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If r is ny finite group, the p-period of is defined to be the least positive
integer q such that the cohomology groups fl(r, A) nd/+(r, A) hve
isomorphic p-primary components for ll i nd 11 A [1, Ch. XII, Ex. 11].
This is equivalent to the statement that/(, Z) hs n element of order
p, the highest power of p dividing the order of r [1, Ch. XII, Ex. 11].

I will sy that q is p-period for if it is multiple of he p-period. The
ordinary period of the cohomology of is, of course, the least common multiple
of ll the p-periods. It is known [1, Ch. XII, Ex. 11] that the p-period will
be finite if nd only if the p-sylow subgroup of r is either cyclic or a generalized
quternion group. The purpose of this pper is to give simple group-
theoretic interpretation of the p-period of . The methods used here also
give cohomological generalization of Grfin’s second theorem [3, Ch. V, Th.
6]. This will be presented in the Appendix since it is not needed in proving
Theorems 1 nd 2.

THEOREM 1. If the 2-sylow subgroup of - is cyclic, the 2-period is 2. If
he 2-sylow subgroup of r is a (generalized) quaernion group, the 2-period is 4.

THEOREM 2. Suppose p is odd and the p-sylow subgroup of r is cyclic. Let
r be a p-sylow subgroup, and le be he group of auomorphisms of r induced
by inner automorphisms of r. Then the p-period of r is wice the order of.
The group is, of course, isomorphic to N(-)/C(r) where N and C

denote the normlizer nd centralizer, respectively.
Before proving these theorems, I will review some fcts bout the cohomol-

ogy of groups. Suppose h’p---. r is monomorphism of finite groups.
Then h induces mp of cohomology h*’(r, A)---. [I(p, A). Here A
is r-module and so cn be regarded as p-module by means of h. This
mp h* is defined as follows. Let W be Tte complex (or complete resolu-
tion in the terminology of [1, Ch. XII, 3]) for v. Then p acts on W through
h, nd W is p-free since h is monomorphism. Thus W is lso Tte com-

plex for p. The map h* is now defined to be the mp of cohomology induced
by the inclusion Hom(W, A) Hom(W, A). In cse h is n inclusion
mp, h* is just the mp i(p, r) of [1, Ch. XII, 8]. Suppose r H, x e H
nd h’xrx---- r is given by h(y)= x-yx. Then h*’fl*(v, A)--
*(xrx-, A) is just the mp c of [1, Ch. XII, 8].

Let r’ be subgroup of r, nd x n element of r. Then there re two ob-
vious monomorphisms i, f, r’ xr’x- -- r’, nmely, i(y) y nd f,(y)
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x-yx. Recall that an element a e/(’, Z) is called stable [1, Ch. XII,
9] if i*(a) f*(a) for all x e v. To see that this agrees with the definition
in [1, Ch. XII, 9], we need only observe that f* c i* by the previous
remark about c. If v is p-sylow subgroup of v, the p-primary component
of (, Z) is isomorphic to the subgroup of stable elements of/’(v, Z)
[1, Ch. XII, 9]. It follows that we can determine the p-period if we know
the stable elements in /’(, Z).

LEMMA 1. Suppose the p-sylow subgroup r of r is abelian. Let be
the group of automorphisms of r induced by inner automorphisms of v. Then
an element o e i(r Z) is stable if and only if it is fixed under the action of

on fI ( Z).

The action of on/i(r, Z) is, of course, given by h. a (h-1)*.
Proof. Suppose first that a is stable. Let x e r be such that xx- r.

The maps i, f - [’l X’p X
-1

----) 71"p are just i(y) y and f(y) -1
X yX.

Thusf is an operation of. Since a is stable, f* (a) i*(a) a. There-
fore a is fixed under .
Now assume a is fixed under. Let x e r, and let i,f r n x x-1 -- -be as above. We must show that ]* (a) i*(a). Let C be the centralizer

of n x x-1 in r. Clearly r, xr x-1 c C since r is abelian. Since
is a p-sylow subgroup of r, it is also a p-sylow subgroup of C. Therefore
there is a e C such that tx- x-it-1 . Now, since e C, we see that
if y e r, n xrx-1, we have f(y) fx(t-lyt) x-t-lytx ftx(y). In
other words, f f.i where fx e p. Since a is fixed under , it follows
that f* (a) i*(a).

LEMMA 2. Suppose has a cyclic p-sylow subgroup -. Then q is a mul-
tiple of the p-period of r if and only if q is even and every element of q(-, Z)
is fixed under.

Proof. If q is a p-period for v, it must be p-period for v [1, Ch. XII’
Prop. 11.3]. Since the p-period of r is 2 [1, Ch. XII, 7], q must be even.
Assume now that q is even. Let p be the order of r. Then q will be a

p-period for if and only if/q(, Z) has an element of order p [1, Ch. XII,
Ex. 11]. But,/q(, Z) is isomorphic to the subgroup of stable elements in
q(r, Z). Since q is even and is cyclic, /q(r, Z) is cyclic of order
p. Therefore q is a p-period for if and only if all elements of/q(, Z)
are stable. By Lemm 1, this is true if and only if all elements of/q(r, Z)
are fixed under p.
We can now prove half of Theorem 1. Suppose . is cyclic. The group

4). is the quotient N(r)/C(-). Since c C(r:) and r is a 2-sylow sub-
group, . must have odd order. However, the group of all automorphisms
of has order (2) 2-1. Thus is trivial. Therefore every element of
/(w., Z) is fixed under .. By Lemma 2, the 2-period of r is 2.

