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Introduction

The min purpose of this paper is to give general scheme for the construc-
tion of probability measures in infinite Cartesian products of measurable
spaces by using an appropriate imbedding of this Cartesian product into a
standard random process of the "function space type" according to the
terminology of Doob [3]. The application of this imbedding principle is
based upon a method which is similar to that used in [8]. The final general
result is expressed by Theorem 2 of 1. The significance of this theorem lies
in the fct that it contains the abstract form of a relevant condition under
which the construction of probability measures in infinite Cartesian products
becomes lwys possible.

In 2 the imbedding principle is upplied to the puricular case of Cartesian
products of separable metric spaces ia order to obtuin a generalized version
of the well known Kolmogorov extension theorem [5]. An important step in
the realization of the imbedding is the Banach-Mazur representation theorem
[1]. The relevant condition under which the main theorem of 2 holds is
special form of absolute measurability. We shall see that the well known
counterexamples of E. Sparre Andersen and B. Jessen [9] and that of P. R.
Halmos [4] must violate this condition. One of the last contributions to the
solution of problems of the above-mentioned type seems to be the paper of
Blackwell [2]. D. Blackwell has proved the extension theorem under the
assumption that the components of the Cartesian product are analytic sets,
and we shall indicate in 2 the relation to our results.

In order to show that the application of the imbedding principle is not lim-
ited to the traditional cases of separable metric spaces, we shall establish in

3 a theorem concerning the construction of probability measures in infinite
Cartesian products of sets of Schwartz distributions. The proof is based on
the application of Theorem 2 of 1 and on a number of results of K. Winkel-
bauer [11] concerning random Schwartz distributions.
Throughout this paper the standard terminology and notation as well as a

number of auxiliary results from Doob [3] and Halmos [4] are used without
further prticular reference.

1. The abstract scheme

Let us denote by F the set of all mappings of fixed set X 0 into fixed
set R 0, i.e., F Rx. For each x e X, let be a mapping of F into R such
that r(f) f(x) for every f e F. Clearly,

--1!l(x) {’ (D)’D R}
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is a complete algebra of subsets of F, and it is isomorphic to the complete
algebra of all subsets of R under r-i for every x e X. For each A c X, we
shall denote by 11(A the smallest complete algebra of subsets of F generated
by the union

tt(x).
For each A c X, the coincidence on A of mappings from F is an equivalence
relation which induces a partition of F into equivalence sets. This partition
coincides with the class of all atoms of ll(A). These atoms will be called
A-atoms, and the complete algebra 11(A) coincides with the class of all unions
of A-atoms. In particular, the X-atoms are one-element sets, and II(X) is
the class of all subsets of F. For each x e X, we have ll(/x} 11(x). We
see at once that

10, FI 1I(0) lI(A0) ll(A1) for A0 A1 X,
and that

ll(A0) n II(A1) {0, F} forA0,A cX, A0nA1 0.

Let us now consider a fixed sigma-algebra 9 of subsets of R. Clearly,

(x) {T-I(D):De 1
is a sigma-algebra of subsets of F, and it is isomorphic to the sigma-algebra
9 under r-1 for every x e X. For each A X, we shall denote by (A) the
smallest sigma-algebra of subsets of F generated by the union

u, (x).
Clearly, (A) II(A) n (X);hence, (A) ll(A) for everyA c X.
In particular, ({x} (x) for every x e X. We see at once that

{0, F} (0) (A0) (A1) for A0 c A1 c X,
and that

(A0) n (A1) 10, F} forA0,AxcX, Ao n A O.

For each A X, the sets from ll(A) will be called A-cylinders, and the
sets from (A) measurable A-cylinders. The A-atoms of 11(A) are A-cylin-
ders, but they are not in general measurable. We shall see that if R has at
least two elements and A is nondenumerable, then the A-atoms are never
measurable.
A class 3 of subsets of the set X is said to be sigma-directed if to each de-

numerable subclass of there exists a set from including all sets from this
denumerable subclass. Clearly, is sigma-directed if and only if each de-
numerable union of sets from is included in at least one set from . The
class of subsets of X is said to be a covering class if the union of all sets from

coincides with X. For instance, the class of all denumerable subsets of X
is a sigma-directed covering class whatever the power of X.
The following statement is obviously true.

(A) If is a sigma-directed covering class of subsets of X, then

(X) U., (A ).
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For instance, our assertion that the atoms are under a wide variety of cir-
cumstances nonmeasurable is a simple consequence of (A).
We shall now introduce the concept of "abstract property" which, as will

be seen later, is fundamental for this paper. Its significance will become com-
pletely clear from the application of our general results to the main problem
of the construction of probability measures in Cartesian products of various
concrete measurable spaces.

