(1’), x("))
where x(1’) a(xl, ..., x;), x(’) a(x(N0+l), "", x,,) for a permutation
(1’, 2’, n’) of (1, 2,... n). Combining the above two equalities we
have

Let (.1, ., n) be a set of independent generic points of V over

We shall define a mapping H o- of V N N V to B by

H may be considered as a mapping of V(n) to B. Then by a simple calcula-
tion, we have

H r(x, x,) -ng o-(x, xn).

Since H must be constant on X(o), ng and consequently g are constant on
X0(n). This completes our proof.

4. Now we introduce the notion of regular equivalence between cycles of
the same dimension on a variety. This is a special case of algebraic equiv-
alence and a wider notion than of rational or linear equivalences.

Let V be a variety, and X, X’ two cycles of the same dimension on V.
X, X’ will be called directly regularly equivalent if there exist a regular
variety W, two points x, x’ on W, and a cycle Z on V X W such that X X x
Z. (V X x), X’ x’ Z. (V x’). (We should of course require that the
intersections Z. (V X x), Z. (V X x’) can be defined.) Two cycles X, Y
on V will be called regularly equivalent if there exist a finite number of cycles
X, X’, X", X(k) Y, such that X and X’, X’ and X", X(k-l) and
X() are directly regularly equivalent.
Our Theorem 2 implies that regularly equivalent zero-cycles are always

directly regularly equivalent. On the other hand, it is easily seen from the
theory of Picard variety (or from the so-called "Seesaw Theorem") that regu-
larly equivalent divisors are linearly equivalent. But the general theory of
regular equivalence is not yet made, and we do not even know if regularly
equivalent cycles (of other dimensions than 0 and r 1) are always directly
regularly equivalent or not.
By using the terminology of regular equivalence, we can formulate our

Theorem 2 in the following form"

16 The following process is not necessary for the case q > 1. The proof in case q > 1
can be accordingly simplified.
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THEOREM 3. Let A and f be, respectively, the Albanese variety attached to a
projective nonsingular variety V and the canonical mapping of V into A. We
shall denote by @, @ the group of zero-cycles on V which are of degree 0 and
the group of zero-cycles on V which are regularly equivalent to O, respectively.
Then there exists a group isomorphism between @a/@, and A, given by

?l P + + P,- Q Q,e @

--* f(P) + + f(Pn) f(Q) f(Q) A.
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