THE p -PERIOD OF A FINITE GROUP

BY

RICHARD G. SWAN¹

If π is any finite group, the *p*-period of π is defined to be the least positive integer q such that the cohomology groups $\hat{H}^i(\pi, A)$ and $\hat{H}^{i+q}(\pi, A)$ have isomorphic p-primary components for all i and all A [1, Ch. XII, Ex. 11]. This is equivalent to the statement that $\hat{H}^q(\pi, Z)$ has an element of order p' , the highest power of p dividing the order of π [1, Ch. XII, Ex. 11].

I will say that q is a p-period for π if it is a multiple of the p-period. The ordinary period of the cohomology of π is, of course, the least common multiple of all the p-periods. It is known $[1, Ch. XII, Ex. 11]$ that the p-period will be finite if and only if the p-sylow subgroup of π is either cyclic or a generalized quaternion group. The purpose of this paper is to give a simple grouptheoretic interpretation of the p-period of π . The methods used here also give a cohomological generalization of Grün's second theorem [3, Ch. V, Th. 6]. This will be presented in the Appendix since it is not needed in proving Theorems 1 and 2.

THEOREM 1. If the 2-sylow subgroup of π is cyclic, the 2-period is 2. THEOREM 1. If the 2-sylow subgroup of π is cyclic, the 2-period is 2. If the 2-sylow subgroup of π is a (generalized) quaternion group, the 2-period is 4.

THEOREM 2. Suppose p is odd and the p-sylow subgroup of π is cyclic. Let π_p be a p-sylow subgroup, and let Φ_p be the group of automorphisms of π_p induced by inner automorphisms of π . Then the p-period of π is twice the order of Φ_p .

The group Φ_p is, of course, isomorphic to $N(\pi_p)/C(\pi_p)$ where N and C denote the normalizer and centralizer, respectively.

Before proving these theorems, I will review some facts about the cohomology of groups. Suppose $h:\rho\to\pi$ is a monomorphism of finite groups. Then h induces a map of cohomology $h^*: \hat{H}^i(\pi, A) \to \hat{H}^i(\rho, A)$. Here A is a π -module and so can be regarded as a ρ -module by means of h. This map h^* is defined as follows. Let W be a Tate complex (or complete resolution in the terminology of [1, Ch. XII, §3]) for π . Then ρ acts on W through h, and W is ρ -free since h is a monomorphism. Thus W is also a Tate complex for ρ . The map h^* is now defined to be the map of cohomology induced by the inclusion $\text{Hom}_{\pi}(W, A) \subset \text{Hom}_{\rho}(W, A)$. In case h is an inclusion map, h^* is just the map $i(\rho, \pi)$ of [1, Ch. XII, §8]. Suppose $\pi \subset \Pi$, $x \in \Pi$ and $h: x\pi x^{-1} \to \pi$ is given by $h(y) = x^{-1}yx$. Then $h^*: \hat{H}^*(\pi, A) \to$ $\hat{H}^*(x\pi x^{-1}, A)$ is just the map c_x of [1, Ch. XII, §8].

Let π' be a subgroup of π , and x an element of π . Then there are two obvious monomorphisms $i, f_x : \pi' \cap x\pi'x^{-1} \to \pi'$, namely, $i(y) = y$ and $f_x(y)$
Received November 24, 1959.

Received November 24, 1959.

Sponsored by the Office of Ordnance Research, U. S. Army.

 $x^{-1}yx$. Recall that an element $\alpha \in \hat{H}^k(\pi', Z)$ is called stable [1, Ch. XII, §9] if $i^*(\alpha) = f^*(\alpha)$ for all $x \in \pi$. To see that this agrees with the definition in [1, Ch. XII, §9], we need only observe that $f_x^* = c_x i^*$ by the previous remark about c_x . If π_p is a p-sylow subgroup of π , the p-primary component of $\hat{H}^i(\pi, Z)$ is isomorphic to the subgroup of stable elements of $\hat{H}^i(\pi_p, Z)$ $[1, Ch. XII, §9]$. It follows that we can determine the *p*-period if we know the stable elements in $\hat{H}^i(\pi_n, Z)$.

LEMMA 1. Suppose the p-sylow subgroup π_p of π is abelian. Let Φ_p be the group of automorphisms of π_p induced by inner automorphisms of π . Then an element $\alpha \in \hat{H}^i(\pi_p, Z)$ is stable if and only if it is fixed under the action of Φ_p on $\hat{H}^i(\pi_p, Z)$.