In order to prove Theorem 2, we must make a small computation.
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LEMMA 3. Let p be a cyclic group of order n. Then any automorphism
f’p -- p has the form f(x) x where r is prime to n. If a t(p, Z), then
f,() r

Proof. The first statement is well known [3, Ch. IV, 3]. The assertion
if(a) ra is easily proved by a direct computation. Since this is purely
mechanical, it will be omitted (cf. [2, 8]).
Remark 1. Since p and /(p, Z) are both cyclic of the same order [1,

Ch. XII, 7], we can restate the lemma by saying that f* acts on/(p, Z)
in the same way that f acts on p.

It is now easy to prove Theorem 2. Since r is a cyclic p-group with p
odd, its automorphism group is cyclic [3, Ch. IV, 3]. Consequently is
also cyclic. Let f e be a generator. Then an element of q(r, Z) is
fixed under if and only if it is fixed under f*. By Lemma 2 we can assume
q 2i is even. By Remark 1, /(, Z) is fixed under f* if and only if
r is fixed under f, i.e., if and only if i is divisible by the order of. Theo-
rem 2 now follows immediately from Lemma 2.
The only case left to consider is that in which r is a (generalized) quater-

nion group. In this case the 2-period cannot be 2 because the 2-period of
2 is 4 [1, Ch. XII, 7]. Therefore, to prove Theorem 1, it will be sufficient
to show that all elements of H (, Z) are stable.

Suppose that x is any element of v. Let p vnxx-1. As before
i, f" p-- . by i(y)= y, f(y) x-lyx. We must show that i*= f*
on/(, Z).
A (generalized) quaternion group of order 2t hs presentation

F la, b’a b, aba bl [1, Ch. XII, 7].

LEMMA 4. Let be an automorphism of the (generalized) quaternion group
r defined by (a) a, (b) ab. Then * is the identity map on/4(F, Z).

Proof. It is enough to prove this for the utomorphism a a, b ab
since is obtained by iterating this utomorphism i times. For this uto-
morphism, the lemm is proved by mechanical computation using the ex-
plicit complex of [1, Ch. XII, 7]. (Cf. [2, 8].)
LEMMA 5. Let F be the ordinary quaternion group (of order 8). If h is any

automorphism of F, then h* is the identity on t(, Z).

Proof. By enumerating 11 utomorphisms of F, it is easy to check that
the utomorphism group of F is generated by utomorphisms of the type con-
sidered in Lemm 4 for vrious choices of the generators a, b.

LEMMA 6. Let be the ordinary quaternion group. Let be any (generalized)
quaternion group. Then all monomorphisms f’p-- F induce the same map
t(r, z)- (, z).

Proof. Let F hve the presentation used in Lemm 4. The only elements
of order 4 in F are at nd ab for ll i. Therefore f(p) must contain at
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and some a b. By applying an automorphism to F of the type considered in
Lemma 4, we can assume that f(p) contains atl2 and b. Any two such maps
clearly differ by an automorphism of p. Thus the result follows from Lemmas
4 and 5.

LEMMA 7. Let p be cyclic of order at most 4. Let F be any (generalized)
quaternion group. Then any two monomorphisms f: p--> F induce the same
map /4(F, Z)-/4(p, Z).

Proof. F has only one element of order 2, namely at. Thus the result is
trivial if p has order 1 or 2. If p has order 4, f(p) is contained in an ordinary
quaternion subgroup F’ of F. Any two monomorphisms p-- F’ differ by an
automorphism of F’. Therefore the result follows from Lemmas 5 and 6.
Now let us return to the 2-sylow subgroup r2 of r and the maps i, fx"

where p r n xr x-1. If p is an ordinary quaternion group or is cyclic of
order at most 4, it follows from Lemmas 6 and 7 that f* and i* agree on
/(r., Z). Therefore we have only to consider the case where p is cyclic of
order greater than 4 or is a properly generalized quaternion group (i.e., of
order at least 16). Since such a group p is not contained in an ordinary
quaternion group, r must be a properly generalized quaternion group.
For any group F, let F(s) be the subgroup of F generated by all elements

having order at least 8. This is a characteristic subgroup and is, in fact,
stable under monomorphisms. If F is a properly generalized quaternion group
with the presentation {a, b" a b, aba b}, then F(s) is the cyclic subgroup
generated by a. The only reason for introducing the notation F(s) is to give a
natural way of picking out this subgroup.
Note that an inner automorphism of F will send a into either a or a-1.