If is a sigma-directed covering class of subsets of X, then the mapping
P of u {X} into II(X) is said to be an abstract property with respect to if
P(A) is an A-cylinder, i.e., P(A) e II(A) for every A e u X}.
The property P with respect to is said to be extensible if

P(X) n Cl**x {f:fe F, f(x) f0(x)} 0

for every A e and every fo e P(A), or in other words, if to each A e and
to each fo e P(A ), there exists an f e P(X) such that f(x) fo(x) for every
xeA.

(B) If ? is a sigma-directed covering class of subsets of X and P an extensible
property with respect to , then to each E e (X) for which P(X) E, there
corresponds a set A e ? such that P A E.

The proof is very simple. If E e (X), then by (A) there exists an A e

such that E e (A). If foe P(A), then, according to the extensibility of
P, there exists an f e P(X) such that f(x) fo(x) for every x e A hence
f and f0 belong to the same A-atom. By hypothesis P(X) E; hence
f e E. Since II(A) is the class of all unionsof A-atomsand (A) II(A),
it follows that f0 e E, Q.E.D.
The property P with respect to is said to be hereditary if P(A) P(Ao)

forA0,Ale, A0 A.
We shall say that the property P with respect to is measurable if

P(A) e (X), i.e., P(A) is a measurable cylinder for every A e .
Clearly, the conditions of extensibility, heredity, and measurability are

consistent and mutually independent.
We shall now mention a simple auxiliary result which is a generalization of

a theorem in [8].

TItEOREM 1. Let t be a probability measure in (X), the outer measure
in II(X) induced by , a sigma-directed covering class of subsets of X, and P
a hereditary and extensible property with respect to ?. Then a necessary and

sufficient condition for (P(X) 1 is that (P(A) 1 for every A e ?.

The necessity of the condition follows at once from the heredity of P and
from the fact that is monotone. The sufficiency is a simple consequence of
(B). Indeed, since P is hereditary, the assertion in (B) can be completed by
P(X) P(A), and the desired result follows at once from the definition of
outer measure.
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Clearly, if in addition P is measurable, i.e., P(A) is a measurable cylinder,
then the condition (P(A) 1 can be replaced by (P(A) 1 for every
Ae.
We shall now repeat the construction of the Cartesian power replacing the

set X by the Cartesian product X X Y where Y 0. Let us denote by G
the set of all mappings ofX X YintoR, i.e., G RxxY. Foreaeh xeX,
y Y, we shall .define the mapping x,y of G into R such that (rx,y(g) g(z, y)
for every g e G. Clearly,

3(x, y) --1
Ox, (D)’D R}

is a complete algebra of subsets of G, and

@(x, y) -1
rx, (D)’Deg?}

is a sigma-algebra of subsets of G for every x e X, y e Y. For each C X X Y
we shall denote by 3(C) the smallest complete algebra of subsets of G gen-
erated by the union

U (x,)c 3(x, y),

and by @(C) the smallest sigma-algebra of subsets of G generated by the
union

U (,)c @(x, y).

Clearly, 93({x} X {y}) (x, y), and @({x} X {y}) @(x, y) forxeX,
y e Y. The properties of 3(C) and @(C) for C X X Y are analogous to
the properties of II(A) and (A) for A X.
For each y e Y, let us define a mapping t. of G into F such that

t(g) g(., y) e F for g e G. Clearly, r(t(g)) a,(g) for every z e X,
y e Y, and g e G. Since t21(Tx (D)) , (D) for every x e X, y e Y, and
D R, it follows from the definitions of (x), (x, y), (x), and N(x, y)
that the complete algebras (x) and (x, y) and the sigma-algebras (x)
and (x, y) are isomorphic under t2 for every x e X, y e Y, and, using the
definitions of (A), (A X {y} ), (A), and N(A X {y} ), we obtain at once
the following lemma.

(C) The complete algebras II(A and 3(A X y} and the sigma-algebras
A and @ A X {y} are isomorphic under t- for every A X and every

yeY.

Now we shall introduce the fundamental concept of absolute measurability.
For this purpose we shall assume that there is given an extensible, hereditary,
and measurable property P with respect to a sigma-directed covering class

of subsets of X. A subset S of P(X) is said to be absolutely measurable if
to each probability measure in (X), there exists a set E e (X) such
that P(X) n E, c S and (S) (E), denoting the outer measure in
II(X) induced by . Using this definition of absolute measurability, we can
now formulate the following
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THEOREM 2. Let be a sigma-directed covering class of subsets of X, let P
be an extensible, hereditary, and measurable property with respect to , and sup-
pose that the subset S of P(X) is absolutely measurable for every y e Y. Let
t be a probability measure in @(X X Y) and the outer measure in X X Y)
induced by . Then

if and only if
(1)

for every y e Y.