The action of Φ_p on $\hat{H}^i(\pi_p, Z)$ is, of course, given by $h \cdot \alpha = (h^{-1})^* \alpha$.

Proof. Suppose first that α is stable. Let $x \in \pi$ be such that $x \pi_p x^{-1} = \pi_p$. *Proof.* Suppose first that α is stable. Let $x \in \pi$ be such that $x\pi_p x^{-1} = \pi_p$.
The maps $i, f_x : \pi_p = \pi_p \cap x\pi_p x^{-1} \to \pi_p$ are just $i(y) = y$ and $f_x(y) = x^{-1}yx$.
Thus f_x is an operation of Φ_p . Since α is stable, $f_x^$ Thus f_x is an operation of
fore α is fixed under Φ_p .

The α is fixed under Φ_p .
Now assume α is fixed under Φ_p . Let $x \in \pi$, and let $i, f_x : \pi_p \cap x \pi_p x$ -1 is a p-sylow subgroup of π , it is also a p-sylow subgroup of C. Therefore be as above. We must show that $f^*(\alpha) = i^*(\alpha)$. Let C be the centralizer be as above. We must show that $f_x(\alpha) = i^{\pi}(\alpha)$. Let C be the centralizer
of $\pi_p \cap x\pi_p x^{-1}$ in π . Clearly π_p , $x\pi_p x^{-1} \subset C$ since π_p is abelian. Since π_p is a p-sylow subgroup of π , it is also a p-sylow subgroup of C. Therefore
there is a $t \in C$ such that $tx\pi_p x^{-1}t^{-1} = \pi_p$. Now, since $t \in C$, we see that if $y \in \pi_p \cap x\pi_p x^{-1}$, we have $f_x(y) = f_x(t^{-1}yt) = x^{-1}t^{-1}ytx = f_{tx}(y)$. In other words, $f_x = f_{tx} \cdot i$ where $f_{tx} \in \Phi_p$. Since α is fixed under Φ_p , it follows that $f^*(\alpha) = i^*(\alpha)$.

LEMMA 2. Suppose π has a cyclic p-sylow subgroup π_p . Then q is a multiple of the p-period of π if and only if q is even and every element of $\hat{H}^q(\pi_p, Z)$ is fixed under Φ_n .

Proof. If q is a p-period for π , it must be a p-period for π_p [1, Ch. XII' Prop. 11.3]. Since the p-period of π_p is 2 [1, Ch. XII, §7], q must be even.

Assume now that q is even. Let p' be the order of π_p . Then q will be a p-period for π if and only if $\hat{H}^q(\pi, Z)$ has an element of order p' [1, Ch. XII, Ex. 11]. But, $\hat{H}^q(\pi, Z)$ is isomorphic to the subgroup of stable elements in $\hat{H}^q(\pi_p, Z)$. Since q is even and π_p is cyclic, $\hat{H}^q(\pi_p, Z)$ is cyclic of order p^r. Therefore q is a p-period for π if and only if all elements of $\hat{H}^q(\pi_p, Z)$ are stable. By Lemma 1, this is true if and only if all elements of $\hat{H}^q(\pi_p, Z)$ are fixed under Φ_p .

We can now prove half of Theorem 1. Suppose π_2 is cyclic. The group Φ_2 is the quotient $N(\pi_2)/C(\pi_2)$. Since $\pi_2 \subset C(\pi_2)$ and π_2 is a 2-sylow subgroup, Φ_2 must have odd order. However, the group of all automorphisms of π_2 has order $\phi(2^r) = 2^{r-1}$. Thus Φ_2 is trivial. Therefore every element of $\hat{H}^2(\pi_2, Z)$ is fixed under Φ_2 . By Lemma 2, the 2-period of π is 2.

In order to prove Theorem 2, we must make a small computation.

LEMMA 3. Let ρ be a cyclic group of order n. Then any automorphism $f: \rho \to \rho$ has the form $f(x) = x^r$ where r is prime to n. If $\alpha \in \hat{H}^{2i}(\rho, Z)$, then $f^*(\alpha) = r^i \alpha$. $f^*(\alpha) = r^i \alpha$.

Proof. The first statement is well known [3, Ch. IV, \S 3]. The assertion $f^*(\alpha) = r^*\alpha$ is easily proved by a direct computation. Since this is purely mechanical, it will be omitted $(cf. [2, §8])$.

Remark 1. Since ρ and $\hat{H}^{2i}(\rho, Z)$ are both cyclic of the same order [1, Ch. XII, §7], we can restate the lemma by saying that f^* acts on $\hat{H}^{2i}(\rho, Z)$ in the same way that f^i acts on ρ .