Choose a generator z for p(s), and let H be the subgroup of r consisting of all
elements u such that uzu- is either z or z-1. By the remark just made about

X--1inner automorphisms of F, we see that r and xr. c H. Since they are
2-sylow subgroups, there is a u e H such that uxr r. We can
assume that uzu-1 z because, if uzu- z-, we can replace u by bu where
r2 {a, b’at= b aba bt is a presentation for
We have now factored fx asf Ag where A" r. -- r by A (y) x-u-iyux

and g’p-->- by g(y) uyu-1. By the choice of u, we have g(z) z.
Thus, if p is cyclic, we have g i, the inclusion map p-- r (because
has order divisible by 8, and so p p(s)). If p is a generalized quaternion
group, it is generated by z and some ab where {a, b" a b, aba b} is a
presentation of r2. Suppose g(ab) aJb. Let be the automorphism of
r. given by (a)= a, (b)= aJ-b. Then g i. This shows that,
whether p is cyclic or not, we can write f Ai where is an automorphism
of r. of the type considered in Lemma 4. Now, f* i**A*. By Lemma 4,
b* 1. In order to shoe that all elements of/(r, Z) are stable, it re-
mains to show that A* 1.
For each element v e N(r), let A" r.- r2 be the map A,,(y) vyv-1.
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The map v -- (A-1)* defines a homomorphism a of N(2) into the group of
H (2,automorphisms of ^4 Z) If v e r2 A is an inner automorphism of, and so a(v) 1 [1, Ch. XII, 8, (5)]. Therefore 2 c ker a. Since

2 is a 2-sylow subgroup of , the image of a must have odd order. But
^4H (, Z) is a cyclic 2-group, so its automorphism group is again a 2-group
[3, Ch. IV, 3]. Therefore a must be trivial. Since A* a(ux), it follows
that A* 1. This proves Theorem 1.

Appendix
Lemma 1 may be considered a generalization of a well-known theorem of

Burnside [3, Ch. V, Th. 4]. For suppose is in the center of N(). Then
the group is the trivial group. Consequently, by Lemma 1, all elements of
/(, Z) are stable, and so i*:/(v, Z) -/(v, Z) is an isomorphism of
the p-primary component of/(, Z) onto/(w, Z). Now, for i -2,
this map is just the classical transfer -- w2 [1, Ch. XII, Ex. 10]. Since it is
onto, r splits over .

It is natural to inquire whether any of the other classical theorems on
transfer generalize to theorems on cohomology. I will show here that the
second theorem of Grfin [3, Ch. V, Th. 6] does have such a generalization.
The statement that an element a e/(, A) is stable depends of course

on the group in which r is contained. When it is necessary to emphasize
this, I will say that a is stable with respect to v.

THEOREM 3. Suppose is p-normal [3, Ch. V, 2]. Let - be a p-sylow
subgroup of , and let N be the normalizer of the center of -. Then for any
r-module A, an element a e (, A) is stable with respect to r if and only if it
is stable with respect to N.

For the proof, we need the following lemma which is extracted from the
usual proof of Grfin’s second theorem [3, Ch. V, Th. 6].

LEMMA 8. Let - be p-normal. Let 81,82 be p-centers [3, Ch. V, 2] of -.
If 81 and 82 are contained in a subgroup H of -, they are conjugate in H.

Proof. If H is a p-group, it is contained in a p-sylow subgroup P of .
Since r is p-normal, 81 and 82 must both be equal to the center of P, and so

81 82 in this case.
Now, if H is any subgroup of , imbed 81 and 82 in p-sylow subgroups P1

and P2 of H. An inner automorphism of H will take P2 into P1. By the
remark just made about p-groups, this inner automorphism takes 82 into 81.

Proof of Theorem 3. If a is stable with respect to r, it is clearly stable with
respect to N.
Assume now that a is stable with respect to N. Let x e v. Let

--1
p p fl XpX

Let i, f: p-- by i(y) y and f(y) x-lyx. We must show that
i*() f*(,).
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Let be the center of p. Then xx-1 is the center of xrp x-I. Both of
these are in the centralizer C(p) of p. By Lemma 8, there is an element

C(p) such that tx$x-lt-1= . In other words, tx N. Since e C(p),
the maps i, f: p-- r can be obtained by composing the inclusion map
p - n txr x-t-1 with the maps i’ f r f txrp x-t- --* r defined
by i’(y) y and f(y) x-t-ytx. Now i’*() f*(cz) since tx N
and a is stable with respect to N. Therefore i*(a) ]*(a). This shows
that a is stable with respect to

COROLLARY. Let " be p-normal, and let N be the normalizer of a p-center of
r. Let A be any r-module. Then the inclusion and transfer maps both are
isomorphisms between the p-primary components of Ii(r, A) and (N, A).

This follows immediately from Theorem 3 and the results of [1, Ch. XII, 9].
If we set i -2 and A Z in this corollury, we get the classical second

theorem of Griin.
We can also recover Lemma 1 from Theorem 3 for, if r is abelian, it is

normal in N. Therefore, an element of/(r, A) is stable with respect to
N if and only if it is fixed under the action of N on z by y -- x-yx for each
xN.
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