(t-l(Su)) 1

The necessity of the condition (1) is obvious, and its sufficiency will es-
sentially result from Theorem 1, from (C), and from the following two obvious
facts"

(D) If is a sigma-directed covering class of subsets of Y, then

{X X B’Be} X X

is a sigma-directed covering class of subsets of X X Y, and if in addition is
a sigma-directed covering class of subsets of X, then

{A X B’Ae?,BeO} X )

is a sigma-directed covering class of subsets of X X Y.

(E) If is a sigma-directed covering class of denumerable subsets of Y, if
is a sigma-directed covering class of subsets of X, and if P is an extensible,

hereditary, and measurable property with respect to for every y e Y, then the
mapping Q of ? X u X X Y} into 3 X )< Y) defined by

Q(A X B) fq.w t2l(p(A))

for A e u {X}, B e ) u {Y} is an abstract property with respect to X , and
it is extensible, hereditary, and measurable.

In order to prove the sufficiency of the condition (1), we can assume that
) is the class of all denumerable subsets of Y which evidently is a sigma-
directed covering class. Let us suppose that (1) holds. By hypothesis,
S P(X); hence by (C)

--1t (S) c t;(P(X))e (X X {y}),

and using (1) we have

(2) g(tl(p(X) 1

for all y e Y. The properties P for y e Y are measurable; hence by (C)

t-I(p(A)) e @(A )< {y} ),

and using in addition the heredity of P for all y e Y, we obtain by (2)

t(t-(P(A) 1
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for every y e Y and every A e . Since the sets from ) are denumerable,
therefore, by the definition of Q, we can state that

Q(A X B) e @(d X B),

(3) t(Q(A X B) 1

for every A e and every B e ). By (D), X ) is a sigma-directed cover-
ing class of subsets of X X Y, and by (E), Q is an extensible, hereditary, and
measurable property with respect to X ; hence, using (3) and Theorem 1,
we see that

(4) (Q(X X Y) (n,, tl(pu(x) 1.

By hypothesis, the subsets S of P(X) are absolutely measurable for all
y Y, i.e., to each y e Y, there corresponds a set E e (X) such that

(5) P(X) E
and such that by (C) and by (1)

(6) t[(Eu) e @(X X {y}),

(7) tt(t’l(Eu)) 1.

Since the sets from ) are denumerable, it follows from (6) and (7) that

(s) t-l(Eu) e @(X X Y),

(9) t(l,, ti(Ey) 1

for every B e 0. Now let us define

W(X X B) Q(X B) n nu.. t-i(Eu) lu.. tI(py(x) fi By)

for every B e ) u {Y}. Clearly, W is hereditary, and using (4) and (7) we
see that t-I(P(X) n Eu) 0; hence it is also extensible with respect to
X X ). By (4), (8),and (9),(W(X X B)) lforeveryBe);hence
a second application of Theorem 1 furnishes

(10) (W(X X Y) (ny. t-l(pu(x) n E) 1.

Finally, by (5)
nyy (i(py(X) fl Eu) nuY y

holds; hence (10) together with the last inclusion implies

Q.E.D.
The theorem just proved expresses the main result on an intermediate

level of generality. Its application to various concrete particular cases is very
simple, s will be shown by two typical examples considered in the next two
sections.
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2. Separable metric spaces
The construction of probability measures in infinite Cartesian products of

separable metric spaces is now possible by using the results of 1 and the fol-
lowing theorem due to S. Banach and S. Mazur [1].
Each separable metric space is isometric to a subset of the space of all real-

valued continuous functions in the closed unit interval supplied with the usual
metric.

According to this theorem, we can restrict ourselves to subsets of the space
of ll real-valued continuous functions in the closed unit interval, which evi-
dently is an admissible formal simplification.
For this purpose we shall first specialize the assumptions concerning the

sets R nd X, the class , nd the sigma-algebra 9. We shall suppose that
R is the space of all real numbers, X x’x e R, 0 -<_ x <= 1/, is the class
of all denumerable dense subsets of X, and 9 the sigma-algebra of all Borel
subsets of R. Clearly, F becomes the set of all real-valued functions defined
inX. For eachAeu{X} let

P(A) {f:f e F, F is uniformly continuous in A}

0:=lU:=l{f:f eF, SUpxl,xA.l=l-x21 <l/n If(x1) f(x.) < 1/m}.