It is now easy to prove Theorem 2. Since π_p is a cyclic p-group with p odd, its automorphism group is cyclic [3, Ch. IV, $\S 3$]. Consequently Φ_p is also cyclic. Let $f \in \Phi_p$ be a generator. Then an element of $\hat{H}^q(\pi_p, Z)$ is fixed under Φ_p if and only if it is fixed under f^* . By Lemma 2 we can assume $q = 2i$ is even. By Remark 1, $\hat{H}^{2i}(\pi_p, Z)$ is fixed under f^* if and only if π_p is fixed under f^i , i.e., if and only if i is divisible by the order of Φ_p . Theorem 2 now follows immediately from Lemma 2.

The only case left to consider is that in which π_2 is a (generalized) quaternion group. In this case the 2-period cannot be 2 because the 2-period of π_2 is 4 [1, Ch. XII, §7]. Therefore, to prove Theorem 1, it will be sufficient to show that all elements of $H^4(\pi_2, Z)$ are stable.

Suppose that x is any element of π . Let $\rho = \pi_2 \cap x \pi_2 x^{-1}$. As before i, f_x : $\rho \rightarrow \pi_2$ by $i(y) = y$, $f_x(y) = x^{-1}yx$. We must show that $i^* = f_x^*$ on $\widehat{H}^4(\pi_2, Z)$.

A (generalized) quaternion group of order $2t$ has a presentation

$$
\Gamma = \{a, b : a^t = b^2, aba = b\}
$$
 [1, Ch. XII, §7].

LEMMA 4. Let ϕ be an automorphism of the (generalized) quaternion group Γ defined by $\phi(a) = a, \phi(b) = a^b$. Then ϕ^* is the identity map on $\hat{H}^4(\Gamma, Z)$.

Proof. It is enough to prove this for the automorphism $a \rightarrow a$, $b \rightarrow ab$ since ϕ is obtained by iterating this automorphism i times. For this automorphism, the lemma is proved by a mechanical computation using the explicit complex of $[1, Ch. XII, §7]$. (Cf. $[2, §8]$.)

LEMMA 5. Let Γ be the ordinary quaternion group (of order 8). If h is any automorphism of Γ , then h^* is the identity on $\hat{H}^4(\Gamma, Z)$.

Proof. By enumerating all automorphisms of Γ , it is easy to check that the automorphism group of Γ is generated by automorphisms of the type considered in Lemma 4 for various choices of the generators a, b .

LEMMA 6. Let ρ be the ordinary quaternion group. Let Γ be any (generalized) quaternion group. Then all monomorphisms $f: \rho \to \Gamma$ induce the same map $\widehat{H}^4(\Gamma, Z) \longrightarrow \widehat{H}^4(\rho, Z).$

Proof. Let Γ have the presentation used in Lemma 4. The only elements of order 4 in Γ are $a^{t/2}$ and $a^t b$ for all i. Therefore $f(\rho)$ must contain $a^{t/2}$

and some $a^i b$. By applying an automorphism to Γ of the type considered in Lemma 4, we can assume that $f(\rho)$ contains $a^{t/2}$ and b. Any two such maps clearly differ by an automorphism of ρ . Thus the result follows from Lemmas 4 and 5.

LEMMA 7. Let ρ be cyclic of order at most 4. Let Γ be any (generalized) quaternion group. Then any two monomorphisms $f: \rho \to \Gamma$ induce the same map $\hat{H}^4(\Gamma, Z) \rightarrow \hat{H}^4(\rho, Z)$.

Proof. Γ has only one element of order 2, namely a^t . Thus the result is trivial if ρ has order 1 or 2. If ρ has order 4, $f(\rho)$ is contained in an ordinary quaternion subgroup Γ' of Γ . Any two monomorphisms $\rho \to \Gamma'$ differ by an automorphism of F'. Therefore the result follows from Lemmas 5 and 6.

Now let us return to the 2-sylow subgroup π_2 of π and the maps $i, f_x : \rho \to \pi_2$ where $\rho = \pi_2 \cap x \pi_2 x^{-1}$. If ρ is an ordinary quaternion group or is cyclic of order at most 4, it follows from Lemmas 6 and 7 that f_x^* and i^* agree on $\hat{H}^4(\pi_2, Z)$. Therefore we have only to consider the case where ρ is cyclic of order greater than 4 or is a properly generalized quaternion group (i.e., of order at least 16). Since such a group ρ is not contained in an ordinary quaternion group, π_2 must be a properly generalized quaternion group.

For any group Γ , let $\Gamma_{(8)}$ be the subgroup of Γ generated by all elements having order at least 8. This is a characteristic subgroup and is, in fact, stable under monomorphisms. If F is a properly generalized quaternion group with the presentation $\{a, b : a^t = b^2, aba = b\}$, then $\Gamma_{(8)}$ is the cyclic subgroup generated by a. The only reason for introducing the notation $\Gamma_{(8)}$ is to give a natural way of picking out this subgroup.

Note that an inner automorphism of Γ will send a into either a or a^{-1} . Choose a generator z for $\rho_{(8)}$, and let H be the subgroup of π consisting of all elements u such that uzu^{-1} is either z or z^{-1} . By the remark just made about elements u such that uzu^{-1} is either z or z^{-1} . By the remark just made about inner automorphisms of Γ , we see that π_2 and $x\pi_2 x^{-1} \subset H$. Since they are 2-sylow subgroups, there is a $u \in H$ such that $ux\pi_2 x^{-1}u^{-1} = \pi_2$. We can assume that $uzu^{-1} = z$ because, if $uzu^{-1} = z^{-1}$, we can replace u by bu where $\pi_2 = \{a, b : a^t = b^2, aba = b\}$ is a presentation for π_2 . $\pi_2 = \{a, b : a^t = b^2, aba = b\}$ is a presentation for π_2 .

We have now factored f_x as $f_x = Ag$ where $A : \pi_2 \to \pi_2$ by $A(y) = x^{-1}u^{-1}yux$ We have now factored f_x as $f_x = Ag$ where $A : \pi_2 \to \pi_2$ by $A(y) = x^{-1}u^{-1}yux$
and $g : \rho \to \pi_2$ by $g(y) = uyu^{-1}$. By the choice of u, we have $g(z) = z$. Thus, if ρ is cyclic, we have $g = i$, the inclusion map $\rho \rightarrow \pi_2$ (because ρ has order divisible by 8, and so $\rho = \rho_{(8)}$). If ρ is a generalized quaternion group, it is generated by z and some $a^i b$ where $\{a, b : a^t = b^2, aba = b\}$ is a presentation of π_2 . Suppose $g(a^i b) = a^i b$. Let ϕ be the automorphism of π_2 given by $\phi(a) = a$, $\phi(b) = a^{j-i}b$. Then $g = \phi i$. This shows that, whether ρ is cyclic or not, we can write $f_x = A\phi i$ where ϕ is an automorphism of π_2 of the type considered in Lemma 4. Now, $f_x^* = i^*\phi^*A^*$. By Lemma 4, $\phi^* = 1$. In order to show that all elements of $\hat{H}^4(\pi_2, Z)$ are stable, it remains to show that $A^* = 1$.

For each element $v \in N(\pi_2)$, let $A_v : \pi_2 \to \pi_2$ be the map $A_v(y) = v y v^{-1}$.

The map $v \to (A_v^{-1})^*$ defines a homomorphism α of $N(\pi_2)$ into the group of The map $v \to (A_v^{-1})^*$ defines a homomorphism α of $N(\pi_2)$ into the group of automorphisms of $\hat{H}^4(\pi_2, Z)$. If $v \in \pi_2$, A_v is an inner automorphism of π_2 , and so $\alpha(v) = 1$ [1, Ch. XII, §8, (5)]. Therefore $\pi_2 \subset \text{ker } \alpha$. Since π_2 is a 2-sylow subgroup of π , the image of α must have odd order. But $\hat{H}^4 (\pi_2, Z)$ is a cyclic 2-group, so its automorphism group is again a 2-group [3, Ch. IV, §3]. Therefore α must be trivial. Since $A^* = \alpha(ux)$, it follows that $A^* = 1$. This proves Theorem 1.

Appendix

Lemma ¹ may be considered a generalization of a well-known theorem of Burnside [3, Ch. V, Th. 4]. For suppose π_p is in the center of $N(\pi_p)$. Then the group Φ_p is the trivial group. Consequently, by Lemma 1, all elements of $\hat{H}^i(\pi_p, Z)$ are stable, and so $i^* \colon \hat{H}^i(\pi, Z) \to \hat{H}^i(\pi_p, Z)$ is an isomorphism of the p-primary component of $\hat{H}^i(\pi, Z)$ onto $\hat{H}^i(\pi_p, Z)$. Now, for $i = -2$, this map is just the classical transfer $\pi \to \pi_2$ [1, Ch. XII, Ex. 10]. Since it is onto, π splits over π_2 . onto, π splits over π_2 .