Clearly, the uniform continuity P is an extensible, hereditary, and measurable
property with respect to . The uniformity is relevant for the extensibility.
Since, however, X is a compact space, we have

P(X) {f:f e F, f is continuous in X}.

Let us define the metric p in P(X) as usual by

o(f, f) max f(x) f,(x)

for all pairs fl, f2 P(X). It is well known that the metric space P(X) is
complete and separable with respect to p. Using the separability of P(X),
we obtain at once

(11) P(X) n (X) ,
where ! denotes the sigma-algebra of all Borel subsets of P(X).

Let S be a separable metric space, its complete extension, and the
sigma-algebra of all Borel subsets of . According to the Banach-Mazur
theorem, we can always assume that S c P(X), and that $ is the closure of
SinP(X). Sinceq c P(X) and n,therefore, by (11)
(12) (R) S n (X).
We shall say that the separable metric space S is metrically absolutely

measurable if it is a measurable subset of with respect to every probability
measure in , i.e., if for each probability measure in the corresponding
inner and outer measures of S coincide.

It is well known that S is measurable with respect to a probability measure
in if and only if there exists a subset H, of S such that H, e (R)
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and s(H,) S(S), where S denotes the outer measure induced by s; hence
by (11)

(F) If S is metrically absolutely measurable, then it is absolutely measurable
in the sense of 1.

Let us denote by the class of all finite subsets of Y. With each y Y
we shall associate a separable metric space Sy. By the Banach-Mazur
theorem it is legitimate to assume that Sy c P(X) for every y e Y. It is easy
to verify that the union of the sigma-algebras

(13)

for B e , i.e.,

(14)

o x B)

U n @(X X B)

is an algebra of subsets of

(15) ny t-l(u),
and this algebra (14) is a base of the sigma-algebra

(16) (yyti(y)) n (X X Y)

of subsets of (15).
The set (15) together with the sigma-algebr (16) is a measurable space

which corresponds exactly to the Cartesian product of the measurable spaces
(S, S n ) in accordance with the usual definition.
The main result of this section is the following generalization of the Kolmo-

gorov theorem [5]:

THEOREM 3. Let be a real-valued set function in the algebra (14) which is
a probability measure in the sigma-algebra (13) for eery B e . If S is metri-
cally absolutely measurable for every y e Y, then there exists exactly one probability
measure in the sigma-algebra (16) which coincides with on the algebra (14).

The assertion of this theorem is not true without the assumption of metrical
absolute measurability of the components, as has been shown by Sparre
Andersen and Jessen [9] and by Halmos [4]. On the other hand, in the sme
way as in the original version of the Kolmogorov theorem, the power of Y is
completely irrelevant.
The proof of Theorem 3 is very simple. We shall first define a rel-valued

set function in the algebr

(17) UB (X X B),

using the identical mpping I of (15) into G. Clearly, I-(E) belongs to
(14) whenever E is from (17); hence, putting (E) (I-(E)), we see t
once that is a real-valued set function in the Mgebr (17), and it is prob-
ability measure in the sigma-algebra (X X B) for every B e . In order
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to satisfy formally the assumptions of the original version of the Kolmogorov
theorem, note that to each finite set C c X ( Y there exists a finite set
Be eg such that C X X Be, and remember that R is the space of all
real numbers and 9 the sigma-algebra of all Borel subsets of R. Since
@(C) @(X X Be), therefore, is a probability measure in @(C) for every
finite set C X X Y. We see that all assumptions of the Kolmogorov
theorem are satisfied; hence there exists exactly one probability measure
in the sigma-algebra @(X X Y) which coincides with on the algebra (17).
Now we shall construct a probability measure ) in the sigma-algebra (16)
which coincides with on the algebra (14). By a well known lemma of Doob
this is possible if and only if

(18) (N, t-(S)) 1.

Under this condition the function defined by the equation },1-1 possesses
all the desired properties, so that we can restrict ourselves to the verification
of (18). By hypothesis, is a probability measure in (13) for every B e 9;
hence in particular, (tl(Sy)) 1 for every y e Y. Since Sy is assumed to
be metrically absolutely measurable, therefore, by (F) it is absolutely measur-
able in the sense of 1 for every y e Y, and (18) is an immediate consequence
of Theorem 2. The uniqueness of the extension is evident.
The theorem just proved is nothing else but a simple consequence of the

general result contained in Theorem 2. The assumption of absolute measur-
ability is relevant, and each counterexample of the type considered by Sparre
Andersen and Jessen [9] and by HMmos [4] must evidently violate the con-
dition of absolute measurability. Since by [6] in a complete separable metric
space every analytic set is absolutely measurable, Blackwell’s generalization
[2] of the Kolmogorov extension theorem is a corollary of Theorem 3.

3. Schwartz distributions

The main purpose of this section is to establish a theorem concerning the
construction of probability measures in infinite Cartesian products of sets of
Schwartz distributions. This theorem will be easily obtained by using the
general results contained in 1. We shall restrict ourselves to the case of
Schwartz distributions which are generalizations of real-valued functions of
one real variable. This restriction is, however, completely irrelevant and is
used only for the sake of simplicity.

Let R be the space of all real numbers and 9 the sigma-algebra of all Borel
subsets of R. If x is a real-vMued function defined in R, then the closure of
the set

{r:r e R, x(r) 0}
is said to be the support of x. We shall denote by X the set of all real-valued
functions in R with compact supports and derivable any number of times.
For each x eX and each k 0, 1, 2, 3, we shall denote by xk the kth

derivative of x, and in particular x x, i.e., the 0th derivative of x is the
function x itself.
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Clearly, with respect to the addition of functions and multiplication of
functions by real numbers, the set X becomes a linear space.
The topology in X is determined by the following definition of convergence"

We shall say that the sequence xl, x2, x, of functions from X converges
to the function x e X as n -- , and we shall write x -- x, if there exists a
positive integer m such that the supports of all x, Xl, x2, x3, are con-
rained in the interval

J. lr’r R,-m <__ r <= m},

and the sequence xl, x, x, converges to x uniformly in J for all
k 0, 1,2,3, ....
A real functional defined in X is said to be a Schwartz distribution if it is

linear, i.e., if it is additive and continuous. This is the usual definition of
Schwartz distributions [7].
For m 1, 2, 3, let Xm be the set of all functions from X the supports

of which are included in the interval J we shall denote by the class of all
denumerable subgroups A of X which satisfy the following condition" to each
positive integer m and to each x e X, there exists a sequence xl, x, x,
of functions from A n X such that x - x as n -- .It was shown by K. Winkelbauer in [11] that is a sigma-directed covering
class of subsets of X.
We shall preserve the notation F, ll(A), and (A) for A c X as intro-

duced in 1. In particular, F becomes the set of all real functionals defined
in X.
Now let us define the property P with respect to as follows"

P(A) (fl,.If:f F, f(xl -t- x.) f(x) + f(x.)})

n (A:=U=IU:= F)Xm{f:f eF, iX(x) -< n max Ix(r)I})
for every A e ? u IX}.

It has been shown in [11] that the property P with respect to is extensible,
hereditary, and measurable, and that

P X f f F, f is linear in X},

i.e., P(X) coincides with the space of all Schwartz distributions.
A subset S of the space P(X) of all Schwartz distributions is said to be

absolutely measurable if it is absolutely measurable in the sense of the definition
in 1.
We shall denote by t the class of all finite subsets of Y as in 2, and with

each y e Y we shall associate a set S of Schwartz distributions, i.e., of linear
funetionals in the function space X. Without any danger of confusion we can
now use the notation (13), (14), (1), and (16) of 2 in order to formulate
the analogue of Theorem 3 for infinite Cartesian products of sets of Schwartz
distributions. Using our new interpretations of the notation of 2, we see
that the set (15) together with the sigma-algebra (16) becomes the Cartesian
product of the measurable spaces (S., S n (X)) of Schwartz distributions
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in accordance with the usual definition, and the main result can now be simply
established as follows"

THEOREM 4. Let b be a real-valued set function in the algebra (14) which is
a probability measure in the sigma-algebra (13) for every B . If for each
y Y the set Sy of Schwartz distributions is absolutely measurable, then there
exists exactly one probability measure in the sigma-algebra (16) which coincides
with b on the algebra (14).

The proof can be omitted because it is essentially the same as that of
Theorem 3.

Conclusion

The application of the general results of 1 is not limited to the two par-
ticular cases of Cartesian products considered in the last two sections, which
serve to illustrate the simplicity of the imbedding method. The last two
special theorems show that the original version of Kolmogorov’s theorem
furnishes much more than may appear at first sight. On the other hand,
the construction of probability measures in infinite Cartesian products of
measurable spaces is not only of interest in itself, but it enables us to answer
questions concerning the existence of very general random processes with
prescribed probability distributions, as, for instance, random Schwartz dis-
tributions depending on an arbitrary parameter considered in [10]. An
appropriate weakening of the conditions used in the last three theorems will
probably furnish new conditions which will be not only sufficient, but also
necessary.
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