It is natural to inquire whether any of the other classical theorems on transfer generalize to theorems on cohomology. I will show here that the second theorem of Grün [3, Ch. V, Th. 6] does have such a generalization.

The statement that an element $\alpha \in \bar{H}^*(\pi_p, A)$ is stable depends of course on the group π in which π_p is contained. When it is necessary to emphasize this, I will say that α is stable with respect to π .

THEOREM 3. Suppose π is p-normal [3, Ch. V, §2]. Let π_p be a p-sylow THEOREM 3. Suppose π is p-normal [3, Ch. V, §2]. Let π_p be a p-sylow
subgroup of π , and let N be the normalizer of the center of π_p . Then for any
 π -module A, an element $\alpha \in \hat{H}^i(\pi_p, A)$ is stable with re π -module A, an element $\alpha \in \hat{H}^i(\pi_p, A)$ is stable with respect to π if and only if it is stable with respect to N.

For the proof, we need the following lemma which is extracted from the usual proof of Grün's second theorem [3, Ch. V, Th. 6].

LEMMA 8. Let π be p-normal. Let λ_1 , λ_2 be p-centers [3, Ch. V, $\S 2$] of π . LEMMA 8. Let π be p-normal. Let ζ_1 , ζ_2 be p-centers [3, Ch. V, $\S 2$] of π .
If ζ_1 and ζ_2 are contained in a subgroup H of π , they are conjugate in H.

Proof. If H is a p-group, it is contained in a p-sylow subgroup P of π . Since π is p-normal, λ_1 and λ_2 must both be equal to the center of P, and so $x_1 = x_2$ in this case.

Now, if H is any subgroup of π , imbed λ_1 and λ_2 in p-sylow subgroups P_1 and P_2 of H. An inner automorphism of H will take P_2 into P_1 . By the remark just made about p-groups, this inner automorphism takes ζ_2 into ζ_1 .

Proof of Theorem 3. If α is stable with respect to π , it is clearly stable with respect to N.

Assume now that α is stable with respect to N. Let $x \in \pi$. Let

$$
\rho = \pi_p \cap x \pi_p x^{-1}.
$$

Let i, $f_x: \rho \to \pi_p$ by $i(y) = y$ and $f_x(y) = x^{-1}yx$. We must show that $i^*(\alpha) = f_x^*(\alpha).$

Let δ be the center of π_p . Then $x \bar{x}^{-1}$ is the center of $x \pi_p x^{-1}$. Both of these are in the centralizer $C(\rho)$ of ρ . By Lemma 8, there is an element $t \in C(\rho)$ such that $tx_3x^{-1}t^{-1}=\frac{1}{3}$. In other words, $tx \in N$. Since $t \in C(\rho)$, the maps i, $f_x: \rho \longrightarrow \pi_p$ can be obtained by composing the inclusion map $\rho \to \pi_p \cap \text{tr} \pi_p x^{-1} t^{-1}$ with the maps i', $f'_{tx} : \pi_p \cap \text{tr} \pi_p x^{-1} t^{-1} \to \pi_p$ defined
by $i'(y) = y$ and $f'_{tx}(y) = x^{-1} t^{-1} y t x$. Now $i'^*(\alpha) = f'_{tx}(\alpha)$ since $t x \in N$
and α is stable with respect to N. Therefore $i^*(\alpha) = f$ and α is stable with respect to N. Therefore $i^*(\alpha) = f^*_\alpha(\alpha)$. This shows that α is stable with respect to π .

COROLLARY. Let π be p-normal, and let N be the normalizer of a p-center of π . Let A be any π -module. Then the inclusion and transfer maps both are isomorphisms between the p-primary components of $\hat{H}^i(\pi, A)$ and $\hat{H}^i(N, A)$.

This follows immediately from Theorem 3 and the results of [1, Ch. XII, §9]. If we set $i = -2$ and $A = Z$ in this corollary, we get the classical second theorem of Griin.

We can also recover Lemma 1 from Theorem 3 for, if π_p is abelian, it is normal in N. Therefore, an element of $\hat{H}^i(\pi_p, A)$ is stable with respect to N if and only if it is fixed under the action of N on π_p by $y \to x^{-1}yx$ for each $x \in N$. $x \in N$.

REFERENCES

1. H. CARTAN AND S. EILENBERG, Homological algebra, Princeton, 1956.

- 2. R. G. SWAN, Periodic resolutions for finite groups, to uppear in Ann. of Math.
- 3. H. ZASSENHAUS, The theory of groups, $2nd$ ed., New York, Chelsea, 1958.

THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS